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Uccnenyercss BAMSHHE INIPOJOJBHON, cl1aboi HEOJHOPOAHOCTH YIPYroro Marepuana BOJIHOBOJA Ha
pacIpoCTpaHEHHE HOPMAIbHOH C/IBUIOBOM BOJIHBI IIPM PA3HBIX MEXaHMYECKHX TPAHUYHBIX YCIOBHSX.
IMokasbiBaeTcsi, YTO NpH 3aMIEMIEHHBIX TIIIAAKHX I[OBEPXHOCTAX H30TPOIHOTO YIPYroro Cjosi BO3HHKAET
ACHMMETpHYHAs JIOKQJIM3ALMsl BOJHOBOI DHEPrMHM OKOJO CPEAMHHON IUIOCcKocTH ciost. [lpu MexaHmuecku
CBOOOJHBIX TINIAJKAX IIOBEPXHOCTSX MOSBISFOTCS IIPUIOBEPXHOCTHBIC JIOKAJIN3ALUKM BOJHOBOM OJHEPTHU Y
MEXaHMYECKH CBOOOHBIX IPAHHI] BOJHOBOAA, HO 0ojiee MHTCHCHBHAS JIOKAIM3ALMS HOSBILSIETCS OIITH OKOJIO
CPeIMHHOI IUIOCKOCTH CJIos. B 006oMX ciyuyastx BCIEIACTBHE BO3JCHCTBHS HEOJHOPOJIHOCTH MaTephala Ha
HOPMaJIbHYIO BOJIHY, HOSIBISIFOTCS HCKa)KEHHs! aMILIUTYbI H (pa30BOi (yHKIMH, 00YCIOBICHHBIC IPHBEASHHBIMU
kodpdunnenramn (dacroramu) QopmooOpazoBanus. B o0oux ciydasx TpaHUYHBIX YCJIOBHH ciabas
HEO/IHOPOJHOCTh MaTepHala MPUBOJMT K MOSBICHHIO YAaCTOTHBIX 30H IIPOMYCKAHMS WIIM 3alPELICHHIO
(dopmupoBanHO# BonHBL. OKasbIBaeTCsl, YTO HPH BHICIIHUX (OpMax KoJeOaHWH BO3MOXKHO BO3HHKHOBEHHE
BHYTPEHHETO Pe30HaHCa.
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The influence of a weak longitudinal inhomogeneity on normal shear waves under different mechanical
boundary conditions is investigated. It is shown, that for clamped smooth surfaces of isotropic elastic layer, occurs
asymmetric localization of wave energy near the mid-surface layer. On the other side, for mechanically free
smooth surfaces, near-surface localization of wave energy appears near mechanically free surfaces of the
waveguide, but more intense localization appears again near the mid-surface layer. In both cases, due to the
influence of material inhomogeneity on the normal wave, some distortion of amplitude and phase functions occur
due to the change of formation coefficients (of frequencies). In both cases of boundary conditions, the weak
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inhomogeneity of the material leads to presence of frequency zones of transmission or prohibition of the formed
wave. It is shown, that it is possible internal resonance in some higher forms.

Introduction. There are numerous studies on wave propagation in inhomogeneous
media. More detail of characteristic phenomena can be found in the monographs [1+4] etc.,
as well as analogical phenomena due to inhomogeneity of surface conditions and new
physical mechanical properties of material of the waveguide, can be found in some articles
of recent years [5+10] etc. The monographs [11+14] etc., are devoted to the discussion of
structure modeling of inhomogeneous waveguides, as well to the propagation of normal
waves in waveguides with longitudinal inhomogeneity of the layer, where the cases of
continuous inhomogeneity of the material of the waveguide and the layered periodic
structure of the waveguide are considered.

There is a growing range of studies on high-frequency fluctuations and distributions of
short-wave signals, due to the advancement of modern technology. They can be used to
identify the interaction effects of weak inhomogeneity of the material of the waveguide, as
well as the effects of geometric heterogeneity of the surface of the waveguide, with more
sensitive signals. Losses of stability of normal propagating high-frequency waves (short
wavelength monochromatic signal), whether it is the localization of wave energies, internal
resonance, the appearance of forbidden frequency zones or other, have been discussed in
many works [15+19], etc.

The present paper explores the nature of formation of the propagating elastic pure shear
normal waves in an isotropic elastic layer with weak, longitudinal inhomogeneity of the
material for different mechanical boundary conditions.

1. The Problem Statement. Two model problems on distributions of pure shear,

horizontally polarized, elastic normal waves U(X,y,t) = {0; 0; w(X, y,t)} in an isotropic

weakly inhomogeneous layer- waveguide are considering.
The shear component of the displacement has the following form

w(X, y,t) = A -exp[i(kx— )] (1.1.1)

where A — constant amplitude, k, — wave number, and ®,— the frequency of normal

wave.
It is obvious that in the case of a homogeneous elastic medium, the body wave that is also
the surface normal wave is localized throughout the thickness of the layer. The purpose of
the examinations of the cases of weak inhomogeneity of the material of waveguide layer is
to identify the losses of stability of normal wave in the waveguide for different types of
boundary conditions on surfaces of weakly inhomogeneous waveguide

Task 1.1 Longitudinal inhomogeneity of the material and clamped surfaces of the
layer-waveguide. Assume normal wave (1.1.1) is distributed in an isotropic, elastic,

longitudinally weakly inhomogeneous layer {|X|<oo; |y|<h; |7 <o} with clumped

surfaces y=zh,.

Then the equation of medium motion has the following form

oc, Oc o’w

Sy 8 (), (1.1.2)
ox oy at

where mechanical stresses according to the Hooke's law can be written in the following
forms
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aw(x y) ow(X, y)

=G 1) =G 1.13
G, (X Y, 1) =G(X)———=; 0, (X ¥,1) =G(X)———— oy (1.1.3)

here G(X) - the shear modulus of the material, which, as the density of the material —

p(X), for longitudinally weakly inhomogeneous medium are presented in the following

forms
G(x) =G, [1 +¢, sin(k X) + 9, cos(k X)] ;
p(X)=p, [1+:32 sin(k;X) + 6, cos(klx)]. (1.1.4)

Here are taken designations:
k1 = 1t/ a — the number of inhomogeneity waviness of the material layer,
a —half step of inhomogeneity waviness of the material layer,

€,; 0,5 0, — small amplitudes of inhomogeneity, which, for weak inhomogeneity of
the material satisfy the restriction 8,21 + 8?1 < 1.

G, — the shear modulus and p,, — the density of the corresponding homogeneous material.

We obtain the equation of motion with variable periodic coefficients considering (1.1.3)
and (1.1.4)

[1+¢, sin(k X) + 8, cos(k X)|Aw+k, [, cos(k x) -5, sin(klx)]%v =

1.1.5
2w (1.1.5)

= [1+¢,sin(k X)+8, cos(k, X)]?,
where A =0 / x> +0° / dy* — the Laplace operator, and Cgt = G,/p, — the speed of

shear normal wave.
On clamped planes y = £h,, the boundary conditions have the form

w(X,—h,,t) =w(x,+h,,t)=0. (1.1.6)

Then the wave solution of the equation of motion (1.1.5) satisfying the clamped boundary
conditions (1.1.6) can be represented in the form of Fourier series

w(X Y,t) =Y w,(X)-sin(u,y)- €, (1.1.7)
n=1

where L, = Tl:n/h0 — wave number on thickness of waveguide, NeN2{1;2;..} —a

natural number. It is obvious that under these boundary conditions the zero form does not

exist W, (X)=0.

The representation of the solution in form (1.1.7), leads the equation of motion (1.1.5) to
infinite system of ordinary differential equations with periodic coefficients with respect to
amplitude functions of each succession of the n-th wave form

[who0+1 (2 =1)w, (0 ]+
+e, sin(k)| w00 = (k3 /8,) Wh () + 13 (8,m5 —1) w, () |+
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+3, cos(kX)| W)+ (ke /8,) W} (X) + 2 (8,3 —)w ,(¥) | =0, (1.1.8)

here 1’ £ @, / (C). 1) — given phase speed of the n-th wave form,

It is obvious that due to the inhomogeneity of the material the process is represented by the
interaction of three related normal wave modes characterized in equations (1.1.8) relations,
given in square brackets. Since the interaction is due to inhomogeneity functions

g, sin(k;X) and &, cos(k;X) from (1.1.4), the solution of (1.1.8) with variable periodic

coefficients is natural to look for, in general, in terms of expansion by given function of
inhomogeneity, based on the fact of the features

W, (X) =8y, + 7™ (8, cos(k,X) + b, sin(k ¥)); mmeN. (1.1.9)
m=1
where km = mk1 = (mﬂ:/ a) — wave number in the direction of wave propagation

corresponding to the m-th harmonic of the wave, and y £ max {«I{-Iiz + 5? } ,i=12is

small parameter which characterizes weak inhomogeneity of the material.
We obtain the recurrent infinite system of homogeneous algebraic equations for the

constant amplitudes {amn; bmn} generated by the interaction of the propagating normal

wave modes (wave signal) and a longitudinal weak inhomogeneity of the material,
substituting the relations (1.1.9) in equations (1.1.8)

(12 = 1) B, + 27| (N2 =12 ) (2 /) sin(o )+ (m) =5, ) (3, /v) cos(kx) | 3y, +
+va [ 2 (2 =1) = K2 |- [sin(k by, + cos(X)a, ]+ (1.1.10)
2
+§Ym-:(ui(62mi -1)
2

3y (B2~ D~ K2 Jeos(k,X) — (K, /3,) Kysin(k,x) |3, cos(k X)a, = 0

In the resulting relations appear characterizing interaction of independent normal harmonics

w (szmﬁ - 1) - krzn) sin(k,,X) - (k8, /) k., cos(kmx)} g, sin(k )b, +
- k,i)sin(knx) +(ke, /3)k, cos(kmx)}éi1 cos(k )b, +

12 (e,m2 —1) k2 ) cos(k,x) + (K3, /gl)kmsin(kmx)};l sin(k X)a,,, +

of coefficients v s 05 Bj on the distributions of wave signal in the layer with weak

longitudinal inhomogeneity (1.1.4)

Vi =t (M = 1) k2 (1.1.11)
amzuﬁ(sznﬁ—sl)—alk;; (1.1.12)
Bmzuﬁ(5mﬁ—51)—5lkfn- (1.1.13)
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The solution in the first approximation will have the following form, considering the fact
that in the zero approximation yo =1 and ko =0 are corresponding to the normal form
on axis 0Xin the case of homogeneous medium

. jwgnt
Won (X, Y,1) =Dy, sin(u,,y)-€°" . (1.1.14)

n=1
From which, respectively, it follows that in zero approximation the weakly inhomogeneous

layer allows only one group of discrete frequencies M, = C, (nn/ ho) for propagating

shear wave with appropriate numbers of formations [, = nn/ ho .

In the first approximation m=1 from the solution (1.1.9) will have
w06 Y5t) = > [@y, 78, cos(kX) +vby, sin(k X) [sinu,,y) - €. (1.1.15)
n=1

The wave number L, and amplitudes of first approximation will find from three related

infinite system of following equations

[T [(nﬁ —1) +e, (nﬁ —slz)sin(klx) +38, (11,21 - 812)cos(klx)] a,=0; (1116
[pﬁ(nﬁ—1)—kf]-bm-sin(k1x)=0; (1.1.17)
[pﬁ(nﬁ—l)—kf]-am -cos(kx)=0. (1.1.18)

The wave number of formation of the first approximation obtain from the condition of
existence of non-trivial solutions of the system (1.1.16)+(1.1.18)

(K X) = (nn/ho)\/l +¢, sin(k X) + 9, cos(k X)

: . (1.1.19)
1+ ¢, sin(k; X) + 8, cos(K, X)

It is obvious that the

'”_;"/: quantities under square

. root sign are positively

102f defined (in the case of

weak inhomogeneity of

10z the  material,  when
—

8?1 + 831 < 1).Therefore,

forbidden frequency
zones in the  first
approximation do not
arise.

From (1.1.19) we see that
the coefficient of
formation (or  phase
function)

61 =0.025 £ =0.015
52 = 0.055; £2=0.035
[51 = 0.05; €1 =0.05;
g [02=0.01; E2=0.01

2 4 E B 10

Fig. 1.1. The forms of change of formation coefficient (or
frequency) on distributions of normal wave signal Hin =Hon - f(X)
already variable because
of the inhomogeneity of the material (Fig. 1.1). Fig. 1.1 also shows that at relatively large

is
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compared to the density, stiffness coefficients, when € >€&, and 81 > 82 , and at
relatively large compared to the stiffness, density coefficients, when €, <€, and 81 < 52 ,
the changes of the oscillation frequencies are different, while remaining periodic.

From coincidence of harmonics, amplitudes {am} and {bm} of first approximation

expressed through the amplitudes of wave signal {aOn} , will find from (1.1.16)+(1.1.18)

T (82 (Tm/ho)z _81) M (82 (Tm/ho)2 _61)

((mn/)" ~(w/a)" )=, A ((=vhy )’ = (n/a)" ) -1, A

From (1.1.20) it is seen that the amplitude distortion compared with the distortion of the
phase function, is quadratic. Here also find the number of resonant harmonics, when

a,, — oo and/or B, — 00, where occurs internal resonance (Fig.1.3)

1+, sin(K X+ @,)
n= a . 1.1.21
(h/ )\/ V. sin(kX+¢,) (120

Here are taken the following designations

A [ 2 2
Y1 =& +8,";

n

@, =arccos (& 2_ &) — = arcsin (512_ 3,) -
\/(81_82) +(81_82) \/(81—82) +(81—82)
Vs é\/(31 —&, )2 +(51 -9, )2 ;O = arCCOSL = arcsin 5

2 2 2 2
Ve~ +9, Ve~ +9,

It is easy to get the instability zones of harmonics from (1.1.21) (when the quantities under
square root sign have not a positive value. (Fig. 1.2))

a(2m-l-g, /1)< x<a(2m-¢, /)
10r | | m=0;1;2;... (1.1.22)
) ) Whence it follows that in some
51 =0.05; €l =0.05; | . . .
512001 2 =001 \ cases of medium inhomogeneity,
/ . the quantities under square root sign
. \ can be negative and then the
sl / \ corresponding  harmonics  lose
- _ ) stability and will be represented by

w0f \ exponential functions
- exp[+p,,(838;;8/h,)- y].

0 2 2 5 2 0 | From Fig. 1.2, in each section we
Fig.1.2. The line of resonance by harmonic can find the numbers of resonant
X, 22 NV, and by cuts forms. It is seen that starting from a

certain numbers of harmonics,
resonant forms periodically exist at certain intervals, by choosing the characteristics of
inhomogeneity of the material, Fig. 1.3 (see formulas (1.1.23) and (1.1.24)).

21



alyix)
T . x 100
—F § ] _ ~10
N //
\\ J 41 =0.05; €l =0.05;
L / ol S2=0.01; e2=0.01;
. \ 41 =0.05; €l = 0.05; - R
| / "~ s : | | n=43
\ I| &2 =0.01; 2 =001, \ |
| =43 \
0 'I III n=43 L/ ,
I R ™ T 4 6 & o
|| \ ]
|| | |
II II
-15F | | -50
|/
—mb 100 -
a) b)

Fig. 1.3. The character of changes of amplitudes (a) and (b) for certain material inhomogeneity
characteristics, before and after the occurrence of the resonance

And also find the number of resonant harmonics
1+, sin(k X +
N, :(m/a)\/ 0 (x +9) (1.1.23)
and the respective values X of the intervals of definition

a(2m+l-¢, /n)>x >a(2m-o,/n); m=0;1;2;... (1.1.24)

In the second approximation when m= 2 , the solution will have the following form

W2 06 s = W, (0 +77 3 [ 8, cos(k,X) + by, sin(k,X)Jsinu, y) - €

Considering (1.1.15), (1.1.19) and (1.1.20), from (1.1.10) for relatively constants a,,, a,,

and b,, amplitudes we have three infinite systems of homogeneous arithmetic equations.
The formation number in second approximation will find from the condition of existence of
non-trivial solution

W, = (mt/ho)\/N(ai ;83K X)/M (38,5 x)., (1.1.25)
where have been taken the following designations
g,n‘a’ +(n2a2 —~ hOZ)B1

n’a’

1+ " sin(k,X) +

1 5,ma’ +(n'a’ -’ ),

2 (eB +8.0. )+ cos(k x) +

2( Bin+96, ln) n%a? (kX) ; (1.1.26)

n'a’ (8,8, + — 21y (8,8, +

n ( Bin 8ZOLln)2 2h0( P 810Lm)SiII(ZkIX)"'
2n"a

n Zhoz(glﬁln _Slam;_znzzaz (82B1n B 820‘1n ) cOS(2k1X)
n-a -

N(;si;é‘)i;klx)é
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(SIBIn + 610(‘1n ) +
M (&:8,:k X) é% +2(1+ (&, =By, )sin(k X) + (8, — o, ) cos(k X)) +
+(8,0,, —€,Byy ) cOS(2k X) — (8,8, + €,0t,, ) sin(2k; X)
Amplitudes a,, and b,, will find from coincidence of harmonics

a2n:a2(8i;6i;(na/h0))a0n; bZn:BZ(Si;Si;(na/hO))aOn;

— AZIBI_AIBZ . _ AzzB|+Asz .
A AA T TR A AR

A2 gkkcos(kx) 8,k sin(k X)} :
(/) —w2) =1 (52, (nmy ) =) =K s+
+3, (8,1 (/)" =) -3 )
é__ 0,8, 1@~ 1) - 2K ] Bye, [ (a2 ~1) -2 |}

A2 [ (2 =1) =K [+ 8, (2 (8.m3 — D)=k ) cos(k x) - |
. 81 Wy Szmn 1)—k22)sin(k1x) ’

A, £{8 kK sin(k x) + ¢ k,k cos(kX)} ;

A 2 2 2 2 2 2
B, = _E{BISI [Mn(szmn -1)-2K; :|+ A8 |:Mn (821nn _1) -2k :|} :
The wave solution in second approximation will have the following form

N 1+B, (&:8;:(na/hy ) )sin(k,X) | o

n=1
Find the forbidden frequency zone from the obtained relations, (the number of harmonics,
for which occur the inequality)

‘—bni b} —c |>1, (1.1.28)

where have taken the following designations

[(rajan ) 1] -[(raan ) (e, ~e,)5,)] ~57 /4
/4 ((nevan ) 8, -5)-3,) | +[(navan ) (e, )<,

The zones of instability of the harmonics are easily obtained from relations (1.1.25) and

(1.1.26) (when the quantities under square root sign can be negative), whence it follows that
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in some cases of medium inhomogeneity, the quantities under square root sign can be
negative and then the corresponding harmonics lose stability and will be represented by

exponential functions exp[iplm({—:i ;8,;a/hy)- y] .

Numerical analysis of the obtained amplitude-phase distortion will be given along with the
case of mechanically free boundary conditions of the waveguide. The zones of forbidden
frequencies for different characterizing parameters of inhomogeneity of the material are
given in Fig 1.4. In one case the forbidden frequency occurs for a limited number of

harmonics n, where il {m, m + 1,...k} , but in the other case there are an unlimited

number of harmonics | > m,.

Task 1.2 Longitudinal inhomogeneity of the material and mechanically free surfaces
of the layer-waveguide. Assume the normal wave is propagating in isotropic, elastic,

longitudinally weak inhomogeneous layer with mechanically free surfaces Y = iho . The

weak inhomogeneity has the form set in (1.1.4)

OW(X, Y, 1)
oy

_ow(xy.0

=0. (1.2.1)
y=—Nh ay

y=thy

Proceeding analogously to the case of
clamped surfaces, the wave solution of the

v equations of motion satisfying the
// boundary conditions for mechanically free
r / surfaces (1.2.1) can be represented in the
/ form

Siin)

™ 4 W(Xa Y, t) = z W, (X) ' COS(Mn y) : eimnt
=0

e (12.2)
where again w, (X) is shown in the (1.1.9)

o1 and consequently the character of
o amplitude-phase  distortion on  the
propagation of wave signal will be the
same as in the case of clamped surfaces of
sl layer.

Nt Unlike the case of the waveguide with
clamped surfaces, in this case the solution
B of the zero approximation is obtained in
LS the form

— Wo (X, Y,t) =8y, + Y 8y, COS(Hg, Y) - €

300 400 500 n=l1

(1.2.3)
where 8, = W, (X,£h,,t)— the values
Fig. 1.4. The zones of forbidden frequencies for | of shear strain on surfaces.

certain material inhomogeneity characteristics Considering the fact, that the nature of the
change in direction of propagation of the
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wave signal is again characterized by the equation (1.1.8), the wave field in the waveguide in
the case of the mechanically free surfaces in the following approximations are obtained so:

a) in the first approximation, the solution is obtained in the form accounting the material
inhomogeneity

W06 Y,1) = 8y + 738, 008k X) + by sin(k )] cos(44,Y) - €, (12.4)

n=1
where determining wave characteristics are the followings: y,, - wave formation number,
and the amplitudes of harmonics a,, and b, are described in relations (1.1.19) and (1.1.20)
accordingly.
b) in the second approximation, the wave field will have the following form

_ ’ % o, (&:8,5(na/h, )) cos(k,x) +
W2(X, yat)—W1(X)+Y ;a()n +B2 (8i;8i;(na/ho))sin(kzx)

where determining wave characte-

cos(iL,, y)e™", (1.2.5)

ristics are the followings: W, — wave

formation number, and the amplitudes
of harmonics a,, and b, are

described in relations (1.1.25), (1.1.26)
and (1.1.28), (1.1.29) accordingly.

2. Comparative analysis of the
obtained results. As shown above, the
frequency characteristics at different
boundary conditions on the smooth
surfaces of the waveguide of weakly
inhomogeneous material are identical
and because of the inhomogeneity are
a) ) the levels of the wave surface when the changed identically. The weak
surfaces of the waveguide are clamped inhomogeneity leads to a distortion of
P the formation coefficients (Fig. 1.1) as
1| in nature as in value. Formation

g oo
20-

coefficients W,,(KX) are already

changing periodically from the value

Hon =(nn/hy). At the clamped

surfaces of the layer, as in the case of
a homogeneous medium does not exist
the first harmonic with a constant
amplitude.  Depending on  the
characteristics of the inhomogeneity of
the material, at certain frequencies

=

2 4 <] &

b) the levels of the wave surface when the surfaces
of the waveguide are mechanically free sections X=X occurs internal
Fig. 2.1

&
=)

n= Nr of the wave signal in certain

resonance (Fig. 1.3). The weak
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inhomogeneity of the material of the waveguide may lead to filtration of specific
frequencies of the normal wave (Fig. 1.4).

In figures 2.1 (a) and (b) the levels of wave surfaces for different boundary conditions are
given. It is obvious that the wave surface generally preserves the leveled character, existing
in the case of homogeneous medium: preserves the symmetry (or asymmetry) through the
thickness of the waveguide, but are distorted in the direction of wave propagation. On the
lines of level changes jagged deviations are clearly appeared, characterized by the
inhomogeneity of the material of the waveguide. At specific frequencies of the wave signal,
the interaction of the signal and inhomogeneity leads to parametric resonance.
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