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On a Class of Contact Problems of Elasticity Theory, Solvable by the Integral Equations Method  
 

Cosely connected with classical contact problems a certain class of contact problems of mathematical 
elasticity theory   solvable by the method of integral equations is considered. An elastic layer, wedge and half-

space under the  anti-plane deformation  are taken as bases. 
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Об  одном  классе контактных задач теории упругости,  решаемых  методом  

интегральных уравнений 
 

Рассмотрен класс контактных задач математической теории упругости, решаемых методом 

интегральных уравнений, тесно связанный с классическими контактными задачами. В качестве оснований 

выбраны  упругий слой, клин и полупространство  при антиплоской деформации. 
 
Introduction. Classical and non-classical contact and mixed boundary value problems 

(b.v.p.) cover a wide area of the mechanics of a deformable solid. The literature devoted to 

development of effective mathematical methods for their investigations and to their 

applications in engineering is extensive. On this subject we refer to [1]-[8] and references 

therein. 

To provide the contact durability and rigidity of various machinery and engineering 

constructions it is essential the action of admissible and theoretically acceptable contact 

stresses or displacements in the contact zone. In the contact of two deformable solids 

fastened together it can be attained as by an appropriate choice of their geometrical and 

physical parameters, and of the outer load as well.  
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In the present paper a certain class of contact problems is discussed in the simplest case of 

anti-plane deformation. When the contact zone is under the force of pre-assigned regime of 

displacements, contact interactions between an elastic prismatic bar with a rectangular 

cross-section and an elastic layer, or a half-space, or an elastic wedge-like solid are 

considered. With the help of preliminary solutions of auxiliary problems, the setup 

problems are reduced to the Fredholm integral equations (i.e.) of the first kind with the 

symmetric kernels. The solutions of these i.e. are built by both the Krein method [9], [10] 

and the method of integral spectral relationships, established in [11]. Some special cases are 

presented. 

1. The setting of contact problems and  derivation of  the main equations. 

Consider two elastic solids 
1
B  and 

2
B  with given modules of elasticity and Poisson ratios 

 , 1,2j jE j   respectively, rigidly fastened by a surface S . Generally 2B
 

is 

massive deformable solid – the base of different geometrical forms, while 1B
 
is thin-walled 

element such as stringers, beams, plates and shells, which are convenient means for 

transmitting loading to the bases, that usually occur in the engineering practice.   

Let the composite solid be a subject to outer loads (Fig.1). 

 
Fig.1 

The main investigations in the theory of contact problems are reduced to the study of the 

stress-strain state of such a composite solid, especially to determining the distribution of 

contact stresses on S  and their kinematic parameters (coming together, relative turns), 

characterizing the rigidity of a contact.    

These problems admit the following settings. 

Determine contact stresses on a contact surface S  and kinematic parameters under a given 

surface load. 

Find the outer load distribution on a surface of solid 1B  to get the pre-assigned   contact 

stresses, admissible in theory.  

Find the outer load distribution on a surface of solid 1B  to get the pre-assigned   regime of 

displacements on the contact surface S . 

The present paper concerns to the last topic. The anti-plane deformation of elastic solids in 

contact is assumed, and the following patterns (models) with corresponding problems are 

discussed. 
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I. In the rectangular coordinate system Oxyz  consider an elastic layer 

 , ; 0x z H y       of the height H  and shear module G  (Fig.2). 

 
Fig.2 

Let  it be rigidly clamped by its  lower side ,y H   on its boundary plane 0,y    be 

rigidly fastened  by the strip  ; 0;a x a y z         to the  infinite 

prismatic bar  0 ; 0 ;a x a y h z           with a rectangular cross-

section  0 ; 0D a x a y h       and  shear  module 0G .   

The upper side y h  of a bar is loaded with distributed tangential forces on the direction 

Oz , that induced an anti-plane deformation of the system layer-bar in the same direction.  

The problem is to determine the tangential forces distribution  x  when in the contact 

zone a x a    the pre-assigned regime of displacements is realized. The  displacements  

are given as a  smooth enough  function  f x , that is when 

    0 ,0w x f x a x a    , where  0 ,w x y  is the only non-vanishing component  

of  the bar displacements  by Oz  direction.       

II. Here the elastic layer is replaced by a wedge-shaped base, which is presentable as 

, ,r z  in cylindrical coordinate system. The wedge with a shear module G  is rigidly 

clamped. The load on the bar is given by forces with intensity    ,r a r b    directed 

along Oz  axis tangentially to its upper face (Fig.3).  

The problem is to find a function  r  such that      0 ,w r f r a r b     

where  f r  is a given continuous function. 
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Fig.3 

III. Here the elastic layer is replaced by a half-plane, and the analog of the case I is 

considered. 

To deduce the main equations of posed problems, as a preliminary, let us construct 

solutions of some auxiliary boundary problems, that connect stresses with displacements in 

the contact zone. 

For the case I we have 
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  (1.1) 

where tangential stresses in contact zone is  x , and xz , yz  are tangential 

components of stresses. 

The b.v.p. (1.1) is considered with the following additional condition of the equilibrium of 

the bar or rectangle  

    ,

b b

a a

x dx x dx T         (1.2) 

where T  is a  given quantity. 

The solution of (1.1) can be build by means of finite Fourier cosine-transformation. 
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Similar to that in [12, (Ch III-13)] for Dirichlet class function  f x , in the case under  

consideration one can derive 

             cos ; 0,1,2,... ,

b

c n n

a

f n f x x dx x n x a b a n         
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  (1.3) 

Applying (1.3) to the b.v.p. (1.1)–(1.2) we arrive at the more compact form of its 

presentation 
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      (1.4) 

where  0 0 ,w w n y  and,  in accordance with (1.3),  

             0 0, ; , ; cos 0,1,2,...

b

n

a

w n y n w x y x x dx n        . 

The solution of (1.4) is  
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hence from  (1.3) we get 
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  (1.5) 

The analogous formulas take place for  x  as well.   

Now from (1.5) it follows that    
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 (1.6) 

As it was noted above, the problem is considered under the following condition  

     0 ,0 ,w x f x a x b    
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where the function  f x  is given. Represent it as the Fourier cosine series by the second 

formula in (1.3) and compare (1.3) with (1.6). 

Then, for the basic three functions  x  and  f x  of the problem under consideration, 

we arrive at the following relations between their Fourier cosine-coefficients  

           

         

0

0 0

sh ch 1,2,...

0,0 0 ; ,0 ; .

n n n

n

G h f n n h n n

w f w n f n n b a

        

     
    (1.7) 

For the thin rectangle  0D h b a   these relations are simplified. 

Indeed, confining ourselves with terms of order h  in power series of entire functions 

 sh nh  and  ch nh ,  formula (1.7) will take the following form   

       2

0 0,1,2,... .nG h f n n n n         (1.8) 

The relations obtained are discrete analogs of a thin bar-stringer deformation's differential 

equations in the well-known Melan model for a plane deformation (see [13, 14]). In the 

case of anti-plane deformation one has (see [15]) 

     
2

0
0 2

.
d w

G h x x a x b
dx

        (1.9) 

Now consider the case of an elastic layer, rigidly clamped by its side .y H    In the base 

plane Oxy  the corresponding b.v.p. for the layer  ; 0x H y         is 

presented as 
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      (1.10) 

where  ,w w x y  is the only non-vanishing component  of  the bar displacements  by 

Oz  direction.  The solution of (1.10) can be obtained by means of Fourier integral 

transform with respect to x . In the similar way, for boundary points displacements of a 

strip we have 

     
1

,0 ln cth ,
4

a

a

x s
w x s ds x

G H




   
      
  
       (1.11) 

if the  function  x  vanishes outside of the segment a x a   . The passage to the 

limit  H   yields  

     
1 1

,0 ln

a

a

w x s ds C x
G x s





      
        (1.12) 
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for the elastic half-plane  ; 0x y      . 

Next, the corresponding b.v.p. for a wedge, clamped by its side 0  is 

 

   

2 2

2 2 2

0

1 1
0 0 ; 0 ;

1
0; 0 .z

w w w
r

r r r r

w
w G r r

r
  



  
        

  


        
 

 (1.13) 

By means of Mellin integral transform with respect to r , its solution can be written as 

     
2 2

0
0 02 2

0

1
, ln 0 ,

b

a

r r
w r r dr r

G r r

   

   


     

 
           (1.14) 

where the tangential stresses   x  vanishe outside of     , 0 .a b r x   

Now we are ready to present the main integral equations of posed contact problems.  

On account of the character of problems considered, in formulas (1.11), (1.12) and (1.14) 

we are given displacements    ,0w x f x . 

From formula (1.11) the determination of tangential contact stresses  x  is reduced to 

the following Fredholm integral equations of the first kind 

     
1

ln cth .
4

a

a

x s
s ds f x a x a

G H




   
     

  
     (1.15) 

Its solution should satisfy the condition (1.2) with a  and b  replaced by a  and  a . 

In terms of dimensionless coordinates and quantities, equation (1.15) can be written as  

     
1

ln cth ,
4

d g





  
          

  
   (1.16) 

and condition  (1.2)– as 

   0 0 .d T T T GH





                  (1.17) 

For a contact problem of an elastic half-plane, formulas corresponding to (1.12) take the 

form 

     
1 1

ln ,

a

a

s ds f x C a x a
G x s





     
   

and, if 

       , , ;x a s a a G g f a a            

then 

     
1

0

1

1 1
ln 1 1 .d g C



         
    (1.18) 
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The solution of (1.18) should satisfy the condition (1.17), where now 0 .T T aG  

On the base of (1.14), a contact problem for a wedge is reduced to the integral equation 

     
2 2

0
0 02 2

0

1
ln ,

b

a

r r
r dr f r a r b

G r r

   

   


   

 
     (1.19) 

and putting 
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we get 

     0 0

1

1
ln 1 .d f




        
   (1.20) 

The condition (1.2) can be transformed to 

 0 0 0

1

.
2

T
d T T

aG


 

     
 

  (1.21) 

Setting 

       

2 2

2 2 2

0 0 0 0

, ; ln ; , ;

2
;

t u

t t t

e e t u

t e e g t f e

             

     


 

in (1.20) we obtain the following integral equation with difference kernel 

     0 0

1
ln cth ,

4

t u
u du g t t





  
      

  
  

which coincides with (1.16). 

2. Solutions of main integral equations. The solutions of equations (1.16), (1.18), and 

(1.20)  can be obtained with the use of  the method, developed  by M.G. Krein in works  

[9], [10, (Ch. IV-8)], dealing with a certain class of  Fredholm integral equations of the 

second and first kind with symmetric difference kernels, closely connected to inverse 

problems of spectral theory of  differential operators. Later on it was extended to more 

general classes of integral equations. There are lots of applied problems that can be 

described by integral equations with difference kernels. In monograph [18] and references 

therein one can find development of this theory.  

The advantage of formulas derived by Krein is the absence there of Cauchy principal value 

improper integrals, and their quite an orderly analytic structure.    

The main point of the method is that the solution of such an integral equation with an 

arbitrary continuous right hand side can be constructed by means of its solution with the 

right hand side identically equal to 1, if the last one exists and is unique. 

Applying that to equation (1.16), present the desired solution as a sum of its symmetric and 

skew-symmetric parts 
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                   ; ; ; ,g g g g g                        

so consider 
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     (2.1) 

Then, according to [9], [10], the unique integrable solution of  
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is of the form 

        
1
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where  1 2Q   is a Legendre function  of the second kind.   

The Krein function is 

       1 2 1 2

0

, ch 2 ch .M q d Q



           

Here  1 2   is a Legendre function of the first kind. 

Relative to the argument ch   , the above functions can be presented by means of 

complete  elliptic integrals of the first kind. With the use of formulas from [16, p.1036, f-las 

8.851.1 and 8.851.2] one has 

       1 2 1 2

2 2

2
ch , ch 2

; 1 1 ,

k
K k Q k K k

k e k k e

 

  

    


    

 

where  K k  is a complete  elliptic integral of the first kind of the  modulus 

 0 1k k   and  the  complementary  modulus k  . 

Hence 

 
 

 
  

1 1
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K k K
M K K k
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and its derivative is  
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1
.

2

dk dk
M K k K k K k K k

K k d d

 
         

 

The use of a differentiation formula for an elliptic integral relative to the modulus (see [16, 

p.921, f-la 8.123.2] )  and the relation [16, p.921, f-la 8.122]  yields 

   
1

2 24 .M k K k


       

It now follows (see [9], [10]) that the even solution of (2.1) is 
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and its odd solution is 
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  . 

The inner integral here is understood in the sense of Stieltjes. 

Note that equations (1.16), (2.1) appear also in mixed b.v.p. in the theory of a fluid 

stabilized filtration in strip shape porous grounds [17]. 

By the Krein method in [19] are presented solutions of i.e. (1.18) and some others with   

comparative analyses of various analytical methods.   

Now, let us present solutions of (1.16) and (1.18) by means of spectral relationships, 

established in [11] via orthogonal functions method. 

The solution of i.e. (1.16), (1.18) and (1.20) can be built by means of spectral relationships 

as follows 
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2

2 2 2
1

0

cos , ; 1 ; ;
1 1

1
, th 1,2,...;n

du
X k k K K k

K u k u

K K nK K n K K k
n




        
  

         



 

and the  solution of i.e. (1.18) – as 

 

 
   ln cth 0,1,2,...;

4 2 ch ch
n n

T V d
T U n





   
        

  
  

   0 02 1,2,... ; 2 2 ; ;n n n k K k k e           

 
 2

1

cos , ; .
2 2 ch ch

du
U e K K k

K u








     

  
  (2.3) 
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Here  nT X  and  nT U  are Chebishev polynomials of the first kind. Their 

orthogonality conditions are of the form    
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     (2.5) 

where k  and k   are taken from  (2.2) and  (2.3), respectively.  

Integrals   and   appearing there can be expressed as incomplete elliptic functions 

 ,F k  (see [16], p.260, f-la 3.152.9), namely 
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The solution of i.e. (1.20) we will find in the form of infinite series 
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              (2.6) 

For determining unknown coefficients nx  we substitute (2.6) in (1.20), interchange the 

order of summation and integration, use spectral relationships (2.2) and orthogonality 

conditions (2.4). As a result we obtain  
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            (2.7) 

Then, substituting (2.6) in (1.21) we get 0 0T x K  , hence  
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 0

0 0T f K    (2.8) 

in view of  the first relation in (2.7). 

    On the other hand the function  0f   can be considered as a sum   

      0 0 0 0 0, 1 ,f f f             

where 
0  is the reduced rigid displacement of the rectangle 

0D  in Oz  direction. Note that  

    0 0 0f f      for the case of an absolutely rigid rectangle  0 .G    Then  
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hence formula (2.8) establishes a certain connection of 0T  and 0 . 

 Consider i.e. (1.16) and, as above, set  

 
 

   
0

1
.

2 ch ch
n n

n

y T U




       
 

  

Repeating the same steps one can obtain   
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  (2.9) 

which leads to the connection of 
0T  and 

0g , taking into account condition (1.17) . 

Finally, on the same way as above, consider i.e. (1.18). For    

     
2
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1
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1
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we make use of  well-known  spectral relationships (see [20, Ch. X]) 
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For the case under consideration we have 0 ,T T aG  in (1.17), which leads to 
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         (2.10) 

Therefore, 
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       (2.11) 

It is not difficult to verify that the series (2.11) converges uniformly if  g   is 

continuously differentiable.   

In conclusion of this section let us turn to equation (1.19) again. Putting there 0a  ,  
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we get  
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              (2.12) 

In [21, Ch. III-8] it is shown that the stresses for the wedge of angle   have order 
1,r 

if displacements on its bounds are zero. Therefore the stresses at the wedge vertex 

have singularity, when .     On the other hand 
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1
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so  0 0 0.   Then the odd extension of equation onto the segment [ 1,0]  leads to   

(1.18).  For this case in relation (1.17) it should   be putted 0 0.T   

3. The determination of the function  x . Depending on the problem under 

consideration, the function  

x  can be determined with the help of given solutions of 

(1.16), (1.18), (1.20), and relations (1.7). Let us present it for each of three above 

mentioned contact problems with accordingly chosen dimensionless variables.  

For the case of a layer we have 
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In accordance with (1.16) set 
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that is readily transformed to 
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Here     and  g   are solution and the right hand side of equation (1.16) respectively, 

and formula for 
n

  is derived from (1.7). Now, in accordance with (1.8), the simplified 

form of n

  is 

 2

0 0 0

1
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2
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For a thin rectangle  0D h a  a function    can be determined from (1.9) with 

the use of the Melan model, namely  

       0
0

0

.
2

h
k g

H



                (3.2) 

To the case of a wedge it corresponds to i.e. (1.21) and analogs of relations (3.1) and (3.2) 

respectively are 
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For the case of half-plane we get 
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  (3.4) 

Note that there is a certain link between coefficients appearing in (3.1)–(3.4) and (2.7), 

(2.9) and (2.10).  For the sake of derivations simplicity considering the case III, one has 
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Substituting here     from (2.11) it is not difficult to obtain  
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The function  g   can be approximated by linear combinations of  Chebyshev 

polynomials of the first kind 
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The obtained integrals mnI  are Fourier cosine-coefficients, and can be calculated by the 

method of least squares (see [22, Ch. IV-11]) up to required precision. 
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Conclusion 

 

In the paper a new formulations of contact problems are suggested. For two elastic solids, 

fastened to each other by some part of their surfaces, the effect of pre-assigned regime of 

displacements on the contact surface is studied. In such a setting contact problems for 

solids of three different configurations under anti-plane deformation are solved. These 

problems are reduced to the Fredholm integral equations of the first kind and their solutions 

are built in complete form by both the Krein method and the method of orthogonal 

functions. The approach presented here can be efficiently applied also to a plane and axially 

symmetric contact problems. 
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