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On a Class of Contact Problems of Elasticity Theory, Solvable by the Integral Equations Method

Cosely connected with classical contact problems a certain class of contact problems of mathematical
elasticity theory solvable by the method of integral equations is considered. An elastic layer, wedge and half-
space under the anti-plane deformation are taken as bases.
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Introduction. Classical and non-classical contact and mixed boundary value problems
(b.v.p.) cover a wide area of the mechanics of a deformable solid. The literature devoted to
development of effective mathematical methods for their investigations and to their
applications in engineering is extensive. On this subject we refer to [1]-[8] and references
therein.

To provide the contact durability and rigidity of various machinery and engineering
constructions it is essential the action of admissible and theoretically acceptable contact
stresses or displacements in the contact zone. In the contact of two deformable solids
fastened together it can be attained as by an appropriate choice of their geometrical and
physical parameters, and of the outer load as well.



In the present paper a certain class of contact problems is discussed in the simplest case of
anti-plane deformation. When the contact zone is under the force of pre-assigned regime of
displacements, contact interactions between an elastic prismatic bar with a rectangular
cross-section and an elastic layer, or a half-space, or an elastic wedge-like solid are
considered. With the help of preliminary solutions of auxiliary problems, the setup
problems are reduced to the Fredholm integral equations (i.e.) of the first kind with the
symmetric kernels. The solutions of these i.e. are built by both the Krein method [9], [10]
and the method of integral spectral relationships, established in [11]. Some special cases are
presented.

1. The setting of contact problems and derivation of the main equations.

Consider two elastic solids B, and B, with given modules of elasticity and Poisson ratios

Ej, \Z (j =1,2) respectively, rigidly fastened by a surface S. Generally B, is

massive deformable solid — the base of different geometrical forms, while B, is thin-walled

element such as stringers, beams, plates and shells, which are convenient means for
transmitting loading to the bases, that usually occur in the engineering practice.
Let the composite solid be a subject to outer loads (Fig.1).

Fig.1
The main investigations in the theory of contact problems are reduced to the study of the
stress-strain state of such a composite solid, especially to determining the distribution of
contact stresses on S and their kinematic parameters (coming together, relative turns),
characterizing the rigidity of a contact.
These problems admit the following settings.
Determine contact stresses on a contact surface S and kinematic parameters under a given
surface load.

Find the outer load distribution on a surface of solid B, to get the pre-assigned contact
stresses, admissible in theory.

Find the outer load distribution on a surface of solid B, to get the pre-assigned regime of
displacements on the contact surface S .

The present paper concerns to the last topic. The anti-plane deformation of elastic solids in

contact is assumed, and the following patterns (models) with corresponding problems are
discussed.
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I.In the rectangular coordinate system OXyz consider an elastic layer
Q= {—oo <X zZ<ow; —H<Ly< O} of the height A and shear module G (Fig.2).
y
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Fig.2
Let it be rigidly clamped by its lower side Y =—H, on its boundary plane y =0, be

I

I
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rigidly fastened by the strip = {—a <x<a;y=0; —o<z<wx } to the infinite
prismatic bar €, = {—a <x<a;0<y<h; —w<z< oo} with a rectangular cross-

section Dy ={—a<x<a; 0<y<h} and shear module G,.

The upper side y = A of a bar is loaded with distributed tangential forces on the direction
Oz , that induced an anti-plane deformation of the system layer-bar in the same direction.
The problem is to determine the tangential forces distribution T, (X) when in the contact
zone —a < X < A the pre-assigned regime of displacements is realized. The displacements
are given as a smooth  enough function f(x) , that is when
W, (X, O) =f (x)(—a <X< a) , Where W, (X, y) is the only non-vanishing component

of the bar displacements by Oz direction.
I1. Here the elastic layer is replaced by a wedge-shaped base, which is presentable as
r,9,z in cylindrical coordinate system. The wedge with a shear module G is rigidly

clamped. The load on the bar is given by forces with intensity t, (r) {a<r <b}, directed
along Oz axis tangentially to its upper face (Fig.3).
The problem s to find a function t, (r) such that w,(r,a)=f(r) (a<r<b)

where f () isagiven continuous function.
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Fig.3
I11. Here the elastic layer is replaced by a half-plane, and the analog of the case I is
considered.
To deduce the main equations of posed problems, as a preliminary, let us construct
solutions of some auxiliary boundary problems, that connect stresses with displacements in
the contact zone.
For the case | we have

2 2
86:¥°+aayvg°=0 (a<x<b; 0<y<h)
oW, oW,
TXZ|x=a= Oa_)(()x=a=TXZ|X=b=G06_XOX=b:0 (OSySh), (11)
oW, oW,
T, =G, — =1 (x);1, =G,— =1,(x) (a<x<b
Y: y=0 0 ay - ( ) y. y=h 0 8y yoh ( ) ( )

where tangential stresses in contact zone is r_(x), and T,,, T, are tangential

components of stresses.
The b.v.p. (1.1) is considered with the following additional condition of the equilibrium of

the bar or rectangle
b

Ir_(x)dx:jr+(x)dx:T, (1.2)

where T isa given quantity.
The solution of (1.1) can be build by means of finite Fourier cosine-transformation.



Similar to that in [12, (Ch 111-13)] for Dirichlet class function f (X) in the case under

consideration one can derive
b

fc(n)zjf(x)cos[un(x)]dx; . (x)=nn(x-a)/(b-a) (n=012,..),
f(x)= ;E(;Méz 7. (n)cosy (x)] (a<x<b). @3
Applying (1.3) to the b.v.p. (1.1)—(1.2) we arrive at the more compact form of its
presentation

d*Ww, m
- w,=0 O<y<h),
dy? (b—a)2 ’ (0<y<h) w4
LY A )P R () R PP
dy y=0 GO dy |y:h GO

where W, =W, (N, y) and, in accordance with (1.3),
b

{W (n,y); 7. (n)} :I{wo(x, y)it, (x)}cos| p, (x)]Jdx (n=0,12,..).

a

The solution of (1.4) is

L (% (n)ch(r,y)-% (n)ch[%, (y—h)]};

3,Gysh (2,h)
W, (n,y)= 0<y<h;r, =mn/(b-a);n=12..);
Téo)ymo (0<y<h, n=0;%(0)=7,(0)=7 (0)=T),
0
hence from (1.3) we get
Wo(n,y)zwo(o’ y)+ C W, (n, y)cos[pn(x)] (a<x<b,0<y<h). (L5)

b-a b-atd

The analogous formulas take place for T, (X) as well.

Now from (1.5) it follows that

_ _W,(0,0) 2 = 7, (n)-ch(x,h)T (n)

(0= ma)e, & sh(h) cos{ 1, (x)] 16)
(B, =W,(0,0); a<x<b).

As it was noted above, the problem is considered under the following condition

W, (x,0)=f(x) (a<x<bh),




where the function f (X) is given. Represent it as the Fourier cosine series by the second
formula in (1.3) and compare (1.3) with (1.6).

Then, for the basic three functions T, (X) and f (X) of the problem under consideration,
we arrive at the following relations between their Fourier cosine-coefficients

A,.Gesh(,h) f(n)=7, (n)-ch(x,h)T (n) (n=12,..)
W,(0,0)= f(0); W,(n,0)=f(n); 1, =nn/(b-a).

For the thin rectangle D, (h <<b- a) these relations are simplified.

1.7

Indeed, confining ourselves with terms of order h in power series of entire functions
Sh(knh) and Ch(knh), formula (1.7) will take the following form
A2G,hf(n)=7,(n)-7 (n) (n=0,12,...). (1.8)

The relations obtained are discrete analogs of a thin bar-stringer deformation's differential
equations in the well-known Melan model for a plane deformation (see [13, 14]). In the
case of anti-plane deformation one has (see [15])

d3w,
Gohd—ZOZT_(X)—T(X) (a<X<b). (1.9
X
Now consider the case of an elastic layer, rigidly clamped by its side Yy =—H. In the base

plane Oxy the corresponding b.v.p. for the layer I1= {—oo <X<mw;—H<y< O} is
presented as

o*w  O*w
0.0 (e
ow (1.10)
’Cyz Y=0=GE =T_(X), W|y:7H=0 (_w<x<oo)’
y=0

where W=W(X, y) is the only non-vanishing component of the bar displacements by

Oz direction. The solution of (1.10) can be obtained by means of Fourier integral
transform with respect to X. In the similar way, for boundary points displacements of a
strip we have

1 % TE|X—S|
w(x,O):—jlncth =1 (s)ds (~o<x<00), (L11)
nG -, 4H
if the function T_ (X) vanishes outside of the segment —a < X < a. The passage to the
limit H — o0 yields
1

F 1
0)=—1 I
w(x.0) nG_an|X—S|

T_(S)dS +C (—oo<X<oo) (1.12)



for the elastic half-plane I1 = {—oo < X<y < 0} .
Next, the corresponding b.v.p. for a wedge, clamped by its side 3 =0 is
o’w 1 ow 1 o’w

—+= 2—0 (0<r<ow; 0<9<a);
or? r6r r’ o9

16w (1.13)
W|s—o:0; T9z|9 =G —— ZT,(I’) (O<r<oo)_
B r oSy,
By means of Mellin integral transform with respect to I, its solution can be written as
TE/ZU. + r‘r[/Zo,
(r o TCGJ.I TC/ZOL_ /20 —(rO)dro (0<I’<oo), (114)
o

where the tangential stresses T_ (X) vanishe outside of [a, b] (r =X> O).

Now we are ready to present the main integral equations of posed contact problems.
On account of the character of problems considered, in formulas (1.11), (1.12) and (1.14)

we are given displacements W(X, 0) =f (X) .

From formula (1.11) the determination of tangential contact stresses T_ (X) is reduced to
the foIIowing Fredholm integral equations of the first kind

Iln th[ X aH |J t_(s)ds=f(x) (-a<x<a). (1.15)

Its solution should satisfy the condition (1.2) with @ and b replaced by —a and a.
In terms of dimensionless coordinates and quantities, equation (1.15) can be written as

15 -

;Ilncth(@J e(m)dn=9(&) (-a<é<a), (1.16)
and_(éondition (1.2)-as

[e(m)dn=T, (T,==T/GH). (1.17)

-
For a contact problem of an elastic half-plane, formulas corresponding to (1.12) take the
form

%_aaln|xls| (s)ds=f(x)+C (-a<x<a),

and, if

E=x/a,n=s/a, ¢(&)=7_(af)/G; g(&)="f(af)/a

then

%jmli in|cp(n)dn=g(§)+co (-1<&<1). (118)



The solution of (1.18) should satisfy the condition (1.17), where now T, =T /aG.

On the base of (1.14), a contact problem for a wedge is reduced to the integral equation

1 b rn/2a+rft/2a
EI n—rnm —rZ“/Z“ t(r)dr,=f(r) (a<r<b), (1.19)

a

and putting

g=(r/a)"*, n=(r/a)""; p=(b/a)"™";
(&)= éézm_% (ag®"); f,(¢)= L (ag),

20
we get
1% &+nm
=lIn=-1,(n)dn="F,(& 1<E<p). (1.20)
TE‘! |a_n| 0( ) O( ) ( )
The condition (1.2) can be transformed to
i il
Jl‘ro (n)dn=T, (TO = zaan. (1.21)
Setting

g=pe”, n=ype”’ y=Inp; —y<tu<y;

o, (t) =e"*1, <\/Eet/2>; 9 (t)= % fo (\/Eet/z)

in (1.20) we obtain the following integral equation with difference kernel

%ilncth(h%ﬂ]mo(u)du =g, (t) (-v<t<y),

which coincides with (1.16).

2. Solutions of main integral equations. The solutions of equations (1.16), (1.18), and
(1.20) can be obtained with the use of the method, developed by M.G. Krein in works
[9], [20, (Ch. IV-8)], dealing with a certain class of Fredholm integral equations of the
second and first kind with symmetric difference kernels, closely connected to inverse
problems of spectral theory of differential operators. Later on it was extended to more
general classes of integral equations. There are lots of applied problems that can be
described by integral equations with difference kernels. In monograph [18] and references
therein one can find development of this theory.

The advantage of formulas derived by Krein is the absence there of Cauchy principal value
improper integrals, and their quite an orderly analytic structure.

The main point of the method is that the solution of such an integral equation with an
arbitrary continuous right hand side can be constructed by means of its solution with the
right hand side identically equal to 1, if the last one exists and is unique.

Applying that to equation (1.16), present the desired solution as a sum of its symmetric and
skew-symmetric parts

10



P(&)=p. (€)+¢_(£): 9(8)=0.(8)+9_(8); 9. (-E)=x.(€): 9.(-8)=*0.(¢),

so consider

% T Incth [@J@i (m)dn=0,(&) (-a<&<a). (2.1)

Then, according to [9], [10], the unique integrable solution of
14 |& -7

— | Incth| =—— ,a)dn =1

7[:]; nc [ 2 q(n.a)dn

is of the form

a(5 @) ={Q., (char) J2(cha—che)] (-a<&<a),

where Q_]/2 (é’;) is a Legendre function of the second kind.
The Krein function is

M ()= I q(&a)dg=nP_,(cha)/2Q,, (cha).

Here Pfj/2 (i) is a Legendre function of the first kind.

Relative to the argument & =cha, the above functions can be presented by means of

complete elliptic integrals of the first kind. With the use of formulas from [16, p.1036, f-las
8.851.1 and 8.851.2] one has

2K (1), Q. (oha) =24k K (k)

k=e" k' =J1-k? =+1—e7%,

where K (k) is a complete elliptic integral of the first kind of the modulus

P, (cha)=

k(0< k <1) and the complementary modulus K’ .

Hence
M(@)-3 s e (KK(0)

and its derivative is

N—"

M’(oc)=2K+(k)[K’(k')K(k)g—Z—K’(k)K(k’)%}.

The use of a differentiation formula for an elliptic integral relative to the modulus (see [16,
p.921, f-la 8.123.2] ) and the relation [16, p.921, f-la 8.122] yields

M’ (cr) = nf 4k2K2 (k)] .
It now follows (see [9], [10]) that the even solution of (2.1) is

11



I

0

_J;q(g’u)d{ 1 dijq }du (0O<g<a)

M (u) du
and its odd solution is

—%Z‘:ﬁﬂiﬁq<wdg<ﬂ>}d“ ocs

The inner integral here is understood in the sense of Stieltjes.

Note that equations (1.16), (2.1) appear also in mixed b.v.p. in the theory of a fluid
stabilized filtration in strip shape porous grounds [17].

By the Krein method in [19] are presented solutions of i.e. (1.18) and some others with
comparative analyses of various analytical methods.

Now, let us present solutions of (1.16) and (1.18) by means of spectral relationships,
established in [11] via orthogonal functions method.

The solution of i.e. (1.16), (1.18) and (1.20) can be built by means of spectral relationships
as follows

jl s+n T“(Y)d” AT, (X) (n=012..; 1<E<p)
&=l (p* —n?) (n*-1)
Y =cos¢, (pzijl du ;k:]/pz(a/b)”/za; (2.2)

K’ \/(uz ~1)(1-k°u?)

X =c0s 9, 8:£

du
K’ '1[ \li(uz ~1)(1-K*u?

1., , 12 K=
A =p—nKth(nnK/K) (n=12,..; K=K(k))

K =1-k’; K'=K(k');

Ao =mK/p,

n

and the solution of i.e. (1.18) —as

I g-n[} T(V)dn _ _ .
_J;Incth[ 2 2(choc—chn)_unTn(U) (n=0,12,..; —a<&<a)

m,=2x,(n=12,..); p0=2x =2n\/EK(k)- k=e"

a/2 k'
'[,/2 cho — chu )

U=c0s®, O=— (2:3)
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V =cosd, ® = e%?

P k'=1-e?%;

I\/Z cho — chu)

Here T,(X) and T, (U) are Chebishev polynomials of the first kind. Their
orthogonality conditions are of the form

) " K'/p (m=n=0);

T,(X)T,(X) =<K'/2p (m=n=0); (2.4)
e

) 26 ’K’  (m=n=0);
ITn(U)Tm(U) 2(ch(jf—che§) = (e)“/zK' (nl;r::];)) (2.5)

where K and K’ are taken from (2.2) and (2.3), respectively.
Integrals 3 and © appearing there can be expressed as incomplete elliptic functions
F ((p, k) (see [16], p.260, f-la 3.152.9), namely

j \/(uz—l;j(ul—kzuz) ) F[arcsmwz?}kl =87)

£
j du =2e” 0‘”F[arcsme 4 \/—Sh[ **s /2] ] ( = 1—e‘2°‘).
,M/2(cha—chu sha

The solution of i.e. (1.20) we will find in the form of infinite series

= ! DOX <g<p). .
I G e A -

For determining unknown coefficients X  we substitute (2.6) in (1.20), interchange the

order of summation and integration, use spectral relationships (2.2) and orthogonality
conditions (2.4). As a result we obtain

2
2
X, :% %, x, = ;cp ncth(anK/K') £ (n=1,2,..);
X @.7)
fn(o) =I f, (EJ) T“(X)dg (n :O,1,2,...).

Then, substituting (2.6) in (1.21) we get T, =X, K'/p , hence
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To= pfo(O)/ K (2.8)
in view of the first relation in (2.7).
On the other hand the function f, (ﬁ) can be considered as a sum

f0(§)=80 + 1, (é) (fo’(&)?& 0, 1<&<p ),
where 8, is the reduced rigid displacement of the rectangle D, in Oz direction. Note that

f,(§)=8 ( f, (€)= O) for the case of an absolutely rigid rectangle (G, =o0). Then

W ey

hence formula (2.8) establishes a certain connection of T and 9.
Consider i.e. (1. 16) and, as above, set

¢(§}=VEZ———:—Eg—?;ynn

Repeating the same steps one can obtain

kg K . |
Yo :4 ZKOK" Ya :mCth (TcnK/K )gn’ (n :1,2,...),

'[\/choc—ch

which leads to the connection of T, and g, taking into account condition (1.17) .
Finally, on the same way as above, consider i.e. (1.18). For

= 1i%;2;zT (-1<&<1)

we make use of well-known spectral relationships (see [20, Ch. X])

fo(O) =8, K'/p+ ]:0(0)1

(ra<g<a).

(2.9)
(n=012,..),

%Tn(i) (n=12,..);

¢, 1 T(n)dn _ _
j (-1<g<);
K n|¢fjf In2 (n=0).

For the case under consideration we have T, =T/aG, in (1.17), which leads to
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z,=T,/m, CO:(TOInZ—gO)/n; zn:ingn (n=12,..)

1 T (é) de (2.10)
0,=19(8)—F/—— n=0,12,..).

Jo@ =S ( )
Therefore,

@(i)=ﬁ(% +2§ngnTn(&)j (-1<g<1). (2.11)

It is not difficult to verify that the series (2.11) converges uniformly if g(a) is
continuously differentiable.
In conclusion of this section let us turn to equation (1.19) again. Putting there a=0,

_ (r/b)n/Zot M :(ro/b)fr/Za 1, (é) _ ééza/n_l 7, (b&Z(x/TC);
fo (&)= %a f (bag?") (0<&<1),

weget
—jln (n)dn=f, (&) (0<&<2). (2.12)

In [21, Ch. III -8] it is shown that the stresses for the wedge of angle o have order
n/a-1
r

, if displacements on its bounds are zero. Therefore the stresses at the wedge vertex
have singularity, when oL > 7t. On the other hand

()= (g e =2 0(e) (e-0)

S0 T, (0)20. Then the odd extension of equation onto the segment [-1,0] leads to
(1.18). For this case in relation (1.17) it should be putted T, = 0.
3. The determination of the function r+(x). Depending on the problem under

consideration, the function z, (X) can be determined with the help of given solutions of

(1.16), (1.18), (1.20), and relations (1.7). Let us present it for each of three above
mentioned contact problems with accordingly chosen dimensionless variables.
For the case of a layer we have

() +§i 7 ( {w} (-a<x<a),

n a

%, (n)= j; cos{l X+a} (n1=012,..).

T, (X)=

15



In accordance with (1.16) set
x=Hg/m x,(&)=1,(HE/N)/G, (-a<Eé<a),
that is readily transformed to

X+(§)=§—;+égx2 CO{W} (roa<g<a);

% =T, (To=nT/G,H); % =Hgsh(nnh,/2)ng, - (3.1)
—keh(nnhy/2)e, (n=12,..); k,=G/G,; h,=h/a, H,=H/2a;
6,3, } = T{m(i),cp(i), g(&)}co{w}da (n=0,12,...).

a

-

Here (p(&) and g (EJ) are solution and the right hand side of equation (1.16) respectively,
and formula for x; is derived from (1.7). Now, in accordance with (1.8), the simplified

form of y, is

1 _
X =3 n’hH,od, -k, (N=12,..).

For a thin rectangle D, (h << a) a function y, (i) can be determined from (1.9) with

the use of the Melan model, namely
nh, ,
1. (6)~ko(8)-—>0"(&) (-a<é<a). (32)
2H,
To the case of a wedge it corresponds to i.e. (1.21) and analogs of relations (3.1) and (3.2)
respectively are

1. (8) =7, (ag") /G, =h, (g)&*" (1<&<p)
7 (aZa/rc _1)

N o2&
h (§)=—-+—)> h' cos| ——=|,
®) Po poé [ Po ]
po=p*" =1 hy =T, (T,=nT/20aG,); (33)
2
he = koch(xnh, /o, )= + 2% nsh (anh, /p,) 19 (1=1,2,..);
T

n
0

(h.(2). = (2) fo(i)}cos!w]dé;

Po

n ' 'n

{h:, (9 f(o)} —

P T
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~ 1-2a/n _ﬂ 1-4a/n _Z_G' ’ "
()= 0(0)- e 12 g e |

For the case of half-plane we get

% (&) =1, (aEﬂ.)/G0 :ng+ ixg co{nn(gﬂ)} (-1<&<1);
% =T, (T,=T/aG,); % =k.ch(mnh,/2)o, +

+%nnsh(nnh0/2)gn, 1. (&) ~ koo (£)—ha" (&) (-1<£<1) (n=12,..);

o )= ., 008 9ol ™G e @

-1
Note that there is a certain link between coefficients appearing in (3.1)—(3.4) and (2.7),
(2.9) and (2.10). For the sake of derivations simplicity considering the case 111, one has

0, = jl(p(a)cos{%ﬂ)}d& (n=012,..).

Substituting here (p(&) from (2.11) it is not difficult to obtain

To 2< r n
=—lont— e —(cost+1 t)dt
P =— On+7TZ1mgm S Icos[ > (cost+ )}cos(m)
(mn=0,12,..).

The function g(&) can be approximated by linear combinations of  Chebyshev

polynomials of the first kind

g(g)z%+%ngTm(g) (-1<&<1).

Then
T, 23
¢, ~—l,,+— > mg_lI
n P On TC; m’ mn

The obtained integrals |, are Fourier cosine-coefficients, and can be calculated by the

method of least squares (see [22, Ch. IV-11]) up to required precision.
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Conclusion

In the paper a new formulations of contact problems are suggested. For two elastic solids,
fastened to each other by some part of their surfaces, the effect of pre-assigned regime of
displacements on the contact surface is studied. In such a setting contact problems for
solids of three different configurations under anti-plane deformation are solved. These
problems are reduced to the Fredholm integral equations of the first kind and their solutions
are built in complete form by both the Krein method and the method of orthogonal
functions. The approach presented here can be efficiently applied also to a plane and axially
symmetric contact problems.
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