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Белубекян М.В., Мартиросян С.Р. 
О задаче сверхзвукового панельного флаттера при наличии сосредоточенных  

инерционных масс и моментов 
В линейной постановке исследуется динамическое поведение возмущённого движения тонкой упругой 

прямоугольной пластинки вблизи границ области устойчивости при набегании сверхзвукового потока газа 
на её свободный край в предположении, что вдоль свободной кромки и шарнирно опёртой 
противоположной ей кромки, приложены сосредоточенные инерционные массы и моменты поворота 
соответственно. Найдены критические скорости дивергенции и флаттера. Установлено, что инерционный 
момент поворота приводит к стабилизации возмущённого движения системы.     
 

Բելուբեկյան Մ.Վ. , Մարտիրոսյան Ս.Ռ. 
Գերձայնային պանելային ֆլատերի խնդրի մասին կենտրոնացված իներցիոն զանգվածի և 

մոմենտի առկայության դեպքում 
Դիտարկված է գերձայնային գազի հոսքում ուղղանկյուն սալի կայունության մի խնդիր:  Հոսքը 

ուղղված է ազատ եզրից դեպի հակադիր հոդակապորեն ամրակցված եզրը զուգահեռ մյուս երկու 
հոդակապորեն ամրակցված եզրերին: Ցույց է տված դիվերգենցիայի և ֆլատերի առաջացման 
հնարավորությունը: Գտնված են դիվերգենցիայի և ֆլատերի կրիտիկական արագության արժեքները:  
 

By analyzing, as an example, a thin elastic rectangular plate streamlined by supersonic gas flows, we study the 
loss stability phenomenon of the overrunning of the gas flow at is free edge under the assumption of presence of 
concentrated inertial masses and moments at the free and hinged edges respectively. For some special casesof a 
problem of a panel flutter critical velocities of divergence and flutter are found. It is established that inertial 
moment of rotation leads to the stabilization of perturbed motion of the system. 
 

Introduction. In this paper we study some special cases of the problem of supersonic 
panel flutter, which the General case for moderate values of the parameters was 
investigated by an analytically method in [1]. Each of them is of independent interest for 
the study in terms of identifying new mechanical effects associated with the loss of stability 
of the system “plate–flow”.  

The theoretical and numerical methods to study of the divergence and flutter instability 
of plates and shells devoted a huge amount of works, a General review of which is 
contained in the monography by Algazin S.D. and Kijko I.A. [2(pp. 210-245)] and the 
article by Novichkov J.N. [3].   

The results can be used in the processing of experimental studies of divergence and 
panel flutter of the modern supersonic aircraft. 



42 

1. Statement of the problem. Considered a thin elastic rectangular plate, in a Cartesian 
coordinate system Oxyz  occupies the area: 0 x a  , 0 y b  , h z h   . We choose 
the Cartesian coordinate system Oxyz  so that the Ox and Oy  axes lie in the plane of the 
undisturbed plate, and the Oz  axis is perpendicular to the plate and directed to the side of  
supersonic gas flow streamlining it from one side in the direction of the Ox  axis with an 
undisturbed velocity V . We assume a plane, potential flow. And, also, we assume that the 
plate is not exposed to the tensil forces in the middle surface. Let the 0x   edge of the 
plate is free and edges: x a , 0y  , y b  are hinged. We assume that the concentrated 
inertial masses cm  and rotation moments cI  are applied to the 0x   free edge and to the 
x a  hinged edge respectively [1, 4(p.27, 101), 5].   

Under the influence of certain factors, the undisturbed equilibrium state of our plate can 
be broken down, and it will begin to perform disturbed motion with a deflection 

( , , ).w x y t The deflection ( , , )w x y t  will cause an excess pressure p  on to the upper 
streamlined surface of the plate from the side of streamlining gas flow, which is taken into 
account by the approximate formula of the “piston theory” [6, 7]: 0 0p a V w x      , 

where 0a  is the sound velocity in the undisturbed gas medium, 0  is the density of  
undisturbed gas flow. Let us assume that the deflections ( , , )w x y t  are small as compared 
with the thickness 2h  of the plate.     
Find out the conditions under which the possible loss of stability of the undisturbed state of 
equilibrium of the plate, when the bending of the plate due to the corresponding 
aerodynamic loads p  and concentrated inertial masses cm  and rotation moments cI  are 
applied to the free 0x   edge. Thus, in accordance with the new approach, the influence of 
the distributed mass of the plate and the resistance forces can be neglected.  

Then, under assumption of the validity of the Kirchhoff hypotheses and "piston theory”, 
the small bending vibrations of the points of the plate middle surface about the undisturbed 
equilibrium state is described by the differential equation [1, 4(245)]  

2
0 0 0D w a V w x      ,                                             (1.1) 

2 ( )w w    , w  is a Laplace's operator; D  is a cylindrical rigidity.    
In the accepted assumptions concerning a way of fixing of edges of the plate the 

boundary conditions can be written in the form [1, 4(101), 5]   
2 2

2 2 0w w
x y

 
 

 
,    

2 2 2
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2 2 2(2 ) c
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, x a ;          (1.3)  

0w  ,   
2

2 0w
y





,   0y   and y b ;          (1.4) 

The problem of the stability of an elastic thin rectangular plate streamlined by a 
supersonic gas flow, which is described by correlations (1.1)-(1.4), lies in finding the 
minimal value velocity crV  (i.e. the critical velocity) such that, in the case crV V , 
disturbed motion will be stable and, for crV V – unstable. In other words, is required to 
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determine the values of velocity at which the equation (1.1) with the corresponding 
boundary conditions (1.2)-(1.4) has the non-trivial solutions. 
     We see that the analysis of the stability of the plane form of the plate in the potential 
supersonic flow reduces to a study of the differential equation (1.1) with the corresponding 
boundary conditions (1.2)-(1.4) for the deflections ( , , ).w x y t      

2. General solution of the problem. For finding the general solution of the problem of 
stability of the plate (1.1)-(1.4), we will reduce it to a problem on eigenvalues for the 
ordinary differential equation.  

We try to find the General solution to the boundary-value problem defined by equation 
(1.1) and by the boundary (1.2) - (1.4) in the form of harmonic vibrations [9] 

1
( , , ) exp( ) sin( )n n n

n
w x y t C px t y





      , 1
n nb   ,              (2.1)  

then, in accordance with the expression (2.1), the considered problem of the panel flutter 
(1.1)–(1.4) is reduced to the following boundary value problem on eigenvalues   of 
nonselfadjoint operator for the ordinary differential equations on the forms of vibrations 

( ) exp( )n n nf x C px  , where nC  are the arbitraries constants, which are not equal to 
zero simultaneously; n  is the half–waves number along of side b ; p – are the roots of the 
characteristic equation      

2 2 3( 1) 0np p   ,  3 1 3
0 0n na VD     , 3 0n  ,                         (2.2) 

 corresponding to differential equation (1.1). Тhe characteristic equation (2.2) has two 
negative root 1 0p  , 2 0p   and a pair of complex-conjugate roots 3,4p i     with a  

positive real part 0  . The roots of the equation (2.2) are determined by the following 
expressions [10]: 

2
1,2 0.5 2( 1) 1 0.5( 1)p q q q       ,        (2.3) 

2
3,4 0.5 2( 1) 1 0.5( 1)p q i q q      ,                             (2.4) 

                            1q  .                                                         (2.5) 
Here q  is the only real root of the cubic equation  

2 68 (1 ) ( 1) nq q     ,  3 1 3
0 0n na VD     , 1

n nb   .               (2.6) 
From the relations (2.6) it is easy to obtain the expressions of the dependence of the 

velocity V  of gas flow on the system parameters  
3 3 3 3 1

0 02 2( 1) ( 1) ( )V q q n D a a        .                       (2.7) 
As well as,   

3 3 3 1
0 02 2( 1) ( 1) ( )V q q n D a b       .                           (2.8)  

Here   is a relation of the width a  of the plate to its length b  
1ab  .                                                      (2.9)  

Then, the General solution (2.1) of the equation (1.1), due to ratios (2.3) and (2.4), can 
be written as  
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4

1 1
( , , ) exp( ) sin( )nk n k n

n k
w x y t C p x t y



 

       .                  (2.10) 

Substituting the General solution (2.10) the differential equation (1.1) in the boundary 
conditions (1.2)-(1.4), we obtain a homogeneous system of algebraic equations of the 
fourth order relatively the arbitraries constants: nkC .  Equate to zero the determinant of this 
system of equations - characteristic determinant leads to the dispersion equation [1]    

4 2
0 1 2 3( ) 0n n n nA A A A          .        (2.11)  

And introducing the notation 
1

n n nk    , 0n  , 0n  ,        (2.12) 
we can  rewrite characteristic equation (2.11) in the form  

4 1 2 1 1
0 1 2 3( ) 0n n n nA k A A A           , (0, )  , 0n  , 0n  .            (2.13)                   

Here  
1 3 3( )n cm D b n     and  1 1( )n cI D b n                  (2.14)   

are the reduced values of the concentrated masses cm  and inertial moments of rotation cI  , 
applied to the free 0x   and hinged x a  edges of the plate, respectively; 

0 0 ( , , )A A q n    1 22 2( 1) (1 exp ( 2 2( 1) )q q n B B             (2.15) 

exp ( 2( 1) )q n     

1 1 2( 2( 1) 2( 1)) ch( ) sin( )q q B n B n B             

     2 1 2( 2( 1) 2( 1)) sh( ) cos( )q q B n B n B          ; 

 2 2
1 1 1 2( , , ) 2 2( 1) ( ( 1) ) (1 )A A q n q q q B B            (2.16) 

      2 2
1 22( 1) ( ( 1) ) (1 ) exp( 2 2( 1) )q q q B B q n             

     2
12 ( 1) ( 1) ( 2( 1) 2( 1)) ( )q q q q sh n B           

2 2
1 1 2 2(4 2 1 2 ) ch( ) cos( )q q q B n B B n B           

exp( 2( 1) )q n       

     2 2 2
1((2 3 1) 2(3 3 2) (3 1) ) ( )q q q q q sh n B              

     2
1 12( 1) ( 1) ( 2( 1) 2( 1)) ( )q q q q B ch n B            

     2sin( ) exp( 2( 1) )n B q n        ; 

2 2 1 2( , , ) 4( 1) (1 exp ( 2 2( 1) )A A q n q q n B B               (2.17) 

      1 2 1 22 ch( ) cos( ) exp( 2( 1) )B B n B n B q n            
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      1 23( 1)sh( )sin( ) exp( 2( 1) )q n B n B q n           ; 

 2 2
3 3 1 2( , , , ) 2 2( 1) 2( 1) ( 1 ) (1 )A A q n q q q q B B              (2.18) 

      
2 22( 1)( 1 ) (1 )q q q          1 2 exp( 2 2( 1) )B B q n    

 

      
 2( 4 2 1) 2( 1)q q q     2(2 4 1) 2( 1)q q q      

2((2 1) 2( 1) 2( 1))q q q q      
2

1( 2( 1) 2( 1)) sh( )q q n B         

      2
1 1 2 24( 1) 1 ch( ) cos( )exp( 2( 1) )q q B n B B n B q n            

 

        2 2
1 ( 4 2 1) 2( 1) (2 4 1) 2( 1)B q q q q q q            

2((2 1) 2( 1) 2( 1))q q q q      2
1( 2( 1) 2( 1)) ch( )q q n B         

        2 2
1 26( 1) ( 1)sh( ) sin( )exp( 2( 1) )q q n B n B q n           ;

 
2

1( ) 1 0.5( 1)B q q q    , 2
2 ( ) 1 0.5( 1),B q q q            (2.19)  

     It follows that [1]  

0 0 ( , , ) 0A A q n   , 2 2 ( , , ) 0A A q n   ,            (2.20) 

for all numbers 1q  , 1n  , 0   of parameters.   
The system “plate–flow”, described by the relations (1.1) – (1.4) is asymptotically 

stable if all eigenvalues   of the boundary value problem for ordinary differential equation 
have negative real parts, and unstable if at least one eigenvalue   is on the right side of the 
complex plane. 

The critical velocity crV  that characterizes the transition from stability to instability of 
the disturbed motion of the system “plate-flow” is determined by the condition of equality 
to zero of the real part of one or more of the eigenvalues. 

     This article discusses four particular cases of the original problem of stability of 
(1.1)–(1.4) studied in [1] at moderate values of its “essential” parameters. 

In [1] conducted a decomposition of the space of the “essential” parameters M {  , 

nk ,  , q , }n  of the problem of stability (1.1)–(1.4) on the stability region 0M  and the 
regions of instability 1M , 2M  and 3M  in which, respectively, either all roots of the 
characteristic equation are in the left part of the complex plane, or among the roots there is 
one positive root or has two positive roots, or a pair of complex–conjugate roots with 
positive real part. The behavior of the system “plate–flow” near the borders of the region of 
stability 0M  is investigated. The critical velocity of divergence of the panel and the critical 
velocity of localized divergence in the vicinity of the free edge of the plate, as well as, the 
critical velocity of panel flutter are found. It is shown that, depending on the relation 
between of the system parameters, the critical flutter velocity can be both less and greater 
than the critical velocity of divergence. 
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3.1. Considered the case where on the free edge 0x   of the plate are applied the 
concentrated inertial masses cm  and inertial rotation moments cI  on the hinged edge 
x a  are absent ( 0nk  ).  

In this case the characteristic equation (2.11) can be written in the form  
2

2 3 0n A A    .                   (3.1) 
Here 2A  and 3A  are determined by the expressions (2.17) and (2.18) respectively. 
    The roots of the equation (3.1) is equal to  

  1
1,2 3 2nA A        .               (3.2) 

    At 0n   because of the conditions (2.20), the region of stability 0M M  of the 
disturbed motion of the system “plate–flow” will be determined by the inequality  

3 0A  .                            (3.3) 

     It is obviously, that under the condition (3.3) the equation (3.1) has а pair 1,2 i     
of purely imaginary roots. This means, that the rectangular plate performs harmonic 
oscillations about the undisturbed equilibrium state. 
      The boundary of the region of stability 0M M  of the disturbed motion of the system 
“plate–flow” in the space of its parameters M  is the hypersurface  

3 0A  ,             (3.4)  

where the characteristic equation (3.1) has a zero root 0 0   of multiplicity 2. This 
means, that the system perturbed motion loses static stability, i.e. there is a divergence of 
panel. 
       From the condition (2.20) and the method of partitioning the parameters space M  into 
the regions of the stability and the instability of the disturbed motion of the system, it 
follows that this particular case corresponds to the only region of instability 1M  defined by 
the correlation  

3 0A  .                  (3.5)  

Here the characteristic equation (3.1) has two real roots of different signs: 1 0  , 

2 0  . This means that one of the two own motions of the plate is increasing 
exponentially (the deflections will increase over time according to the exponential law).  
     Substituting the first root . . ( , , )cr div cr divq q n    of the equation (3.4) in the formula 

(2.7), we obtain the . . ( , , )cr div cr divV V n    critical divergence velocity, which delimits 
the stability region 0M  and the static instability (divergence) region 1M  of the disturbed 
motion of the   system “plate-flow”.  
    At the .cr divV V  velocities there is a “soft” transition trough point 0 0   in the right 
part of the complex plane of the eigenvalues   of problem (1.1)-(1.4), causing the smooth 
changing the nature of disturbed motion of the system from harmonic vibrations to a 
monotonically increasing aperiodic motion. This changes the dynamic behavior of plates: in 
the plate, performing harmonic oscillations, there is stressеs, leading to changes in the 
surface shape of the plate. The surface of the plate “buckles” with limited velocity of 
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“buckling”. As monotonous “buckling” of the plate has no oscillatory nature, it can be 
considered as quasi-static process, i.e. there is a divergence.  
     Numerical calculations have been performed for different values of the parameters of the 
problem, showed the following. And 1n   with fixed values of remaining parameters the 
critical velocity of divergence reaches a minimum value.  
     For all the value (0,2)  we can say, that when the velocity . .cr divV V  is the 
phenomenon of divergence observed. The value reduced critical velocity of divergence 

1 3
. . 0 0( )cr divV D a a   depends on Poisson's ratio   and the parameter 1ab   is the 

relationship of the sides a  and  b  of the rectangular plate: it is less in plates from materials 
with the largeness of the Poisson's ratio  , and with increase in parameter   the reduced 
divergence critical velocity grows (see table 1).  
                                                                                                                                 Table 1. 
 

            
    γ 

      0.125       0.25        0.33       0.375       0.5 

      0.01    20.345 10      20.297 10     20.268 10     20.243 10    20.197 10   
      0.1        0.352        0.306         0.273        0.240        0.197 
      0.2        1.511        1.290         1.163        1.063        0.882 
      0.3        3.650           3.324         2.912        2.721        2.619 
      0.4        7.789           6.758         5.985        5.507        4.478 
      0.5      14.945          13.503       11.078       10.778        9.056 
      0.6      26.284      21.790       19.146           18.608       13.889 
      0.7      45.587      37.826       31.267       29.552      25.011 
      0.9    473.50      96.90       78.72       70.05      53.15 
      1.0    520.29    157.17     114.21     101.74      72.91 
      1.1    562.28    243.30     168.02     143.73    100.70 
      1.2    608.75    323.02     225.85     194.62    135.24 
      1.3    699.07    401.61     287.15     252.49    172.13 
      1.4    811.70     495.72     364.73     315.35    214.99 
      1.5    975.85     595.22     448.61     380.36    273.35 
      1.6  1166.20      704.47     544.44     470.73    326.25 
      1.8  1695.90    992.18     762.25          695.12    440.54 
      2.0  2598.09  1382.02   1045.62     953.53    604.31 

 
    It is easy to show that equation (3.4) in the limiting case, where 0  ( )b   when 

1q   and all   identically equal to zero. Hence, in this limiting case the undisturbed form 
of equilibrium of the plate is statically unstable. And when values of 2   equation (3.4) 
can be reduced to the simplified form  

2 22( 1) ( 1 ) (1 ) 0q q q        ,  [2, )  .    (3.6) 
    Equation (3.6) exactly coincides with the dispersion equation obtained in the work [10] 
the study of phenomenon localized divergence arising in the vicinity of the free edge of the 
elastic semi-infinite plate-strip, streamlined by a supersonic gas flow in the direction from 
the free edge to the supported edge along the semi-infinite hinged edges. Тhe reduced 
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critical velocity of localized divergence 1 3
. . 0 0( )loc divV D a b   depends only on the 

Poisson's ratio : it is less in plates from materials with the largeness of the Poisson's ratio.  
     In table 2 for several values of Poisson's ratio values are given reduced critical velocities 
of localized divergence 1 3

. . 0 0( )loc divV D a b   of rectangular plate observed in the values 
that accuracy coincide with the values obtained in the work [10]. 
     Thus for all the value [2, )  , we can say that when the velocity loc. ( )divV V   is 
the phenomenon of localized divergence in the vicinity of the free edge 0x   of our plate 
observed, which is in good agreement with the results of numerical analysis (table 2). At 
the values of velocities loc. ( )divV V   the vicinity of the free edge 0x   of the plate is 
«buckling». As in this case a parameter .loc divq q  is determined from the simplified 
equation (3.6), we can say, that for values [2, )   found approximate expression (3.6), 

making it easy to find the reduced critical velocities 1 3
. . 0 0( )loc divV D a b   of the localized 

divergence, substituting these values . .loc divq  in expression (2.8).  
                                                                                                                                 Table 2.   

       
      From expression (3.2) and conditions (3.4) follows, that static loss of stability in the 
form of divergence for values of and localized divergence takes place only, and dynamic 
loss of stability is absent.  
      In a conclusion we will mark that for values of (0,2) at the .cr divV V of gas flow 
velocities (Table 1) there is the divergence panel, resulting in a "buckling" of the plate. For 
values of [2, )  at the loc. ( )divV V   of gas flow velocities (Table 2) there is the 
divergence phenomenon localized in the vicinity of the free edge of the rectangular plate, in 
which the "buckling" just strip along the vicinity of the free edge of the plate. And the 
presence of the concentrated masses cm  on a free edge 0x   of the plate does not result in 
dynamic instability, i.e. the panel flutter is absent.      
    3.2. Considered the case where on the hinged edge x a  of the plate are applied the 
inertial rotation moments cI  and concentrated inertial masses cm  on the free edge 0x   
are absent ( nk   ).  
      In this case the characteristic equation (2.11) can be written in the form  

2
1 3 0n A A                    (3.7) 

Here 1A  and 3A  are determined by the expressions (2.16) and (2.18) respectively. 
    The roots of the equation (3.7) is equal to  

  1
1,2 3 1nA A        .                   (3.8) 

    At 0n   because of the conditions (2.20), the region of stability 0M M  of the 
disturbed motion of the system “plate–flow” will be determined by the inequalities  

                0.125    0.25     0.33     0.375     0.5 
1 3

. 0 0( )loc divV D a b    324.761 173.371 130.702 120.741 77.398 
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 1 0A  , 3 0A  .                      (3.9) 

     It is obviously, that under the condition (3.9) the equation (3.7) has а pair  1,2 i     
of purely imaginary roots. This means, that the rectangular plate performs harmonic 
oscillations about the undisturbed equilibrium state. 
    The boundaries of the region of stability 0M M  are the hypersurfaces 

1 0A  ,                       (3.10) 

3 0A  .                     (3.11) 
     On the hypersurface (3.10) the characteristic equation (3.7) has two roots equal to 
infinity, i.e. 1,2   . And on the hypersurface (3.11) the characteristic equation (3.7) 

has a zero root 0 0   of multiplicity 2. 
     In this case, the region of instability 1M  consists of two subregions 11M  and 12M  which 
are determined by the relations respectively 

1 0A  ,  3 0A  ;                                   (3.12) 

1 0A  ,  3 0A  .                          (3.13) 
    It is obviously, that in both subregions 11M  and 12M  the characteristic equation (3.7) has 

two real roots of the different signs, namely: 1 0  , 2 0  . This means that one of the 
two disturbed motions of the system “plate-flow” is increasing exponentially. 
     On the boundary of the stability region 0M       

1 0A  ,   3 0A  ,                                    (3.14)  
 the disturbed motion of the system loses of static stability: there is a divergence of panel. 
     Substituting the first root . . ( , , )cr div cr divq q n    of the equation (3.11) in the formula 
(2.7), we obtain the .cr divV critical divergence velocity, which delimits the stability region 

0M  and the static instability (divergence) region 11M  of the disturbed motion of a 

rectangular plate. At .cr divV V  velocities of gas flow the roots 1,2 i     of the 

characteristic equation (3.7) of a “soft” transition through the point 0 0  , respectively, 

to the left and to right parts of the complex plane of the eigenvalues   and remain so, at 
least, when values of the velocity of the gas flow V  close to the critical value .cr divV , purely 

real: 1 0  , 2 0  . This changes the dynamic behavior of plates: in the plate, 
performing harmonic oscillations, there is stressеs, leading to changes in the surface shape 
of the plate. The surface of the plate “buckles” with limited velocity of “buckling”. As 
monotonous “buckling” of the plate has no oscillatory nature, it can be considered as quasi-
static process, i.e. there is a divergence. 
      Numerical studies have shown that the transition across the border (3.14) from the 
region 0M  in a subregion 11M  is possible only if values (0,0.83) of parameter. 
Because of identity of equations (3.4) and (3.14), cr divV  equal to the corresponding critical 
divergence velocities, are shown in table 1. Thus the reduced critical divergence velocity 

1 3
0 0( )cr divV D a a  depends on the Poisson's ratio   and parameter  : it is less in plates 
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from materials with the largeness of the Poisson's ratio   and with increase in parameter   
the reduce divergence critical velocity grows (see table 1).  
     On the boundary of the stability region 0M       
 1 0A  ,  3 0A                            (3.15)   
the disturbed motion of the system loses of the dynamic stability: there is a “dynamic 
buckling”, which can be mistaken for “ panel flutter” [12  (с.719), 13]. The “flutter”critical 
velocities . .cr flV  delimited the region 0M  of stability and the subregion 12M  of the 
instability of system disturbed motion are determined by substituting the first root 

. . ( , , )cr fl cr flq q n    of equation (3.10) in the expression (2.7). When the velocity of gas 

flow . .cr flV V there is a transition across the boundary (3.15), which takes place only for 

(0.83,1.5] values: the eigenvalues 1,2 i     transition through the infinitely 

distant point    , respectively, on the left and on the right parts of the complex plane 
and remain so, at least, when values of the velocity of the gas flow V  close to the critical 
value . .cr flV , real: 1 0  , 2 0  . There is an abrupt (“instant”) change in the character 
of the system disturbed motion from sustainable to unsustainable [5]. In the plate arise 
stresses, leading to an abrupt (“instant”) to change its form: so-called “dynamic buckling”, 
in which the plate “bulge” infinite speed “buckling” [12(p. 719]. This process is not 
oscillatory as well as divergence. However, despite the discrepancies existing in the 
scientific literature [4 (p. 63), 5, 12(p. 719), 13], it is conditionally possible to consider as 
“quasi-oscillatory” process, i.e. as the panel flutter, usually leading to the destruction of the 
plate [13]. Table 3 presents the several values of the reduced flutter critical velocity 

1 3
. 0 0( )cr flV D a a   are found by substitution of the first root f lq . ( , , )cr f lq n    of the 

equation (3.10) for 1n   and some (0.83,1.5]   and   in formula (2.7).   
                                                                                                                                Table 3. 
 

            
    γ 

      0.125       0.25        0.33       0.375       0.5 

      0.9      109.68      85.44       73.56       66.57      53.15 
      1.0      191.38    126.24     105.64       96.09      72.91 
      1.1      492.51    185.72     146.83     131.12      97.05 
      1.2      591.77    274.98     206.46     178.48    126.00 
      1.3      673.97    378.02     257.51     242.36    166.22 
      1.4      802.32    483.93     352.53     302.71    207.61 
      1.5      936.02    595.22     448.61     380.12    273.35 

 
     From the data of table 3 it follows that the flutter critical velocity is less than in plates 
made of materials with a large Poisson's ratio , and with increasing   it grows.  
     On the boundary of the instability region 11M       

1 0A  , 3 0A             (3.16) 
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at the velocities . .cr flV V   of gas flow for all (0,0.83)  the eigenvalues 1 0  , 

2 0   moving through an infinitely remote points 1,2    on the imaginary axis of 
the complex plane and remain so, at least, when values of the velocity V  of the gas flow 
close to the critical value . .cr flV  of the pure imaginary: 1,2 i    . During this transition if 
the plate is not destroyed, the perturbed motion of the system “plate–flow” becomes stable 
[5, 13]. Table 4 presents the several values of the reduced flutter critical velocity 

1 3
. 0 0( )cr flV D a a   for some values (0,0.83)  and Poisson's ratio .  

     Numerical results showed the following. Тhe flutter critical velocity 
1 3

. 0 0( )cr flV D a a   is less than in plates made of materials with a large Poisson's ratio , 

and with increasing   it grows for all values (0.01,0.83)  , and for all (0,0.01]  the 

flutter critical velocity 1 3
. 0 0( )cr flV D a a   does not depend on the parameters  ,   and 

it equal to 1 3
. 0 0( )cr flV D a a  6.3  (tabl. 4). 

                                                                                                                                 Table 4. 
  

            
    γ 

      0.125       0.25        0.33       0.375       0.5 

      0.01        6.33       6.33         6.33         6.33        6.33 
      0.1        6.72       6.69         6.63         6.58        6.56 
      0.2        8.16       7.62         7.49         7.25        6.87 
      0.3      10.76        9.94         9.51         9.20        8.40 
      0.4      15.14      13.62       12.66       11.97      10.59 
      0.5      22.04      19.35       17.44       16.61      13.78 
      0.6      32.02      25.31       24.82       22.82      18.61 
      0.7      46.68      38.82       33.67       31.52      27.15 

 
     Numerical results showed the following. Тhe flutter critical velocity 

1 3
. 0 0( )cr flV D a a   is less than in plates made of materials with a large Poisson's ratio , 

and with increasing   it grows for all values (0.01,0.83) , and for all (0,0.01]  

the flutter critical velocity 1 3
. 0 0( )cr flV D a a   does not depend on the parameters  ,   

and it equal to 1 3
. 0 0( )cr flV D a a  6.3 3 (tabl. 4). Note that in monography [4] it is 

shown that in the problem of panel flutter of a console, the divergence critical velocity 
equal to 6.33  and the flutter critical velocity – 124.4 . Comparison of these results with the 
results of this work, it follows that the flutter critical velocity 1 3

. 0 0( )cr flV D a a   equal 
to the divergence critical velocity and about twenty times less than the flutter critical 
velocity which are found in the work [4].   
     It is easy to show that the limit of the ratio 3A  to 1A   is equal to 1 for all values 

(1.5, ]  : 1
3 1lim 1A A  . And this in accordance with the expression (3.8) means that 

the characteristic performances   of the system “plate–flow” for all (1.5, ]   are 
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purely imaginaries numbers 1,2 i     i.e. the system perturbed motion is stable. The 
plate makes harmonic oscillations about the unperturbed equilibrium state. Thus, applied to 
the edge x a  the inertial rotation moments lead to stabilization of the system disturbed 
motion “plate–flow” for all (1.5, ]  . 
    3.3. Consider the case in which a b . 
     It is easy to show that in this case the characteristic equation (2.11) is transformed to the 
following   

4 2
01 11 21 31( ) 0n n n na a a a            .         (3.17) 

Here 

01 2( 1)a q  ,  2 2
11 2( 1) ( 1 ) (1 )a q q q        ,  21 2( 1)a q  ,      (3.18)    

2 2
31 2( 1) [2( 1) ( 1 ) (1 ) ]a q q q q          ;                     (3.19) 

1( )n cI b nD     , 1 3 3( )n cm D b n    ,  0n  ,   0n  .            (3.20)   
     For all 1q   it follows that  

11 21 0n na a    ,   2
11 21 01 31( ) 4n n n na a a a         2

11 12( ) 0n na a    .    (3.21) 
Here  is the discriminant of the biquadratic equation (3.17). 
      In accordance with the conditions (3.21), the stability region 0M  defined by the 
correlation  

31 0a  .                     (3.22)  
      Under this condition equation (3.17) has two pairs of purely imaginary roots 

1,2 1i    ,  3,4 2i    : the rectangular plate performs harmonic oscillations about 

the unperturbed equilibrium state. And the region of instability 1M  by the correlation 

31 0a   is determined. It follows, that in the region 1M  of the characteristic equation (3.17) 
has a pair of purely imaginary roots 1,2 i     and two real roots 3 0  , 4 0  . 
This means that one of the two proper motions of the plate is dampened, and the other the 
movement of plates is unlimited deviation exponentially from the equilibrium state.  
     The boundary of the stability region 0M  is a hypersurface 

31 0a  .                 (3.23)   
Or, in accordance with the expression (3.19), is 

2 22( 1) ( 1 ) (1 ) 0q q q        .             (3.24)   

where the characteristic equation (3.17) has a zero root 0 0   of multiplicity 2 and a pair 

of pure imaginary roots are equal to 1
1,2 2( 1) ni q       according to the 

expressions (3.18). 
     The condition (3.24) determines the loss of stability of the disturbed motion of the 
system “plate–flow” in the form of a localized divergence in the vicinity of the free edge 

0x   of the plate [10]. 
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     The critical velocities .loc divV  of the localized divergence that delimites the stability 
region 0M  and the region of instability 1M  of the system perturbed motion are determined 

by substituting the first root . . ( )loc div loc divq q   of equation (3.24) in expression (2.8). It 

follows that the reduce critical velocity 1 3
. 0 0( )loc divV D a b   of the localized divergence 

depends on the parameter n  and Poisson's ratio  : when a fixed value of parameter n  the 
critical velocity is less than in plates made of materials with a large Poisson's ratio, and 
when the fixed of parameter   it reaches the lowest value when 1n  (tabl.2).  
     Thus, in the case in which a b  the system “plate-flow” loses stability in a localized 
divergence in the vicinity of the free edge 0x   of the plate at all the velocities 

.loc divV V of the gas flow. The critical velocity .loc divV  of localized divergence does not 

depend on the coefficients n  and n . The presence of the inertial moment cI  ( 0n  ) 
of rotation on the hinged edge x a  leads to the stabilization when the inertial mass cm  

( 0n  ) on the free edge 0x   is absent. 
     2.4. Let us consider the case corresponding to the condition a b .  
     Numerical studies of the characteristic equation (2.11) has shown that its solution 
corresponding to the occasion, meet the condition  

1q .              (3.25)  
     Then, introducing the notation  

2r q n   ,                            (3.26)  
 the characteristic equation (2.11) and expression (2.7) can be written, respectively, as  

4 2
02 12 22 32( ) 0a a a a            ,         (3.27) 

3 3 1
0 0( )V r D a a   .                 (3.28) 

Here 

02 sh( ) 2sh( 2) cos( 3 2)a r r r   ;                            (3.29)  
3

12 [1 2 exp( ) exp( 2)cos( 3 2)]a r r r r     ;                    (3.30)  

22 [ch( ) exp( 2) sin( 6 3 2) exp( 2) sin( 6 3 2)]a r r r r r r            (3.31) 
4

32 [ 1 2 exp( ) exp( 2) sin( 6 3 2)]a r r r r         ;                  (3.32) 
1ab  ;  1

cI aD  ;  3 1
cm a D  .                    (3.33) 

    From expressions (3.29) and (3.31) it is obvious that  
02 0a  , 22 0a   at all  0r  .                (3.34) 

    It can be shown that in the absence of flow plates 0V   or 0r   the characteristic 
equation (3.27) describes by the correlation  

4 23 ( ) 0             .              (3.35) 

     At all values of (0, )   , (0, )   the equation (3.35) has a pair of purely 

imaginary roots and the zero root 0 0   of multiplicity 2. This means that when the gas 
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flow velocities (1)
. . 0cr divV V   then the perturbed motion of the system loses stability in the 

form of divergence: the plate “buckles”.  
     Note that the correlations (3.27), (3.35) and (3.28) are identical with the corresponding 
equations describing the characteristic equation and the formula for calculating the gas flow 
velocity to the problem of stability of a streamlined a supersonic flow of gas, an elongated 
plate 0 , 0x a y      with a free edge 0x   under the same assumptions. 
     Therefore, the behavior of the disturbed motion of the system “rectangular plate – flow” 
in this case is the same as in the case of a system “elongated plate – flow”. 
     In accordance with the first of the inequalities (3.34), the stability region 0M  defined by 
the correlations 

12 22 0a a    ,   32 0a  ,   0  .          (3.36) 
Here 

 2
12 22 02 32( ) 4a a a a                       (3.37)  

is the discriminant of the biquadratic equation (3.27). 
And the instability regions 1M , 2M , 3M  will be determined, respectively, by the 

correlations: 32 0a  , 0  ; 12 22 0a a    , 32 0a  , 0  ; 32 0a  , 0  . 

     The boundaries of the stability region 0M  of the condition 12 22 0n na a      are the 
hypersurfaces  

32 0a  ,                                (3.38)  
0  .                                                                                                                              (3.39) 

     On the hypersurfacies (3.38) and (3.39) the characteristic equation (3.27) has a zero root 

0 0   of multiplicity 2, and a pair of the purely imaginary roots 1,2 i     
respectively.  
     On the boundary of the stability region 0M  of the  

12 22 0a a    ,   0  ,   32 0a  ,            (3.40)  
the perturbed motion of the system loses the static stability: there is a divergence of the 
panel. The critical divergence velocities .cr divV  are determined by substituting the roots 

.cr divr  of equation (3.38) into the expression (3.28). 
    On the boundary of the stability region 0M  of the  

12 22 0a a    ,   32 0a  ,    0  ,         (3.41)  
and on the boundaryof the static instability region 2M  of the  

12 22 0a a    ,    32 0a  ,    0  ,               (3.42)  
the system perturbed motion loses its dynamic stability: there is a panel flutter. The critical 
flutter velocities .cr flV  and .cr flV  , respectively, delimited of the regions 0M , 3M  and of the 
regions 2M , 3M  are determined by substituting the roots of equation (3.39) into the 
expression (3.28). According to the correlations (3.28) and (3.37) the reduced critical flutter 
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velocities 1 3
. 0 0( )cr flV D a a   and 1 3

. 0 0( )cr flV D a a   depend on the parameter 

1k       .  
     The numerical investigations showed the following. 

     For all [0, ]k    at the velocities (1)
. 0cr divV V   of the gas flow is a loss of static 

stability of the system disturbed motion, i.e. divergence: in the plate undergoing harmonic 
oscillations, there is tension, leading to change its shape: the plate “bulge” with limited 

velocity “buckling”. In accordance with these values [0,0.06)k   is possible only the loss 
of stability of the disturbed motion of the system in the form of divergence. In this case, the 
transitions from the region of stability 0M  in the divergence instability region 1M  

alternate: when the velocities 3 1
0 076.22 ( )V D a a     of the gas flow the perturbed 

motion of the system, being statically unstable, becomes stable, and at the velocities 
(2) 3 1

. 0 0483.73 ( )cr divV V D a a      of the gas flow again loses static stability. 

    For values [0.06,0.3)k   we have the loss of stability of both types: as the divergence of 
the panel, and panel flutter. Originally statically unstable perturbed motion of the system at 
velocities 3 1

0 076.22 ( )V D a a    of the gas flow becomes stable. But when the 

velocities .cr flV V  we have the “soft” transition from the region 0M  of stability in the 

region 3M  of the dynamic instability: the harmonic vibrations of the plate gradually 
transformed into self-oscillations, i.e. the flutter oscillations.  
    Table 5 presents the values of the reduced critical flutter velocities 1 3

. 0 0( )cr flV D a a   

with an accuracy of the order of 310  for several values of the parameter [0.06,0.3)k  . 
                                                                                                          Table 5.  

In this case, the reduced critical flutter velocity 1 3
. 0 0( )cr flV D a a   decreases with 

the growth [0.06,0.3)k   (table. 5).  

At velocities . .cr fl cr flV V V   of gas flow is a “soft” transition from the region of static 
instability 2M  to the region  3M  of the dynamic instability. We can say that the 
phenomenon of the buckled panel flutter is observed. There is as well as a “smooth” 
transition to the flutter oscillations in addition to the monotonous “buckling” of the plate 
that does not have an oscillatory character.  
    Table 6 presents the values of the reduced critical flutter velocities 1 3

. 0 0( )cr flV D a a   

with an accuracy of the order of 310  for some values of the parameter [0.3, )k   . As can 

              k  
       0.06      0.08        0.1        0.2       0.25 

1 3
. 0 0( )cr flV D a a   125    98.61 89.31 76.76 76.34 
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be seen from table 6, the critical flutter velocity 1 3
. 0 0( )cr flV D a a   grows with the 

parameter 1k       .  

    It means that when the values of [0.3, )k    the inertial moment of rotation cI  applied 
to the hinged edge x a  of the plate leads to the stabilization.  
     However, the reduced critical flutter velocity 1 3

. 0 0( )cr flV D a a    is approximately 

equal to 6.33  when the value of parameter k    that by an order of magnitude less than 

the critical flutter velocity at [0.3, )k    (tabl. 4, 6).  
                                                                                                                               Table 6.  

Of the identity of the dispersion equation (3.27) and the dispersion equation obtained in 
[8] in studying the problem of panel flutter of a plate elongated in the assumption that 
inertial mass and rotation moments applied simultaneously to the free edge 0x   and to the 
opposite hinged edge x a  do not exist, should identity in the behavior of the disturbed 
motion of the system “elongated plate plate–flow” these problems. 

Thus, in the case when a b  the behavior of the disturbed motion of the system 
“rectangular plate-flow”, similar to the behavior of the disturbed motion of the system 
“elongated plate-flow” ( 0 ,0x a y     ). Namely, when the velocity of the gas flow is 
absent ( 0V  ), the system perturbed motion is statically unstable. In the flow ( 0V  ) the 
behavior of the system perturbed motion depends on the value of the ratio of relative values 
of concentrated inertial moments cI  and masses cm  are applied, respectively, to the hinged 
edge x a  and free edge 0x   of the plate. 

Conclusion. Using an analytically method, investigated by special cases of the problem 
of panel flutter, where the General case is studied in [1]. On the partition of the space of the 
“essential” parameters of the system “plate–flow” in regions of the stability and instability 
is performed. The boundaries of the region of stability are investigated. The boundaries of 
the divergence of panel, localized divergence and panel flutter are determined. We found 
the “dangerous” of the boundaries of the stability region in the sense of terminology work 
N.N. Bautin [14]. You move through them arises the phenomenon of panel flutter, leading 
to a loss of strength and occurrence of fatigue cracks in the material of the plate. For 
different values of the problem parameters was found the critical velocity of divergence, 
localized divergence and flutter. In problems of panel flutter in a linear formulation, as a 
rule, the critical velocity of divergence less than the flutter critical velocity [2-4, 8, 9, 12]. 

                k         0.3      0.4      0.5      0.8     1.0 

1 3
. 0 0( )cr flV D a a   74.61    78.40 79.50 86.35 91.12 

               k 1.2      1.5 2 5 10 

1 3
. 0 0( )cr flV D a a 

 
96.07   100.54 105.15 122.76 132.65 

              k 20      50 100 1000 10000 

1 3
. 0 0( )cr flV D a a 

 
140.61   147.19 151.42 157.46 160.10 
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As well as in [1], in this work, we obtained unexpected results. It turned out, that depending 
on the relation between the parameters of the problem the flutter critical velocity can be 
both less and greater than the divergence critical velocity. A number of new mechanical 
effects are revealed. In particular, shows the stabilizing role of the inertial moment of 
rotation, applied on the hinged edge of the plate. And also, from a comparison of the 
obtained results with the results of [8], it was found that the effect of the inertial moment of 
rotation on the behavior of the disturbed motion of the system “elongated plate–flow” does 
not depend on its place of application: for hinged edge, or free edge of the plate. 
These results can be used for the preliminary quantitative analysis of the problem panel 
flutter in the nonlinear statement [4, 12, 15, 16]. 
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