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The problem of nonlinear oscillations of isotropic rectangular plate in supersonic gas flow is examined. The
study was conducted taking into account both types of non-linearity: wind (quadratic and cubic) and geometric
(cubic). Due to the aerodynamic nonlinearity (especially its non-symmetric quadratic part) it is established that
dependence amplitude-speed is two-valued at the certain intervals of the speed. This fact is illustrated on the
figures given in the text in the form of two branches, the lower branches of which, in all probability, are unstable.
The unstable branches are separated via the gravitational field of two adjacent sustainable solutions. Thus the
perturbation magnitude can be easily found, which is required in order to transfer the system from one stable branch
to another. Existence of specific areas of the speed is shown in which undamped flutter type oscillations cannot be
excited in both pre-critical speeds and in post-critical stage.

Introduction
The literature is paved by numerous studies on the stability of plates and shells in
supersonic gas flow. Significant contributions are reported in the monographs [1-3] and in
the review article [4]. The interested reader can consult [1-7] for a linear descriptions of the
problem, while in [2,8-15] aspects related to the nonlinear behavior of plates and shells in
supersonic flows is discussed. The solution of the linear problem yields the critical value of

the flow speed, U, ; at the onset of this critical speed the aeroelastic system loses its stability.

The solution of the linear problem can be accomplished using a variety of methods, in many
circumstances it can be achieved analytically in an closed form, while if an analytical solution
cannot be found, often an approximate one, for example using the Galerkin method, can be
reached [2]. Nonlinear panel flutter problems are solved by approximate methods to
investigate the dependence of the amplitude of oscillations A on the speed of flowing stream,
when the value of flowing speed is in the vicinity of critical flutter speed. In the flutter

problems these issues, devoted to the investigation of properties of the function A(V) , when

the plate is flown in both directions with the same speed, is investigated in detail in the works
[2,13], where it is shown, that non-linear flutter type oscillations are exist either in pre-critical

stage, where A(V) is monotone decreasing function, or in post-critical speeds, where

A(V) is monotone increasing function. Non-linear flutter problems, in account of only

geometrical type of non-linearity in the works [14,15] were discussed, also. In the works [8,9]
it was shown, that aerodynamic non-linearity (especially its non-symmetric quadratic part)

brings to the appearance of new types of dependencies A(V) as in pre-critical, as well as in

post-critical speeds, which are near to the critical. In the work [10] the influences of
geometrical non-linearity on the dependence “amplitude-speed” are investigated in the case
of cylindrical panels. It is shown, that dependence of the amplitude of non-linear flutter type
oscillations on the value of speed of flowing stream can have multi-value character.

While the aeroelastic behavior in term of non-linear amplitude vs. speed is often the object
of discussion, very limited literature deals with the non-linear amplitude vs. frequency. When

U=0, the relationship between non-linear amplitude and frequency describing the
nonlinear vibrations of a plate is classified as “hard” [1], i.e. with increasing non-linear
amplitude there is a corresponding increasing in oscillatory frequency. In the work [16] it is
shown, that the presence of flowing stream, due to the aeroelastic non-linearity, can be a
source of both quantitative and qualitative change of the character of noted monotonically
increasing relationship.

In the present work the dependence of amplitude of non-linear oscillations on the value of
speed of flowing stream is investigated both in pre- and post- critical stage. the influence of
frequency of nonlinear oscillations and geometrical parameters of the plate on the
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dependence A(V) is studied without the above-mentioned limitations on the value of

supersonic flow speed. It is established that the character of the function A(V) is changed

significantly as quantitatively, as well as qualitatively, depending on the noted parameters.
Possible types of the function A(v) are shown in the Figures 1-6. Dependencies, illustrated

in bottom parts of the Figures 5 and 6, were well-known due to the works [2,13].
Obtained in this study the main results are listed in paragraph 5.

1. Formulation of the problem of stability

The problem is formulated by considering a thin isotropic rectangular plate of constant
thickness N . It is referred to the Cartesian coordinate plane o.,3,7 and the coordinate plane
o, coincides with the middle plane of the plate and the coordinate lines O and [ are
directed along the edges of the plate. A supersonic gas flow with freestream velocity
magnitude U, is aligned with the axis Oot, on one side of the panel only. To investigate the
aeroelastic stability of the examined plate the following assumptions are considered:

a) the Kirchhoff’s hypothesis on non-deformable normal [18];

b) for the flexible plate the normal displacements are comparable with the thickness of
the plate [1];

c) the third-order nonlinear Piston Theory Aerodynamics (PTA) is used when
calculating the aerodynamic pressure [19,20].

Based on these assumptions the nonlinear aeroelastic governing equations can be cast
as [2]:

2., A2 2 2
LA2F+8W8W oW —0,
oaop

— 1
Eh o0’ op’ M

,  O'WOF o0’'wo’F _ o'w O°F o’'w &p, | oW
DAW-————5—5+2 +poh—+| pohe + —+
oo~ Op” OB oa 0a.oP doop ot a, ot
2 3
+aepw[M8_W+ae_—HM2(a_Wj +aa_+1M3(6'\_Nj =0, )
oo 4 oa 12 o
Herein
3
D:L, M:i, ai:ae_go’
12(1-p7) a, P,

W(OL, B,t) — is the out-of-plane plate deflection, M — is the Mach number of undisturbed

flow, @ — is the sound speed for the undisturbed gas, @ is the isentropic gas coefficient, |

— is the Poisson’s ratio, P, — is the density of plate’s material, 0, and p_— are the pressure
and gas density in the undisturbed state, €— is the coefficient of linear attenuation, and

F=F (OL,B,'[)— is the stress function.
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To investigate the issues of stability of the examined system the boundary conditions must
be added to the set of Egs. (1) and (2). A simple-supported edges along the contour of the
rectangular plate, implying that the plate is free to move in the plane, will be considered

(0 <a<a 0<B<L b). Consequently, according to [2], the following boundary

conditions are used:
foraa=0, a=a

2 2
w=0, M, =-D[ W ,IWI_,, (3)
oo’ " OB
T) =0, T; =0 (4)
for =0, p=Db
o’'w  o*w
w=0, M,=-D + =0, 5
B [8[32 uaazJ ( )
TB°=0, Tﬁzzo, (6)

where T, Tﬁ0 , TO?B — are the average values of the force at the edges of the plate.

2. Reduction to the stability problem, described by the system of ordinary differential
equations

An approximate solution of Eq. (2), satisfying conditions (3) and (5) which, let’s present
in the form [2]
w(a,B,t) = f (t)sinko-sinp B+ f,(t)sin Ao -sin p B 7

i kr
}\,. =—, = —
( i a Mk bj

where . (t)— are functions of time 1, still to be determined.

Substituting (7) into (1) the linear non-homogeneous system of ordinary differential

equations with respect to the function F will be obtained. The Solution of the noted
equation, satisfying the boundary conditions (4) and (6) is presented as:

2 2 2
F(a.B,t)= Ejh{—% f, f, cos(A,a) +8“? f cos(kzoc)+9“? f, f, cos(A o)+

1 1 1

o

2
+ 32&2 f, cos(h,o)+

1 Aty

f, f, cos(A,a)cos(p,B) -

HTh M o2, M oo
——ff A —L_f L f ,
A £, cos (R0 ) cos (p,B)+ o +8u12 1 cos(p,B)
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To calculate the functions fi (t) Eq. (2) will be used. Substituting Eq. (7) and the already

found expression F into Eq. (2), and solving it by using the Bubnov-Galerkin method, the

nonlinear system of ordinary differential equations, with respect to unknown functions

x = f,(t)/h, x, = f,(t)/h, one obtains [2,13]:

d’ d 2
d'c);l +Xd—)2+ X, —Ek\/)(2 +kv? [oclle +a,X +

+VX2 (Bllxl2 +B12X§):|+QX1 (Y11X12 +Y12X§) = O

d’ d 2
dr)iz +Xd—xi+y2x2 +§k\/)<1 +kv? [(121X1X2 +

VX, (B 4B ) |+ Q% (12 +71226 ) =0.

Herein, along with the dimensionless time T = (olt , the following notations are considered:

®

o =D (i en) (i=12), k=P g N
poh poe;h 16p, o, ©
a @, @, poha,

o, =§(a3+1), o, =4—5(35'+1): Ay =4—5(ae+1),

’ 117 o
B11:B21:Z_0(a3+1)= B = 72 (ae+1), [3]2:—%(&4_1)’

Y =B (149" ).7,, = ENA (16 + ),

(10)

81(P4 2+ (P4 - ab—l
(1+4(p2) (9+4(p2)

where ®, and ®, are first and second natural frequencies of the plate, while Vv is the

i = Y2 = EA] 4(1+(P4)+

reduced speed parameter.
3. Solution of the linear problem

The solution of the nonlinear problem is usually preceded by analysis of the corresponding
linear problem, since: a) the critical parameter V=V (hence the critical flow speed

U, =ah-1vcraw, e.g. |\/|cr =ah-1vc, ), at which the unperturbed state of the plate

becomes unstable with respect to any small perturbation can be found, and b) the critical state
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U, (e.g. M o O V. ),isnecessary in the investigation of the type of stability of a nonlinear

system.
Thus, the linear system of equations obtained linearizing equations (8) has the form

d’ d 2

)jl +x—x1+ X, ——kvx, =0,

dt dt 3 (10
d? d 2
—)§2+X—X2+y2x2 +=kvx =0.

dt dt 3

Representing the solution by X = Y,€, X, =Y,€", the characteristic equation with

respect to A can be cast as:
X4+2xk3+(y2+1+x2)k2+x(y2+1)X+y2+gk2 ’=0.

The unperturbed form of the plate is stable if the real parts of the roots of the characteristic
equation are negative. Consequently, according to Hurwitz's theorem [21], the conditions for
stability can be written in the form:

2 2 1\ 2 2y 16,5 5
x>0, X(1+y )>0, (y —1) +2y (1+y )—gk v->0.
The first two inequalities require that the damping (internal and aerodynamic) is positive.
From the third inequality it follows that for small values V , all characteristic roots A lie in
the left half of a complex variable, and the trivial solution W= 0 is asymptotically stable

with respect to small perturbations. The value of the parameter V =V, for which two of

the characteristic exponents are purely imaginary, and the remaining lie in the left half-plane,
is critical and corresponds to the panel flutter speed in the linear formulation of this problem.
Accordingly, the critical flutter speed in the case of the selected buckling form of the plate
[2] can be obtained from the third inequality:

(12)

Taking V =V, from the characteristic equation Eq. (11a), the critical vibration frequency

0

o in the linear formulation (Xcr =+i0,, ) is

1
0’ = E(YZ +1). (13)
It is worth noting that Egs. (12) and (13) can also be found in [2,4] as well as other references,

demonstrating that the proposed solution is a very good approximation for both v and Ocr ,

determined on the basis of the exact solution [4-7,22].
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4. Solution of nonlinear problem

The nonlinear problem described by Egs. (8) is studied next. This system of equations is
different from the one used to study the linear stability for flexible plates forced by non-
conservative aerodynamic loading, specifically in terms of the aerodynamics, since now
quadratic and cubic nonlinear terms are included in the problem formulation. Specifically, in
the system of equation (8) asymmetric quadratic nonlinearities of aerodynamic and
aeroelastic origin are included along with cubic terms. The quadratic nonlinearities are
inherent to the problems of the stability of flexible shells. Therefore, the approximate periodic
solution of Egs. (8) is presented as [10]

X =AcosOt+Bsin0t+C +..., X,=A cos0t+B,sin0t+C, +... (14)

Here A, Bn C| u 62(0601_1 (I 21,2) are unknown constants; ® is unknown

frequency of nonlinear vibrations and the dots denote high-order harmonic terms which,
without loss of generality and accuracy, can safely be discarded. Contrarily to existing
solutions, as reported in [2,13], the proposed one, Egs. (14), includes also the constant terms

C| # 0, which are used to characterize the quadratic nonlinearities [10,23]. When

substituted into Egs. (8) the constant member and first harmonics COS 07 and SInOT are
retained while the terms containing harmonics are neglected. Although straightforwardly
obtainable, the system of nonlinear algebraic equations is lengthily and is not presented here.
To obtain the approximate solution of this system the following assumptions are made [10]:

a) the damping is small such that X| B | << |A B|| << |A| ;

b

b) the aeroelastic system reaches a steady oscillatory state with finite amplitude around
the equilibrium state, which is infinitesimally different from the unperturbed state,

(Al>>c|: i=12)

According to these assumptions, and neglecting the degrees above the first and any of the
products of BI , Bz , C1 and C2 , the nonlinear system can be represented by a subsystem of

nonlinear equations including:

Two equations obtained by equating to zero the zero order terms:
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G ‘%k"cz +%kv2 (aqu +0hz%2)+ kv’ A, (BIIACI +B12AZC2)+
+%kV3CZ (BllAz +512A22)+QA (YllACl +YI2AZC2)+
+%QC1 (Y]lAz +712A22) =0,

2 1
Yzcz +§ kvC, +Ekvza21A\Az + kVSA (BZIACI + BzzA&Cz)"'

+%kV3C1 (leAz +B22A22)+QA2 (YZIACI +Y22A§C2)+

1
+§QC2 (VzlAz +722A22) =0;

Two equations obtained by equating to zero the coefficients of COSOT:

(1-0°) A + 208 - kvA, + 2kv* (a1 AC, + 0, AC, )+
+%kV3A§(B11A2 +812A§)+%QA (Yl]Az +Y12A§2):0’
(v'—0%) A +x0B, +§kVA +o,,kv’ (AC, + AC, )+

+%kv3A (BmAZ +B22A22)+%QA2 (YZIAZ +722A22) =0;

Two equations obtained by equating to zero the coefficients of Sin Ot :
2 1
(1-92)Bl—§kv32—xeA +5kv3BHAAzBI+
1 3 2 2 1 2 2
+ kv (BUAT +30, A7) B, + Q31 A +1,A ) B +
1
+5QAAB, =0,
2 _0%\B. - gk lk 3 2 2
('Y 6) )y X6A2+3 VB‘+4 v (3B21A +BzZAZ)B|+
1 1
+EkV3B22AAsz+EQY21AAzBl+

1
+ZQ(721A2 +3y22A22) B, =0.
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It should be noted that the third subsystem takes into account damping terms. Assuming that

the damping is small (X ~ O) , by performing a linearization of this equations, one obtains:
B =0, B, =0 for y~0

Using the first subsystem let’s express C1 and C2 trough A and Ay (see (16)). From the
second subsystem the amplitudes of oscillations of the examined aeroelastic system, Al and

A& , are computed as function of the parameters 0 and V . Then for ¥ = 0t has the form:

A\(l—@z)_gkvp‘z +2kv?a, AC, +2kv’a,,AC, +

FRVA (B A B A + 2 QA A+ 71,4 =0,

(15)
Az(yz -6%) +§kVA + kvzazl(Acz +AC)+
3 3
VAR A B A) + QA A 1, K) =0.
Herein
|‘(V2 2 2
C] :_Z[(GHA +(x12Az)A2 _azlAAzAzt:'
(16)
C =—k—vz[a AAA —(OL A +a AZZ)AJ
2 A 21 1 11 12 3
where

3 1
A, :1+§QY11A2 +5QY12A12 +kVSBnAA§a
3 1
A, = Y2 + kV3BzzAA§ +5Q722A22 +5QY21A2a
2 3 1
A, ZEkV+EkV3521A2 +Ekv3[322A22 +Qv,AA,

A, :_gkv—i_%kV}Blezz +%kVSBHAZ +QvL,AA, A=AA, -AA,.

In the particular case when V is in close proximity of v [2], it follows A & —Ag . This
can be demonstrated from the third subsystem after the linearization which leads to:

(1-6%)B, —§kv|32 -%0A =0, (v’ -6%)B, +§ka1 —%0A, =0. (17)

Taking into account that at the flutter boundary V=V u 0= ecr , from (12), (13) and (17)
we have
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105 A = (&+B ) 10, A =1 (BI+B );
As aresult, as expected, A ~ —A§ , if V is in the close proximity of Vv and 0 tends to

OU . It should be noted that studies conducted in the [2,8,9] are based on an approximate

equality A = —A .

This system (15) is solved numerically for the following initial set of parameters:
E=7.3-10"N/m*; p=0.34; p,=2.79:10°kg/m* (Duralumin), while the flow

properties used are &=1.4; p, =1.29kg/m’; a, =340.29m/s (air). The depen-
dency of the amplitude A of steady oscillations at point (a/ 2,b/2, 0) for which A= A

on the parameter V, characterizing the flowing speed for several h/a, a/ band 0.

Numerical calculations, having done in [8,9], show that the relation h/a has significant
influence (as qualitative, as well as quantitative) on the character of the dependence
“amplitude-speed”. Therefore, the cases of thick and thin plates will be considered separately.

4.1. Influence of supersonic flow on the character of dependence “amplitude-speed” in
the case of sufficiently thick plates

The results of numerical solution of the system (15) for a = 70h, b=5a and several fixed

values of O, representing dependence of the amplitude of flutter type oscillations on the
speed parameter V , are brought in the Table 1 and on plotted on its basis Figures 1-3. The

dependence A(V) for several &/b and fixed O is brought on the Table 2.
The most interesting result of these calculations is the following: limit cycle oscillations are

possible as in pre-critical speeds of flowing stream (V <Vq ) , as well as in post-critical

stage (V > Ve, ) . A similar result in a qualitative sense, was obtained in [2.13], in which it
is established, that for the certain parameters of the problem either hard type of oscillations
(V > Ve ) , or only soft type excitations (V <Vg ) occur. The reason for the noted
discrepancy is the accounting of the wind type quadratic nonlinearity and the rejection of the

assumption A = —A, .

Table 1 show that for the chosen parameter b/ a the change of the frequency © has as
qualitative, as well as quantitative influence on the dependence “amplitude-speed”. Namely:

e IfOe (0; 1], such speed value vV, exists, for which if v <V then generation of

limit cycle oscillations is impossible. For v 2 v dependence of the amplitude of

oscillations on the speed of flowing stream (the function A(V)) is a two-value one,
which tends to zero with the increasing Vv (Fig.1).
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Table 1. Influence of the parameter O on the dependence “amplitude-speed”.

. 9z1'T | 7680 | L£8°0 | <850 0 wio
80 1gr | oer | 600 | ovic | 98T | cesT
. 99’1 | L660 | zze0 | 2090 . Lb10
LLO | zgst | 1661 | ¥soT | sozz | 00ST | gor¢
. ] LLyT | sorT | 290 . 10
Lo 9zs1 | etsl | gere | YT | 1w
. ] ] ] $79°0 . SS1°0
Lo 1cee | YSET | 19sy
. 001°0 . 8ET°0
50 - - - s | ST | 9rgg
. ] ] ] 0 . LETO
8950 o1 | 1IST | erse
. . . Lb0°0
. ] ] . . . br0'0
vT0 L600 | TTST | 08YT | ,g9¢
. ] ] . . . 900
20 L8€0 | 8SS'T | 00ST | ¢goc
'l <l z ¥
% S0 I

I.

Fig.1. Plot of the function A(V) for O
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If e (1; 91) (the value of 91 depends on the geometry of the plate), then a
segment I:V* R V*] of the parameter V exists, generation of limit cycle oscillations
is impossible (Fig.2). Out of this segment for V<V, the function A(V) is a

unique-value and monotone decreasing, and for v > v* the function A(V) is a
two-value one and qualitatively analogous to the function plotted in the Fig.1. With

the increasing O the length of the segment [V* R V*:I decreases and equals to zero

at the certain value 0.

-
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},

vl

<|<

. 05 vy ! 13
Fig.2. Plot of the function A(V) Ipu 0=1.1

If 6, <0<0, (the segment [91;92) can be changed depending on the plate’s
geometry) the plot of the function A(V) is brought in the Fig.3. Such speed value

v, exists, for which if v <Vv_ the function A(V) is a unique-value, while for

*

V2V, it is a two-value one, which branches have maximum. After maximum
points the amplitude is monotone decreases and tends to zero. With the increasing
O the value of v, increases.
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>

Fig.3. Plot of the function A(V) for 0=1.5.

Let’s note that here and in the future for the certain segments of frequency of oscillations the
own v, and V" exist, which are brought in the corresponding figures. For the fixed geometry

the change of the parameter O has quantitative influence on the dependence “amplitude-

speed”, also. Table 1 shows that increment of the parameter O brings to the change of the

amplitude (the amplitude decreases on the lower branch, and increases — on the upper
branch).
Let’s study now the influence of the relation b/ a on the dependence “amplitude-speed” for

0 =2 . The results of numerical calculations of the function A(V) are brought on the Table 2.

Table 2. Influence of b/ a on the dependence “amplitude-speed”
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Table 2 shows, that this influence has only qualitative character. In particular, for 0 =2 the
Fig.3 is true. Both v, and corresponding values of the amplitude decrease with the increasing

b/a.
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4.2. Influence of supersonic stream on the behavior of non-linear oscillations
for thick and sufficiently thin plates

Here numerical analysis is done for several data of parameters O and b/ a for the fixed
h/a. The results of numerical solutions are brought in the tables 3-5. Having discussed

the brought tables one can note, that the dependence A(V) in the case of thin plates, in

addition to the already known and brought in the Fig. 1 and 2, which were plotted in the case
of thick plates, here new behaviors take place and on its basis Fig. 4-7 are plotted.

As table 3 shows in the case of thin plates for fixed b/ a influence of the parameter O on
the dependence “amplitude-speed” has as qualitative, as well as quantitative character.

Table 3. Influence of frequency O of oscillations on the dependence “amplitude-speed” for
h/a=1/120,b/a=2
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Moreover:

e dependence A(V) for 96(0;1] has the same character as in the case of

sufficiently tick plates (Fig.1);
e depending on the geometrical parameters of the plate the certain such value of

frequency 0, > 1 exists, that if O € (1; 91) the dependence A(V) is identical to

the dependence, brought in the Fig.2 and plotted in the case of sufficiently tick
plates;
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e in an analogous way, such segment [91,92] of frequency exists, that for
0, <0 <0, (this segment changes with the geometry of the plate), the function

A(V) has a plot, brought in the Fig.4, for more evidence which is drawn for b/a=5.

In this case such certain values V*,V*,V of speed parameter V exist, that if

Ve [V* R v*] then generation of limit cycle oscillations is impossible. Moreover if

v>v’ and VE (V,V*) the function A(V) is a two-value, and for V<V itisa

unique-value function. With the increasing frequency of oscillations: a) length of

the segment [V* R v*] decreases; b) on the left side of v, the amplitude increases,

and on the right side of v" it decreases. Let’s note, that if 0 = ecr ,then v=1.
A
a~
2 2 . L
AT '3 3 A . . = V]

v VvV, v

Fig.4. Dependence “amplitude-speed” for h/@a=1/120, b/a=5, 6=0, ~2.84

The results of numerical calculations of A(V) in the case of sufficiently thin plates

(h /a=1/300, b/a= 3) for several values of the parameter O are brought in the Table 4.
Table 4 shows, that for the fixed b/ @ the influence of the parameter O on the behavior of

the function A(V) is presented as follows:

e If 0O E(O; l], then it is impossible to generate limit cycle oscillations in the
sufficiently thin plates;
e Iffe (1, 91) (with the varying geometry 0, varies), then such speed value V,

exists, that if v > Vv_ then it is impossible to generate limit cycle oscillations, and

for v <V, the dependence of the amplitude on the flowing speed (the function

A(v)) is a unique-value and monotone decreasing one (Fig.5), moreover
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0. Let’s note, that the mentioned behavior of the function A(V) is

Table 4. Influence of the parameter O on the function A(V)

explored and studied in [2];
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_ ) ) ) ) £56°¢
ce LEvT
. ) ) ) 0977 | 9860
651 vz | 16Ts
ol ) ) ) 191 | €180
€1 | peoes
. ) ) 5991 | 11120 | 8L09°0
srel €181 | 6sL8€ | LETo's
. ] ) 12Ls0 | 0zero | svspo
61287 | 16117 | £0SL'S
| ) ) 0 | wozo | ozivo
9L60°€ | 06vTY | 0T6L'S
. ) A 0 LLIEO
$8°0 0 SSSEE | o0 | Grusc
LOBCU
80 - L1900 | so9r's | 105kt | 6568
. ] . . | €esto
0 SYEIT | LILLE | 9bOY | [eooo
. . . | woo
970 0 VT | 868 | 8LV | g
7SUU
70 o0 | sz | cies | v | o509
LCUU
10 0990 | sisz | cee€ | sstv | 1909
N 'l 61 1Lt a3 v

35

1.9

Fig.5. Plot of the function A(V) for O
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e IfBe [91 R 92 ) (this segment changes with the geometry of the plate), then the plot
of the function A(V) is brought in the Fig.6. For clarity and diversity the Fig.6 is

drawn for h/a=1/300, b/a=3. In this case such certain values v, and v

of the parameter V exist, that: a) if V =V, then it is impossible to generate limit

cycle oscillations; b) if V € (V, v, ) , then the function A(V) is a two-value one; ¢)

if v <V, then it is a unique-value, monotone decreasing function.

Fig.6. Dependence “amplitude-speed” for h/a=1/120, b/a=1, 6=0, ~1.9

For the fixed relations h/a and O the influence of the parameter b/a has only
quantitative character as in the case of relatively tick plates, as well as in the case of

sufficiently thin plates. In particular, when h/a=1/150 and © =2 the function A(V)

is presented via the Fig.6, and with the increasing b/ a the length of the segment [V, V*]

decreases, moving to the left, moreover the values of the amplitude are decreased (Table 5).

Calculations show, also, that for large values of © as in the case of thick plates, as well as in
the case of thin plates the dependence take place, brought in the Fig.7, which indicates, that

such certain v* exists, that if 0 < v < v", then the function A(V) is a two-value one, and

out of this segment it is impossible to generate limit cycle oscillations (Fig.7).
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Table 5. Influence of the relation b/a on the dependence “amplitude-speed” for h/a=1/150 u
0=2
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Fig.7. Plot of the function A(V) for h/a=1/300, b/a=3, 0=4

In this paper the influence of the relation h/a on the dependence A(V) is investigated,

also, for the fixed b/a and appropriate critical frequencies. The results of numerical
calculations are brought in the Table 6. The noted table is composed of three parts, in which
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Table 6. Influence of h/a on the dependence “amplitude-speed”.

the values of A(V) are brought for the fixed b/a and appropriate critical frequencies,

which, as it is known (see equation (13)) independent of h/ a.
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Table 6 shows, that the relation h/ a has as qualitative, as well as quantitative influence on
the function A(V) . With the decreasing h/ a the behavior of examined dependence varies

as follows: in the beginning it is similar to the dependence shown in Figure 3, which is plotted
in the case of sufficiently thick plates. Having decreased h/ a, the plot of the function

A(V) is changed, and becomes identical to the plot, constructed in the case of plates of
medium thickness (Fig.4). A further decrease of the relative thickness brings to the change
of the plot of the function A(V) and becomes similar to the Fig.6, which corresponds to the

case of sufficiently thin plates.
5. Main results

In conclusion, let’s present in our opinion most important some new results obtained in this
study. They are the result of the influence of the flowing supersonic stream on the character
of nonlinear oscillations of examined aeroelastic system and can be addressed as follows.

e Due to the aerodynamic non-linearity (especially its non-symmetrical quadratic

part) it is established, that dependence A(V), in the certain segments of speed

parameter V , is a two-value one. This fact is illustrated in the figures in the form of
two branches, the lower branches of which, probably, are unstable. Unstable
branches separate the areas of two neighboring stable solutions. Thence it is easy to
find the magnitude of disturbance required to transfer the system from one stable
branch to another;

e Existence of certain areas of change V is shown at which it is impossible to excite
flutter type limit cycle oscillations as in pre-critical speeds, as well as in post-critical
stage;

e Results, obtained in this paper can be the basis for formulation and investigation of
problems of optimal control for the magnitude of the amplitude of flutter type
oscillations via the appropriate choice of geometrical parameters of the plate.

This work was supported by the RA MES State Committee of Science, in the frames of the
research project Ne SCS 15T-2C134.
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