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Բաղդասարյան Գ.Ե., Միկիլյան Մ.Ա., Սաղոյան Ռ.Օ. 
Գազի գերձայնային հոսանքի ազդեցությունը ուղղանկյուն սալերի ոչ գծային տատանումների 

ամպլիտուդի վրա 
Դիտարկված է գազի գերձայնային հոսանքով շրջհոսվող իզոտրոպ ուղղանկյուն սալի ոչ գծային 

տատանումների խնդիրը: Հետազոտությունը կատարված է երկու տիպի ոչ գծայնությունների 
հաշվառմամբ. աերոառաձգական (քառակուսային և խորանարդային) և երկրաչափական 
(խորանարդային): Աերոդինամիկական ոչգծայնության (հատկապես նրա քառակուսային 
ոչգծայնության) հաշվառման շնորհիվ

 
ոչ գծային տատանումների ամպլիտուդի կախվածությունը 

շրջհոսող գազի արագության փոփոխության որոշակի միջակայքում երկարժեք է: Այդ փաստը ցույց են 
տալիս աշխատանքում բերված նկարներում երկու ճյուղերի տեսքով, որոնց ստորին ճյուղերը, 
ամենայն հավանականությամբ, անկայուն են: Անկայուն ճյուղերը բաժանում են երկու հարևան կայուն 
լուծումների ձգողության տիրույթները: Այստեղից հեշտությամբ ստացվում է գրգռման այն արժեքը, 
որն անհրաժեշտ է համակարգի մի կայուն ճյուղից մյուսին անցնելու համար: Ցույց է տրված 
պարամետրի փոփոխության որոշակի այն տիրույթների գոյությունը, որոնց դեպքում հնարավոր չէ 
գրգռել չմարող ֆլատերային տատանումներ ինչպես մինչկրիտիկական արագություններում, այնպես 
էլ հետկրիտիկական վիճակներում: 
 

Багдасарян Г.Е., Микилян М.А., Сагоян Р.О. 
Влияние сверхзвукового потока на амплитуду нелинейных колебаний прямоугольных пластин 

 
Рассматривается задача нелинейных колебаний изотропной прямоугольной пластинки, обтекаемой 

сверхзвуковым потоком газа. Исследование проведено с учётом обоих типов нелинейности: аэродина-
мической (квадратичной и кубической) и геометрической (кубической). Благодаря учёту аэродинамической 
нелинейности (особенно её несиметричной квадратичной части) установлено, что зависимость амплитуды 
нелинейных колебаний от скорости обтекающего потока в определённых интервалах изменения скорости 
является двузначной. Этот факт иллюстрирован на приведённых в тексте фигурах в виде двух ветвей, 
нижние ветви из которых, по всей вероятности, являются неустойчивыми. Неустойчивые ветви отделяют 
области тяготения двух соседних устойчивых решений. Отсюда легко находится величина возмущения, 
необходимого для того, чтобы перебросить систему с одной устойчивой ветви на другую. Показаны 
существования определённых областей изменения парметра, при которых невозможно возбудить 
незатухающие флаттерные колебания как при докритических скоростях, так и при послекритической 
стадии. 
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The problem of nonlinear oscillations of isotropic rectangular plate in supersonic gas flow is examined. The 
study was conducted taking into account both types of non-linearity: wind (quadratic and cubic) and geometric 
(cubic). Due to the aerodynamic nonlinearity (especially its non-symmetric quadratic part) it is established that 
dependence amplitude-speed is two-valued at the certain intervals of the speed. This fact is illustrated on the 
figures given in the text in the form of two branches, the lower branches of which, in all probability, are unstable. 
The unstable branches are separated via the gravitational field of two adjacent sustainable solutions. Thus the 
perturbation magnitude can be easily found, which is required in order to transfer the system from one stable branch 
to another. Existence of specific areas of the speed is shown in which undamped flutter type oscillations cannot be 
excited in both pre-critical speeds and in post-critical stage. 
 

Introduction 
The literature is paved by numerous studies on the stability of plates and shells in 

supersonic gas flow. Significant contributions are reported in the monographs [1-3] and in 
the review article [4]. The interested reader can consult [1-7] for a linear descriptions of the 
problem, while in [2,8-15] aspects related to the nonlinear behavior of plates and shells in 
supersonic flows is discussed. The solution of the linear problem yields the critical value of 
the flow speed, u ;  at the onset of this critical speed the aeroelastic system loses its stability. 
The solution of the linear problem can be accomplished using a variety of methods, in many 
circumstances it can be achieved analytically in an closed form, while if an analytical solution 
cannot be found, often an approximate one, for example using the Galerkin method, can be 
reached [2]. Nonlinear panel flutter problems are solved by approximate methods to 
investigate the dependence of the amplitude of oscillations A on the speed of flowing stream, 
when the value of flowing speed is in the vicinity of critical flutter speed. In the flutter 
problems these issues, devoted to the investigation of properties of the function  A  , when 
the plate is flown in both directions with the same speed, is investigated in detail in the works 
[2,13], where it is shown, that non-linear flutter type oscillations are exist either in pre-critical 
stage,  where  A   is  monotone decreasing function, or in post-critical speeds, where 

 A   is  monotone increasing function.  Non-linear flutter problems, in account of only 
geometrical type of non-linearity in the works [14,15] were discussed, also. In the works [8,9] 
it was shown, that aerodynamic non-linearity  (especially its non-symmetric quadratic part) 
brings to the appearance of new types of dependencies  A   as in pre-critical, as well as in 
post-critical speeds, which are near to the critical. In the work [10] the influences of 
geometrical non-linearity on the dependence “amplitude-speed” are investigated in the case 
of cylindrical panels. It is shown, that dependence of the amplitude of non-linear flutter type 
oscillations on the value of speed of flowing stream can have multi-value character. 
While the aeroelastic behavior in term of non-linear amplitude vs. speed is often the object 
of discussion, very limited literature deals with the non-linear amplitude vs. frequency. When 

0u  , the relationship between non-linear amplitude and frequency describing the 
nonlinear vibrations of a plate is classified as “hard” [1], i.e. with increasing non-linear 
amplitude there is a corresponding increasing in oscillatory frequency. In the work [16] it is 
shown, that the presence of flowing stream, due to the aeroelastic non-linearity, can be a 
source of both quantitative and qualitative change of the character of noted monotonically 
increasing relationship.  
In the present work the dependence of amplitude of non-linear oscillations on the value of 
speed of flowing stream is investigated both in pre- and post- critical stage. the influence of 
frequency of nonlinear oscillations and geometrical parameters of the plate on the 
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dependence  A   is studied without the above-mentioned limitations on the value of 

supersonic flow speed. It is established that the character of the function  A 
 
is changed 

significantly as quantitatively, as well as qualitatively, depending on the noted parameters. 
Possible types of the function

  A    are shown in the Figures 1-6. Dependencies, illustrated 
in bottom parts of the Figures 5 and 6, were well-known due to the works [2,13]. 
Obtained in this study the main results are listed in paragraph 5. 

1. Formulation of the problem of stability 

The problem is formulated by considering a thin isotropic rectangular plate of constant 
thickness h . It is referred to the Cartesian coordinate plane , ,    and the coordinate plane 

,   coincides with the middle plane of the plate and the coordinate lines   and   are 
directed along the edges of the plate. A supersonic gas flow with freestream velocity 
magnitude u , is aligned with the axis 0 , on one side of the panel only. To investigate the 
aeroelastic stability of the examined plate the following assumptions are considered: 
 а) the Kirchhoff’s hypothesis on non-deformable normal [18]; 
 b) for the flexible plate the normal displacements are comparable with the thickness of 
the plate [1]; 
 c) the third-order nonlinear Piston Theory Aerodynamics (PTA) is used when 
calculating the aerodynamic pressure [19,20]. 
 Based on these assumptions the nonlinear aeroelastic governing equations can be cast 
as [2]: 

22 2 2
2

2 2
1 0,w w wF

Eh
   

         
(1) 

2 2 2 2 2 2 2
2

0 02 2 2 2 2
æ2 +pw F w F w F w wD w h h
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Herein 
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æ, , ,
12 1

pEh uD M a
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 , ,w t  – is the out-of-plane plate deflection, M – is the Mach number of undisturbed 

flow, a – is the sound speed for the undisturbed gas, æ is the isentropic gas coefficient, 
– is the Poisson’s ratio, 0 – is the density of plate’s material, p  and  – are the pressure 
and gas density in the undisturbed state,  – is the coefficient of linear attenuation, and 

 , ,F F t   –
 
is the stress function.  
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To investigate the issues of stability of the examined system the boundary conditions must 
be added to the set of Eqs. (1) and (2). A simple-supported edges along the contour of the 
rectangular plate, implying that the plate is free to move in the plane, will be considered 
 0 , 0a b     . Consequently, according to [2], the following boundary 
conditions are used: 
for 0 , a     

2 2

2 20, 0,w ww M D

  
         

(3) 

0 00, 0T T  
 

(4) 

for 0 , b     
2 2

2 20, 0,w ww M D

  
         

(5) 

0 00, 0,T T  
 

(6) 

where 0 0 0, ,T T T   –
 
are the average values of the force at the edges of the plate.  

2. Reduction to the stability problem, described by the system of ordinary differential 
equations 

An approximate solution of Eq. (2), satisfying conditions (3) and (5) which, let’s present 
in the form [2] 
  1 1 1 2 2 1, , ( )sin sin ( )sin sinw t f t f t            (7) 

,i k
i k
a b
      

 
 

where  ( )if t – are functions of time ,t  still to be determined.  

Substituting (7) into (1) the linear non-homogeneous system of ordinary differential 
equations with respect to the function F  will be obtained. The Solution of the noted 
equation, satisfying the boundary conditions (4) and (6) is presented as: 
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To calculate the functions  if t  Eq. (2) will be used. Substituting Eq. (7) and the already 

found expression F  into Eq. (2), and solving it by using the Bubnov-Galerkin method, the 

nonlinear system of ordinary differential equations, with respect to unknown functions 

1 1 2 2( ) , ( )x f t h x f t h   , one obtains [2,13]: 

   



   

2
2 2 21 1

1 2 11 1 12 22

2 2 2 2
2 11 1 12 2 1 11 1 12 2

2
2 22 2

2 1 21 1 22

2 2 2 2
1 21 1 22 2 2 21 1 22 2

2
3

0

2
3

0.

d x dx x k x k x x
d d

x x x Qx x x

d x dx x k x k x x
d d

x x x Qx x x

          
       

         
 

       

 (8) 

Herein, along with the dimensionless time t1 , the following notations are considered: 

   22 2 2
1 2 2 2

0 0 1 0 1
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2 56 16æ 1 , æ 1 , æ 1 ,
9 45 45
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1 , 16 ,

814 1
1 4 9 4

Eh Eh
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 (10) 

where 1  and 2  are first and second natural frequencies of the plate, while   is the 
reduced speed parameter. 

3. Solution of the linear problem 

The solution of the nonlinear problem is usually preceded by analysis of the corresponding 
linear problem, since: a) the critical parameter cr    (hence the critical flow speed 

1
cr cru ah a

  , e.g. 1
cr crM ah  ), at which the unperturbed state of the plate 

becomes unstable with respect to any small perturbation can be found, and b) the critical state 
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cru  (e.g. crM  or  cr ), is necessary in the investigation of the type of stability of a nonlinear 
system. 
Thus, the linear system of equations obtained linearizing equations (8) has the form 

2
1 1

1 22

2
22 2

2 12

2 0,
3

2 0.
3

d x dx x k x
d d
d x dx x k x
d d

     
 

      
   

(11) 

Representing the solution by 1 1 2 2, ,x y e x y e    the characteristic equation with 

respect to   can be cast as: 

   4 3 2 2 2 2 2 2 242 1 1 0.
9

k                  
 

 

The unperturbed form of the plate is stable if the real parts of the roots of the characteristic 
equation are negative. Consequently, according to Hurwitz's theorem [21], the conditions for 
stability can be written in the form: 

     22 2 2 2 2 2160, 1 0, 1 2 1 0.
9

k                

The first two inequalities require that the damping (internal and aerodynamic) is positive. 
From the third inequality it follows that for small values  , all characteristic roots   lie in 
the left half of a complex variable, and the trivial solution 0w   is asymptotically stable 
with respect to small perturbations. The value of the parameter cr   , for which two of 
the characteristic exponents are purely imaginary, and the remaining lie in the left half-plane, 
is critical and corresponds to the panel flutter speed in the linear formulation of this problem. 
Accordingly, the critical flutter speed in the case of the selected buckling form of the plate 
[2] can be obtained from the third inequality: 

 
 

2 22

22

2 13 1 1 .
4 1

cr k
   

  
 

 (12) 

Taking cr    from the characteristic equation Eq. (11a), the critical vibration frequency  

cr  in the linear formulation  cr cri     is 

 2 21 1 .
2cr   

 
(13) 

It is worth noting that Eqs. (12) and (13) can also be found in [2,4] as well as other references, 
demonstrating that the proposed solution is a very good approximation for both cr  and ,cr  
determined on the basis of the exact solution [4-7,22]. 
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4. Solution of nonlinear problem 

The nonlinear problem described by Eqs. (8) is studied next. This system of equations is 
different from the one used to study the linear stability for flexible plates forced by non-
conservative aerodynamic loading, specifically in terms of the aerodynamics, since now 
quadratic and cubic nonlinear terms are included in the problem formulation. Specifically, in 
the system of equation (8) asymmetric quadratic nonlinearities of aerodynamic and 
aeroelastic origin are included along with cubic terms. The quadratic nonlinearities are 
inherent to the problems of the stability of flexible shells. Therefore, the approximate periodic 
solution of Eqs. (8) is presented as [10] 

1 1 1 1 2 2 2 2cos sin ..., cos sin ...x A B C x A B C          (14) 

Here , ,i i iA B C  и  1
1 1,2i     are unknown constants;   is unknown 

frequency of nonlinear vibrations and the dots denote high-order harmonic terms which, 
without loss of generality and accuracy, can safely be discarded. Contrarily to existing 
solutions, as reported in [2,13], the proposed one, Eqs. (14), includes also the constant terms 

0iC  , which are used to characterize the quadratic nonlinearities [10,23]. When 

substituted into Eqs. (8) the constant member and first harmonics cos  and sin  are 
retained while the terms containing harmonics are neglected. Although straightforwardly 
obtainable, the system of nonlinear algebraic equations is lengthily and is not presented here. 
To obtain the approximate solution of this system the following assumptions are made [10]:  

a)  the damping is small such that ,i i i iB A B A   ; 

b)  the aeroelastic system reaches a steady oscillatory state with finite amplitude around 
the equilibrium state, which is infinitesimally different from the unperturbed state, 
 2,1;  jCA ji .  

According to these assumptions, and neglecting the degrees above the first and any of the 
products of 1 2 1, ,B B C  and 2C , the nonlinear system can be represented by a subsystem of 
nonlinear equations including: 

Two equations obtained by equating to zero the zero order terms: 
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Two equations obtained by equating to zero the coefficients of cos : 
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Two equations obtained by equating to zero the coefficients of sin : 
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It should be noted that the third subsystem takes into account damping terms. Assuming that 
the damping is small  0  , by performing a linearization of this equations, one obtains: 

1 20, 0B B   for 0     

Using the first subsystem let’s express 1C  and 2C  trough 1A  and 2A  (see (16)). From the 

second subsystem the amplitudes of oscillations of the examined aeroelastic system, 1A  and 

2A , are computed as function of the parameters   and  . Then for 0  it has the form: 

2 2 2
1 2 11 1 1 12 2 2

3 2 2 2 2
2 11 1 12 2 1 11 1 12 2

2 2 2
2 1 21 1 2 2 1

3 2 2 2 2
1 21 1 22 2 2 21 1 22 2

2(1 ) 2 2
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3 3( ) ( ) 0,
4 4
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3

3 3( ) ( ) 0.
4 4

A k A k AC k A C

k A A A QA A A
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k A A A QA A A
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Herein 

 

2
2 2

1 11 1 12 2 2 21 1 2 4

2
2 2

2 21 1 2 1 11 1 12 2 3

( )
2

2

kC A A A A

kC A A A A
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where 
2 2 3

1 11 1 12 2 11 1 2

2 3 2 2
2 22 1 2 22 2 21 1

3 2 3 2
3 21 1 22 2 21 1 2

3 2 3 2
4 12 2 11 1 12 1 2 1 2 3 4

3 11 ,
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2 3 1 , .
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Q A Q A k A A

k A A Q A Q A

k k A k A Q A A

k k A k A Q A A

        

         

          

                 

 

In the particular case when   is in close proximity of cr  [2], it follows 1 2A A  . This 
can be demonstrated from the third subsystem after the linearization which leads to:  

2 2 2
1 2 1 2 1 2

2 2(1 ) 0 , ( ) 0.
3 3

B k B A B k B A                (17) 

Taking into account that at the flutter boundary cr    и cr   , from (12), (13) and (17) 
we have 
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2 2

1 1 2 2 1 2
1 1, ;

2 2cr crA B B A B B   
       

As a result, as expected, 1 2A A  , if   is in the close proximity of  cr and   tends to 

cr . It should be noted that studies conducted in the [2,8,9] are based on an approximate 

equality 1 2A A  . 
This system (15) is solved numerically for the following initial set of parameters: 

10 2 3 3
07.3 10 N/m ; 0.34; =2.79 10 kg/mE        (Duralumin), while the flow 

properties used are 3æ=1.4; 1.29 / ; 340.29 /kg m a m s     (air).  The depen-

dency of the amplitude A  of steady oscillations at point  / 2, / 2,0a b  for which 1A A  

on the parameter ,  characterizing the flowing speed for several / ,h a  /a b and  . 
Numerical calculations, having done in [8,9], show that the relation /h a  has significant 
influence (as qualitative, as well as quantitative) on the character of the dependence 
“amplitude-speed”. Therefore, the cases of thick and thin plates will be considered separately. 
 
4.1. Influence of supersonic flow on the character of dependence “amplitude-speed” in 

the case of sufficiently thick plates  

The results of numerical solution of the system (15) for 70 , 5a h b a   and several fixed 
values of  , representing dependence of the amplitude of flutter type oscillations on the 
speed parameter  , are brought in the Table 1 and on plotted on its basis Figures 1-3. The 
dependence  A   for several /a b  and fixed   is brought on the Table 2. 
The most interesting result of these calculations is the following: limit cycle oscillations are 
possible as in pre-critical speeds of flowing stream  Cr   , as well as in post-critical 

stage  Cr   . A similar result in a qualitative sense, was obtained in [2.13], in which it 
is established, that for the certain parameters of the problem either hard type of oscillations 
 Cr   , or only soft type excitations  Cr    occur. The reason for the noted 
discrepancy is the accounting of the wind type quadratic nonlinearity and the rejection of the 
assumption 1 2A A  . 

Table 1 show that for the chosen parameter /b a  the change of the frequency    has as 
qualitative, as well as quantitative influence on the dependence “amplitude-speed”. Namely: 

 If  0;1 , such speed value cr  exists, for which if cr    then generation of 

limit cycle oscillations is impossible. For cr    dependence of the amplitude of 
oscillations on the speed of flowing stream (the function ( ))A  is a two-value one, 
which tends to zero with the increasing   (Fig.1).  
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Table 1. Influence of the parameter   on the dependence “amplitude-speed”. 
 

 

 
Fig.1. Plot of the function  A   for 1  . 

Cr




  
 

0.
2 

0.
24

 

0.
25

 

0.
56

8 

0.
57

 

0.
7 

0.
72

2 

0.
77

 

0.
8 

0.
9 1 1.
4 

2.
6 

0.
5  - - - - - - - 

1.
58

2 
1.

46
6 

1.
81

1 
1.

12
6 

1.
52

6 
0.

79
2 

1.
15

4 
0.

62
9 

0.
47

7 
0.

33
5 

0.
12

0 
0.

10
5 

1 - - - - - - 

1.
52

6 
1.

47
7 

1.
99

7 
0.

99
7 

1.
97

6 
0.

89
2 

1.
55

0 
0.

68
5 

1.
14

7 
0.

56
1 

0.
46

0 
0.

31
0 

0.
11

3 
0.

09
9 

 1.
1 

0.
38

7 

0.
09

7 

0 - - - 

1.
82

9 
1.

16
5 

2.
05

4 
0.

92
2 

2.
00

9 
0.

83
7 

1.
55

5 
0.

65
6 

1.
14

4 
0.

54
2 

0.
45

5 
0.

30
3 

0.
11

1 
0.

09
7 

 1.
5 

1.
55

8 

1.
52

2 

1.
51

2 

1.
44

6 
0 

1.
45

1 
0.

10
0 

2.
22

1 
0.

62
5 

2.
29

3 
0.

62
2 

2.
26

5 
0.

60
2 

2.
14

0 
0.

58
5 

1.
56

7 
0.

51
8 

1.
12

5 
0.

45
4 

0.
42

9 
0.

27
1 

0.
10

2 
0.

08
8 

 2 

2.
50

0 

2.
48

0 

2.
47

5 

2.
51

1 

2.
51

3 

2.
75

4 

2.
72

1 

2.
50

0 

2.
28

6 
0 

1.
56

2 
0.

27
3 

1.
07

8 
0.

31
2 

0.
38

2 
0.

22
4 

0.
08

7 
0.

07
4 

 4 

5.
69

3 
0.

03
6 

5.
68

7 
0.

04
4 

5.
68

5 
0.

04
7 

5.
51

9 
0.

13
7 

5.
51

6 
0.

13
8 

4.
56

1 
0.

15
5 

4.
17

5 
0.

15
2 

3.
16

5 
0.

14
7 

2.
53

2 
0.

14
2 

1.
02

7 
0.

13
0 

0.
26

7 
0.

18
7 

- - 



 

31 

 If  11;    (the value of 1  depends on the geometry of the plate), then a 

segment  , 
     of the parameter   exists, generation of limit cycle oscillations 

is impossible (Fig.2). Out of this segment for     the function  A   is a 

unique-value and monotone decreasing, and for     the function  A   is a 
two-value one and qualitatively analogous to the function plotted in the Fig.1. With 
the increasing   the length of the segment , 

     decreases and equals to zero 

at the certain value  . 

 
Fig.2. Plot of the function  A  при 1.1   

 If 1 2      (the segment  1 2;   can be changed depending on the plate’s 

geometry) the plot of the function  A   is brought in the Fig.3. Such speed value 

  exists, for which if     the function  A   is a unique-value, while for 

    it is a two-value one, which branches have maximum. After maximum 
points the amplitude is monotone decreases and tends to zero. With the increasing 
  the value of   increases. 
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Fig.3. Plot of the function  A   for 1.5  . 

Let’s note that here and in the future for the certain segments of frequency of oscillations the 
own   and   exist, which are brought in the corresponding figures. For the fixed geometry 

the change of the parameter   has quantitative influence on the dependence “amplitude-
speed”, also. Table 1 shows that increment of the parameter   brings to the change of the 
amplitude (the amplitude decreases on the lower branch, and increases – on the upper 
branch). 
Let’s study now the influence of the relation /b a  on the dependence “amplitude-speed” for 

2  . The results of numerical calculations of the function  A   are brought on the Table 2. 

Table 2. Influence of  /b a  on the dependence “amplitude-speed”  

Table 2 shows, that this influence has only qualitative character. In particular, for 2   the 
Fig.3 is true. Both  and corresponding values of the amplitude decrease with the increasing 

/b a . 

Cr
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4.2.  Influence of supersonic stream on the behavior of non-linear oscillations  
for thick and sufficiently thin plates 

 
Here numerical analysis is done for several data of parameters   and /b a  for the fixed 

/h a . The results of numerical solutions are brought in the tables  3-5.  Having discussed 
the brought tables one can note, that the dependence  A   in the case of thin plates, in 
addition to the already known and brought in the Fig. 1 and 2, which were plotted in the case 
of thick plates, here new behaviors take place and on its basis Fig. 4-7 are plotted. 
As table 3 shows in the case of thin plates for fixed /b a  influence of the parameter   on 
the dependence “amplitude-speed” has as qualitative, as well as quantitative character. 

Table 3. Influence of frequency   of oscillations on the dependence “amplitude-speed” for 
h/a=1/120,b/a=2 

Moreover: 
 dependence  A   for  0;1

 
has the same character as in the case of 

sufficiently tick plates (Fig.1); 
 depending on the geometrical parameters of the plate the certain such value of 

frequency 1 1   exists, that if  11;   the dependence  A   is identical to 
the dependence, brought in the Fig.2 and plotted in the case of sufficiently tick 
plates; 
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 in an analogous way, such segment  1 2,   of frequency exists, that for 

1 2      (this segment changes with the geometry of the plate), the function 

 A   has a plot, brought in the Fig.4, for more evidence which is drawn for b/a=5. 

In this case such certain values , ,    of speed parameter   exist, that if 

, 
      then generation of limit cycle oscillations is impossible. Moreover if 

     and  ,     the function  A   is a two-value, and for     it is a 

unique-value function.  With the increasing frequency of oscillations: a) length of 
the segment , 

     decreases; b) on the left side of   the amplitude increases, 

and on the right side of   it decreases. Let’s note, that if cr   , then 1  . 

 
Fig.4. Dependence “amplitude-speed” for / 1 /120, / 5, 2.84crh a b a       

The results of numerical calculations of  A   in the case of sufficiently thin plates 

 / 1/ 300, / 3h a b a   for several values of the parameter   are brought in the Table 4. 

Table 4 shows, that for the fixed /b a  the influence of the parameter   on the behavior of 
the function  A   is presented as follows: 

 If  0;1 , then it is impossible to generate limit cycle oscillations in the 
sufficiently thin plates; 

 If  11, 
 
(with the varying geometry 1  varies), then such speed value    

exists, that if     then it is impossible to generate limit cycle oscillations,  and 

for     the dependence of the amplitude  on the flowing speed (the function 
( ))A   is a unique-value and monotone decreasing one (Fig.5), moreover 
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 * 0A   . Let’s note, that the mentioned behavior of the function  A   is 
explored and studied in [2]; 

Table 4. Influence of the parameter   on the function  A   

  

 

Fig.5. Plot of the function  A 
 
for 1.9   

Cr
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 If  1 2,    (this segment changes with the geometry of the plate), then the plot 

of the function  A 
 
is brought in the Fig.6. For clarity and diversity the Fig.6 is 

drawn for / 1 / 300, / 3.h a b a   In this case such certain values   and   
of the parameter   exist, that: a) if     then it is impossible to generate limit 

cycle oscillations; b) if  ,    , then the function  A   is a two-value one; c) 

if    , then it is a unique-value, monotone decreasing function. 

 

Fig.6. Dependence “amplitude-speed” for / 1/120, / 1, 1.9crh a b a       

For the fixed relations /h a  and   the influence of the parameter /b a  has only 
quantitative character as in the case of relatively tick plates, as well as in the case of 
sufficiently thin plates. In particular, when / 1 / 150h a   and 2   the function  A   

is presented via the Fig.6, and with the increasing /b a  the length of the segment , 
   

decreases, moving to the left, moreover the values of the amplitude are decreased (Table 5). 
Calculations show, also, that for large values of   as in the case of thick plates, as well as in 
the case of thin plates the dependence take place, brought in the Fig.7, which indicates, that 
such certain   exists, that if 0     , then the function  A   is a two-value one, and 
out of this segment it is impossible to generate limit cycle oscillations (Fig.7). 
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Table 5. Influence of the relation b/a on the dependence “amplitude-speed” for h/a=1/150 и 
2   

 

 

Fig.7. Plot of the function  A   for h/a=1/300, b/a=3, =4 

In this paper the influence of the relation /h a  on the dependence  A   is investigated, 

also, for the fixed /b a  and appropriate critical frequencies. The results of numerical 
calculations are brought in the Table 6. The noted table is composed of three parts, in which 
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the values of  A   are brought for the fixed  /b a  and appropriate critical frequencies, 

which, as it is known (see equation (13)) independent of /h a .  

Table 6. Influence of h/a on the dependence “amplitude-speed”. 

 

b/a=5, =2.836 
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Table 6 shows, that the relation /h a  has as qualitative, as well as quantitative influence on 
the function  A  . With the decreasing /h a  the behavior of examined dependence varies 
as follows: in the beginning it is similar to the dependence shown in Figure 3, which is plotted 
in the case of sufficiently thick plates. Having decreased /h a , the plot of the function 

 A 
 
is changed, and becomes identical to the plot, constructed in the case of plates of 

medium thickness (Fig.4). A further decrease of the relative thickness brings to the change 
of the plot of the function  A   and becomes similar to the Fig.6, which corresponds to the 
case of sufficiently thin plates. 

5. Main results 

In conclusion, let’s present in our opinion most important some new results obtained in this 
study. They are the result of the influence of the flowing supersonic stream on the character 
of nonlinear oscillations of examined aeroelastic system and can be addressed as follows. 

 Due to the aerodynamic non-linearity (especially its non-symmetrical quadratic 
part) it is established, that dependence  A  , in the certain segments of speed 
parameter  , is a two-value one. This fact is illustrated in the figures in the form of 
two branches, the lower branches of which, probably, are unstable. Unstable 
branches separate the areas of two neighboring stable solutions. Thence it is easy to 
find the magnitude of disturbance required to transfer the system from one stable 
branch to another;  

 Existence of certain areas of change   is shown at which it is impossible to excite 
flutter type limit cycle oscillations as in pre-critical speeds, as well as in post-critical 
stage; 

 Results, obtained in this paper can be the basis for formulation and investigation of 
problems of optimal control for the magnitude of the amplitude of flutter type 
oscillations via the appropriate choice of geometrical parameters of the plate. 

This work was supported by the RA MES State Committee of Science, in the frames of the 
research project № SCS 15T-2C134. 
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