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By analyzing, as an example, a thin elastic rectangular plate streamlined by supersonic gas flows, we study the
loss stability phenomenon of the overrunning of the gas flow at is free edge under the assumption of presence of
concentrated inertial masses and moments at the free and hinged edges respectively. For some special casesof a
problem of a panel flutter critical velocities of divergence and flutter are found. It is established that inertial
moment of rotation leads to the stabilization of perturbed motion of the system.

Introduction. In this paper we study some special cases of the problem of supersonic
panel flutter, which the General case for moderate values of the parameters was
investigated by an analytically method in [1]. Each of them is of independent interest for
the study in terms of identifying new mechanical effects associated with the loss of stability
of the system “plate—flow”.

The theoretical and numerical methods to study of the divergence and flutter instability
of plates and shells devoted a huge amount of works, a General review of which is
contained in the monography by Algazin S.D. and Kijko .A. [2(pp. 210-245)] and the
article by Novichkov J.N. [3].

The results can be used in the processing of experimental studies of divergence and
panel flutter of the modern supersonic aircraft.
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1. Statement of the problem. Considered a thin elastic rectangular plate, in a Cartesian
coordinate system OXyz occupies the area: 0 <x<a, 0<y<b, —h<z<h. We choose
the Cartesian coordinate system OXxyz so that the Oxand Oy axes lie in the plane of the
undisturbed plate, and the Oz axis is perpendicular to the plate and directed to the side of
supersonic gas flow streamlining it from one side in the direction of the Ox axis with an
undisturbed velocity V . We assume a plane, potential flow. And, also, we assume that the
plate is not exposed to the tensil forces in the middle surface. Let the Xx=0 edge of the
plate is free and edges: x=a, y=0, y=Db are hinged. We assume that the concentrated
inertial masses m, and rotation moments | are applied to the X=0 free edge and to the
x = a hinged edge respectively [1, 4(p.27, 101), 5].

Under the influence of certain factors, the undisturbed equilibrium state of our plate can
be broken down, and it will begin to perform disturbed motion with a deflection
w=(X,Y,t). The deflection w=(X,y,t) will cause an excess pressure Ap on to the upper
streamlined surface of the plate from the side of streamlining gas flow, which is taken into
account by the approximate formula of the “piston theory” [6, 7]: AP =—38,p,V 8W/ oX,

where @, is the sound velocity in the undisturbed gas medium, p, is the density of
undisturbed gas flow. Let us assume that the deflections w= (X, y,t) are small as compared

with the thickness 2h of the plate.

Find out the conditions under which the possible loss of stability of the undisturbed state of
equilibrium of the plate, when the bending of the plate due to the corresponding
aerodynamic loads Ap and concentrated inertial masses m, and rotation moments | are

applied to the free X=0 edge. Thus, in accordance with the new approach, the influence of
the distributed mass of the plate and the resistance forces can be neglected.

Then, under assumption of the validity of the Kirchhoff hypotheses and "piston theory”,
the small bending vibrations of the points of the plate middle surface about the undisturbed
equilibrium state is described by the differential equation [1, 4(245)]

DA*w+ayp,V ow/ox=0, (1.1)
A*W= A(AW), AW is a Laplace's operator; D is a cylindrical rigidity.

In the accepted assumptions concerning a way of fixing of edges of the plate the
boundary conditions can be written in the form [1, 4(101), 5]

2 2 2 2 2
X X X
o*w o’w
w=0, —=—| D , X=a: 1.3
o T oxot? (13)
2
w=0, gy‘f’zo, y=0and y=h: (1.4)

The problem of the stability of an elastic thin rectangular plate streamlined by a
supersonic gas flow, which is described by correlations (1.1)-(1.4), lies in finding the
minimal value velocity V, (i.e. the critical velocity) such that, in the case V <V,

disturbed motion will be stable and, for V >V, — unstable. In other words, is required to

42



determine the values of velocity at which the equation (1.1) with the corresponding
boundary conditions (1.2)-(1.4) has the non-trivial solutions.

We see that the analysis of the stability of the plane form of the plate in the potential
supersonic flow reduces to a study of the differential equation (1.1) with the corresponding
boundary conditions (1.2)-(1.4) for the deflections W= (X, Y, t).

2. General solution of the problem. For finding the general solution of the problem of
stability of the plate (1.1)-(1.4), we will reduce it to a problem on eigenvalues for the
ordinary differential equation.

We try to find the General solution to the boundary-value problem defined by equation
(1.1) and by the boundary (1.2) - (1.4) in the form of harmonic vibrations [9]

WX, Y,t) = Y C, exp(u, pX+At)-sin(,y) . p, =mnb ™, @.1)

n=1
then, in accordance with the expression (2.1), the considered problem of the panel flutter
(1.1)~«(1.4) is reduced to the following boundary value problem on eigenvalues A of
nonselfadjoint operator for the ordinary differential equations on the forms of vibrations

f (X)=C, exp(u, PX), where C

zero simultaneously; n is the half~waves number along of side b; p— are the roots of the

. are the arbitraries constants, which are not equal to

characteristic equation

2 2 3 3 1,3 3
(p"=D)"+a,p=0, a,=3p,VD ", a, >0, (2.2)
corresponding to differential equation (1.1). The characteristic equation (2.2) has two
negative root p, <0, p, <0 and a pair of complex-conjugate roots [, , = QL +if with a

positive real part ot > 0. The roots of the equation (2.2) are determined by the following
expressions [10]:

P, =-0.5{2(q+1) i\/\/qz -1-0.5(q-1), (2.3)
P, =0.5J2(q+1) + i\/wlqz ~1+0.5(q-1), (2.4)

q>1. (2.5)
Here q is the only real root of the cubic equation
8-(1+9)’(q-D=a’, o’ =a,p,VD'w,’, u,=nnb". (2.6)

From the relations (2.6) it is easy to obtain the expressions of the dependence of the
velocity V of gas flow on the system parameters

V =2{2(q-1)-(q+1)-7’n’y’D(a,p,a’) " @7
As well as,

V =22(q-1)-(q+1)-Tn*D(a,p,0’)". 2.8)
Here y is a relation of the width a of the plate to its length b

y—ab 9)

Then, the General solution (2.1) of the equation (1.1), due to ratios (2.3) and (2.4), can
be written as
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o 4
WX, Y,0) =D > Cyy-exp(u, PX+At) sin(u,y) (2.10)
n=1 k=l
Substituting the General solution (2.10) the differential equation (1.1) in the boundary
conditions (1.2)-(1.4), we obtain a homogeneous system of algebraic equations of the

fourth order relatively the arbitraries constants: C, . Equate to zero the determinant of this
system of equations - characteristic determinant leads to the dispersion equation [1]

1O AL + (o, A+, AN +A =0. 2.11)
And introducing the notation

kK =y,-8.",%,>0,8 >0, (2.12)
we can rewrite characteristic equation (2.11) in the form

AL + (KA + AR +98, A =0, ye(0,0),%,>0,8,>0. (2.13)
Here

5, =m.D'b*(xwn)” and y, =1.D'b(rn)’ (2.14)

are the reduced values of the concentrated masses m, and inertial moments of rotation | ,
applied to the free x=0 and hinged x=a edges of the plate, respectively;

A = A(dny) = =22(q+D-{(1-exp(-2/2(q+ Dnm) - BB, + (215
+exp(—2(q+1) )
| (2@@-1) -/2(a+D)-B,-ch(mnyB,)-sin(rrmB,) -
~(y/ 2(q-1) ++/2(q+1))- B,sh(znyB,) - cos(nmyB, )]}
A =A@ =2{2Q+DE-@-D-»-1-v)]BB+ 19
+[2@@+ D@+ ~1) ~v)~(1-v)* | BB, exp(-2J/2(q+ D) +
+2] @+ DY@ =1 (2@=D) + 2@+ )sh(zmB,) +
+(49° +29-1+2qv+v*)Bch(nnyB, )| B, cos(nnyB,)-
exp(—y/2(q+1) - ) +
+ [((2q2 +3q-1)-2(39° +39—-2)v+(3q+1)v’)sh(mnyB) +
£2(q+ D)@ ~1) (/2 +1) ~2(a-1))B, ch(mnyB,)]
-sin(mnyB,) - exp(—/2(q+1) -xy )}
A= A,(Qn,7) = 4(q+1)-| (1+exp(-2y/2(q+ )ny) - BB, - 217)
~2B,B,ch(nnyB,) cos(nnyB, ) - exp(—/2(q +1) - ny) +
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+3(g—-1Dsh(nnyB, ) sin(nnyB,) - exp(—m - Tty )] ;
A=A, (0,N,7,v)=22(0+]) {{2(a+) (G0 -1-v)-(1-v)* |BB,~  18)
—[2(q+ D@Q+Jat —1-v)—(1 —v)z] BB, exp(~2,/2(q+ Dynny) +
+{[(40° +20-142(a-1) - 20" ~49+Dy2(q+1) -
~2((29—-Dy2(q+1) - ay/2(q-D)v +
+(2(a+1) ++/2(q-1) v Jsh(nnyB) +
+4(q+ 1 —1- B ch(nnyB)} B, cos(rnyB,) exp(—/2(q+ Dmny) +
+[~B, -((49* +2g-1)4/2(q-1) + (20" —4q+ D)\2(q+1) +
#2(29-Dy2a+ D) +a2@- D) —(2(q+1) —/2(q-1)) v* )ch(nnyB,) -
—~6(0 ~1)y/(6 —Dsh(nnyB, ) sin(xnyB, ) exp(—/2(q+ Hrny )} :
B() = (Yo —1-0.5(q—1) , B,(a) = \y& —1+0.5(q-1), (2.19)

It follows that [1]
A =A@Qny)>0, A =A(qny)>0, (2.20)
for all numbers q>1, n>1, ¥ >0 of parameters.

The system “plate—flow”, described by the relations (1.1) — (1.4) is asymptotically
stable if all eigenvalues A of the boundary value problem for ordinary differential equation

have negative real parts, and unstable if at least one eigenvalue A is on the right side of the
complex plane.

The critical velocity V,, that characterizes the transition from stability to instability of
the disturbed motion of the system “plate-flow” is determined by the condition of equality
to zero of the real part of one or more of the eigenvalues.

This article discusses four particular cases of the original problem of stability of
(1.1)—(1.4) studied in [1] at moderate values of its “essential” parameters.
In [1] conducted a decomposition of the space of the “essential” parameters M ={ v,

K., v, 4, n} of the problem of stability (1.1)~(1.4) on the stability region M, and the
regions of instability M,, M, and M, in which, respectively, either all roots of the

characteristic equation are in the left part of the complex plane, or among the roots there is
one positive root or has two positive roots, or a pair of complex—conjugate roots with
positive real part. The behavior of the system “plate—flow” near the borders of the region of
stability M, is investigated. The critical velocity of divergence of the panel and the critical
velocity of localized divergence in the vicinity of the free edge of the plate, as well as, the
critical velocity of panel flutter are found. It is shown that, depending on the relation
between of the system parameters, the critical flutter velocity can be both less and greater
than the critical velocity of divergence.
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3.1. Considered the case where on the free edge X=0 of the plate are applied the
concentrated inertial masses m, and inertial rotation moments |, on the hinged edge
X=a are absent ( k, =0).

In this case the characteristic equation (2.11) can be written in the form
5, AL +A =0. (.1
Here A, and A are determined by the expressions (2.17) and (2.18) respectively.

The roots of the equation (3.1) is equal to

-1
Mo =t-A (3, A) (32)
At O, >0 because of the conditions (2.20), the region of stability M, e M of the

disturbed motion of the system “plate—flow” will be determined by the inequality
A>0. (3-3)
It is obviously, that under the condition (3.3) the equation (3.1) has a pair 7»1’2 =+io

of purely imaginary roots. This means, that the rectangular plate performs harmonic
oscillations about the undisturbed equilibrium state.
The boundary of the region of stability M, € M of the disturbed motion of the system

“plate—flow” in the space of its parameters M is the hypersurface
A =0, 3.4
where the characteristic equation (3.1) has a zero root 7*0 =0 of multiplicity 2. This

means, that the system perturbed motion loses static stability, i.e. there is a divergence of
panel.

From the condition (2.20) and the method of partitioning the parameters space M into
the regions of the stability and the instability of the disturbed motion of the system, it
follows that this particular case corresponds to the only region of instability M, defined by

the correlation
A <0. (3.5)

Here the characteristic equation (3.1) has two real roots of different signs: 7\,1 <0,

7‘2 > (. This means that one of the two own motions of the plate is increasing
exponentially (the deflections will increase over time according to the exponential law).
Substituting the first root (, 4, = qcr'div(n,y,v) of the equation (3.4) in the formula

=V

cr.div

(2.7), we obtain the V

o div (N,y,Vv) critical divergence velocity, which delimits

the stability region M, and the static instability (divergence) region M, of the disturbed
motion of the system “plate-flow”.
At the V >V,

4y velocities there is a “soft” transition trough point A, =0 in the right
part of the complex plane of the eigenvalues 4 of problem (1.1)-(1.4), causing the smooth
changing the nature of disturbed motion of the system from harmonic vibrations to a
monotonically increasing aperiodic motion. This changes the dynamic behavior of plates: in
the plate, performing harmonic oscillations, there is stresses, leading to changes in the

surface shape of the plate. The surface of the plate “buckles” with limited velocity of
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“buckling”. As monotonous “buckling” of the plate has no oscillatory nature, it can be
considered as quasi-static process, i.e. there is a divergence.

Numerical calculations have been performed for different values of the parameters of the
problem, showed the following. And n=1 with fixed values of remaining parameters the
critical velocity of divergence reaches a minimum value.

For all the value y €(0,2) we can say, that when the velocity V >V,

cr.div.

is the
phenomenon of divergence observed. The value reduced critical velocity of divergence

V.

cr.div.

-D™'(a,p,a’) depends on Poisson's ratio v and the parameter y = ab ' is the

relationship of the sides @ and b of the rectangular plate: it is less in plates from materials
with the largeness of the Poisson's ratio v, and with increase in parameter Y the reduced

divergence critical velocity grows (see table 1).

Table 1.
v 0.125 0.25 0.33 0.375 0.5
Y

0.01 0.345-107° 0.297-1072 0.268-107> 0.243-107 0.197-1072
0.1 0.352 0.306 0.273 0.240 0.197
0.2 1.511 1.290 1.163 1.063 0.882
0.3 3.650 3.324 2.912 2.721 2.619
0.4 7.789 6.758 5.985 5.507 4478
0.5 14.945 13.503 11.078 10.778 9.056
0.6 26.284 21.790 19.146 18.608 13.889
0.7 45.587 37.826 31.267 29.552 25.011
0.9 473.50 96.90 78.72 70.05 53.15
1.0 520.29 157.17 114.21 101.74 7291
1.1 562.28 243.30 168.02 143.73 100.70
1.2 608.75 323.02 225.85 194.62 135.24
1.3 699.07 401.61 287.15 252.49 172.13
1.4 811.70 495.72 364.73 315.35 214.99
1.5 975.85 595.22 448.61 380.36 273.35
1.6 1166.20 704.47 544.44 470.73 326.25
1.8 1695.90 992.18 762.25 695.12 440.54
2.0 2598.09 1382.02 1045.62 953.53 604.31

It is easy to show that equation (3.4) in the limiting case, where y — 0 (b — o) when
g>1 and all v identically equal to zero. Hence, in this limiting case the undisturbed form
of equilibrium of the plate is statically unstable. And when values of y > 2 equation (3.4)
can be reduced to the simplified form

2(q+D)-(@-q" ~1-v)=(1-v)* =0, ye[2,). (3.6)

Equation (3.6) exactly coincides with the dispersion equation obtained in the work [10]
the study of phenomenon localized divergence arising in the vicinity of the free edge of the
elastic semi-infinite plate-strip, streamlined by a supersonic gas flow in the direction from
the free edge to the supported edge along the semi-infinite hinged edges. The reduced

47



-D™'(a,p,b’) depends only on the

Poisson's ratio v : it is less in plates from materials with the largeness of the Poisson's ratio.
In table 2 for several values of Poisson's ratio values are given reduced critical velocities

critical velocity of localized divergence V. 4,

of localized divergence V.. 4, - D' (a,p,b’) of rectangular plate observed in the values
that accuracy coincide with the values obtained in the work [10].
Thus for all the value Y €[2,00), we can say that when the velocity V >V, _ 4, (V) is

the phenomenon of localized divergence in the vicinity of the free edge Xx=0 of our plate

observed, which is in good agreement with the results of numerical analysis (table 2). At
the values of velocities V 2V, _ 4, (V) the vicinity of the free edge x=0 of the plate is
«bucklingy». As in this case a parameter (=0, is determined from the simplified

equation (3.6), we can say, that for values y €[2,00) found approximate expression (3.6),

making it easy to find the reduced critical velocities V. 4, - D™ (8,p,0°) of the localized

divergence, substituting these values 04, in expression (2.8).
Table 2.

14 0.125 0.25 0.33 0.375 0.5
-1 3 324.761 173.371 130.702 120.741 77.398
Vloc.div ’ D (aopob )

From expression (3.2) and conditions (3.4) follows, that static loss of stability in the
form of divergence for values of and localized divergence takes place only, and dynamic
loss of stability is absent.

In a conclusion we will mark that for values of y € (0,2)at the V >V,

'+ av Of gas flow

velocities (Table 1) there is the divergence panel, resulting in a "buckling" of the plate. For
values of Y €[2,00)at the V 2V, _,, (V) of gas flow velocities (Table 2) there is the

divergence phenomenon localized in the vicinity of the free edge of the rectangular plate, in
which the "buckling" just strip along the vicinity of the free edge of the plate. And the
presence of the concentrated masses M, on a free edge X=0 of the plate does not result in

dynamic instability, i.e. the panel flutter is absent.
3.2. Considered the case where on the hinged edge Xx=a of the plate are applied the

inertial rotation moments | and concentrated inertial masses m, on the free edge x=0
are absent ( K, = ).

In this case the characteristic equation (2.11) can be written in the form
1AL +A =0 3.7)
Here A and A are determined by the expressions (2.16) and (2.18) respectively.

The roots of the equation (3.7) is equal to
1

A, =%t-A-(xa-A) - (3.8)
At 7, >0 because of the conditions (2.20), the region of stability M, e M of the

disturbed motion of the system “plate—flow” will be determined by the inequalities
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A>0, A>0. (3.9
It is obviously, that under the condition (3.9) the equation (3.7) has a pair 7\,1’2 =+io

of purely imaginary roots. This means, that the rectangular plate performs harmonic
oscillations about the undisturbed equilibrium state.
The boundaries of the region of stability M, € M are the hypersurfaces

A=0, (3.10)
A=0. (3.11)

On the hypersurface (3.10) the characteristic equation (3.7) has two roots equal to
infinity, i.e. l]’z =00, And on the hypersurface (3.11) the characteristic equation (3.7)

has a zero root 4, =0 of multiplicity 2.

In this case, the region of instability M, consists of two subregions M, and M, which
are determined by the relations respectively
A>0, A<O0; (3.12)
A<0, A>0. (3.13)

It is obviously, that in both subregions M,, and M,, the characteristic equation (3.7) has

two real roots of the different signs, namely: A, <0, A, > 0. This means that one of the

two disturbed motions of the system “plate-flow” is increasing exponentially.
On the boundary of the stability region M,

A>0, A=0, (3.14)

the disturbed motion of the system loses of static stability: there is a divergence of panel.
Substituting the first root 0, 4, = Oy gy (N, Y, V) of the equation (3.11) in the formula
(2.7), we obtain the V

'+ ay Critical divergence velocity, which delimits the stability region

M, and the static instability (divergence) region M, of the disturbed motion of a

rectangular plate. At V >V,

av Velocities of gas flow the roots A,, ==*i® of the

characteristic equation (3.7) of a “soft” transition through the point 7‘0 =0, respectively,
to the left and to right parts of the complex plane of the eigenvalues A and remain so, at
least, when values of the velocity of the gas flow V close to the critical value V, , , purely

real: A, <0, A, >0. This changes the dynamic behavior of plates: in the plate,

performing harmonic oscillations, there is stresses, leading to changes in the surface shape
of the plate. The surface of the plate “buckles” with limited velocity of “buckling”. As
monotonous “buckling” of the plate has no oscillatory nature, it can be considered as quasi-
static process, i.e. there is a divergence.

Numerical studies have shown that the transition across the border (3.14) from the

region M, in a subregion M,, is possible only if values Yy € (0,0.83) of parameter.

Because of identity of equations (3.4) and (3.14), V, 4, equal to the corresponding critical

r div
divergence velocities, are shown in table 1. Thus the reduced critical divergence velocity

V, 4 - D7'(8,p,@’) depends on the Poisson's ratio v and parameter ¥ : it is less in plates
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from materials with the largeness of the Poisson's ratio v and with increase in parameter Y

the reduce divergence critical velocity grows (see table 1).
On the boundary of the stability region M,

A=0, A>0 (3.15)
the disturbed motion of the system loses of the dynamic stability: there is a “dynamic
buckling”, which can be mistaken for “ panel flutter” [12 (c.719), 13]. The “flutter”critical
velocities V, delimited the region M, of stability and the subregion M,, of the

or . fl.

instability of system disturbed motion are determined by substituting the first root
Qs 1 =0y ¢ (n,y,V) of equation (3.10) in the expression (2.7). When the velocity of gas

flow V >V

'+ ¢ there is a transition across the boundary (3.15), which takes place only for

Y €(0.83,1.5] values: the eigenvalues A,, =i transition through the infinitely

distant point A = 00, respectively, on the left and on the right parts of the complex plane
and remain so, at least, when values of the velocity of the gas flow V close to the critical

value V, real: 7\.1 <0, 7\.2 > 0. There is an abrupt (“instant”) change in the character

cr.fl.»
of the system disturbed motion from sustainable to unsustainable [5]. In the plate arise
stresses, leading to an abrupt (“instant”) to change its form: so-called “dynamic buckling”,
in which the plate “bulge” infinite speed “buckling” [12(p. 719]. This process is not
oscillatory as well as divergence. However, despite the discrepancies existing in the
scientific literature [4 (p. 63), 5, 12(p. 719), 13], it is conditionally possible to consider as
“quasi-oscillatory” process, i.e. as the panel flutter, usually leading to the destruction of the
plate [13]. Table 3 presents the several values of the reduced flutter critical velocity

V, . -D'(a,p,a’) are found by substitution of the first root g, =0, ;, (N, Y, V) of the

cr.fl

equation (3.10) for n=1 and some y € (0.83,1.5] and Vv in formula (2.7).

Table 3.
v 0.125 0.25 0.33 0.375 0.5
Y

0.9 109.68 85.44 73.56 66.57 53.15
1.0 191.38 126.24 105.64 96.09 7291
1.1 492.51 185.72 146.83 131.12 97.05
1.2 591.77 274.98 206.46 178.48 126.00
1.3 673.97 378.02 257.51 242.36 166.22
1.4 802.32 483.93 352.53 302.71 207.61
1.5 936.02 595.22 448.61 380.12 273.35

From the data of table 3 it follows that the flutter critical velocity is less than in plates
made of materials with a large Poisson's ratio v , and with increasing 7y it grows.

On the boundary of the instability region M,
A=0, A<0 (3.16)
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at the velocities V >V, , of gas flow for all y € (0,0.83) the eigenvalues A, <0,

A, >0 moving through an infinitely remote points 7»1’2 =100 on the imaginary axis of
the complex plane and remain so, at least, when values of the velocity V of the gas flow
close to the critical value \7cr‘ﬂA of the pure imaginary: A,, = +i®. During this transition if

the plate is not destroyed, the perturbed motion of the system “plate—flow” becomes stable

[5, 13]. Table 4 presents the several values of the reduced flutter critical velocity
V, . -D7'(a,p,a’) for some values v € (0,0.83) and Poisson's ratio v .

Numerical results showed the following. The flutter critical velocity
\70r fl

and with increasing y it grows for all values y € (0.01,0.83), and for all ¥ € (0,0.01] the

-D'(a,p,@’) is less than in plates made of materials with a large Poisson's ratio v,

flutter critical velocity V,, 4

-D™'(a,p,@’) does not depend on the parameters y, v and

it equal to V, ;- D™ (a,p,@°) = 6.3 (tabl. 4).

cr.fl

Table 4.
v 0.125 0.25 0.33 0.375 0.5
Y

0.01 6.33 6.33 6.33 6.33 6.33
0.1 6.72 6.69 6.63 6.58 6.56
0.2 8.16 7.62 7.49 7.25 6.87
0.3 10.76 9.94 9.51 9.20 8.40
0.4 15.14 13.62 12.66 11.97 10.59
0.5 22.04 19.35 17.44 16.61 13.78
0.6 32.02 25.31 24.82 22.82 18.61
0.7 46.68 38.82 33.67 31.52 27.15

Numerical results showed the following. The flutter critical velocity
Vcr.fl

and with increasing Y it grows for all values ¥ € (0.01,0.83), and for all y € (0,0.01]

-D'(a,p,@") is less than in plates made of materials with a large Poisson's ratio v,

the flutter critical velocity V. .-D! (a0p0a3) does not depend on the parameters y, Vv

cr.fl

D' (a0p0a3) =6.33 (tabl. 4). Note that in monography [4] it is

shown that in the problem of panel flutter of a console, the divergence critical velocity
equal to 6.33 and the flutter critical velocity — 124.4 . Comparison of these results with the

results of this work, it follows that the flutter critical velocity \7cr‘ﬂ -D™'(a,p,@’) equal

and it equal to V,

cr.fl

to the divergence critical velocity and about twenty times less than the flutter critical
velocity which are found in the work [4].
It is easy to show that the limit of the ratio A to A is equal to 1 for all values

v €(1.5,00]: limA - A" =1. And this in accordance with the expression (3.8) means that

the characteristic performances A of the system “plate-flow” for all y € (1.5,00] are
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purely imaginaries numbers A,, = +i® i.e. the system perturbed motion is stable. The

plate makes harmonic oscillations about the unperturbed equilibrium state. Thus, applied to
the edge x=a the inertial rotation moments lead to stabilization of the system disturbed

motion “plate—flow” for all y € (1.5,00].

3.3. Consider the case in which a>b.
It is easy to show that in this case the characteristic equation (2.11) is transformed to the
following

7~Cn8na017\‘4 + (anin + azlgn);bz +a;, = 0. (3.17)

Here
a, =42+, a,=2(q+1)- (-0 -1-v)—(1-v)’, a,=2(a+), (.19
a, =29+ -[2(q+D-(q-q" =1 -v) = (1-V)’]; (3.19)

%, =1.b-(znD)™", § =mD'0*(7n)>, %, >0, 5, >0. (3.20)
For all g>1 it follows that

~ > ~ ~ 2 - = - ~ )
allxn+a218n>o’ 4 :(allxn+a218n) _4Xn8na01a31 :(Xnall_snaiz) 20. (3.21)
Here A is the discriminant of the biquadratic equation (3.17).

In accordance with the conditions (3.21), the stability region M, defined by the

correlation
a,>0. (3.22)

Under this condition equation (3.17) has two pairs of purely imaginary roots
}‘1,2 = iic)l s ?\.3’4 = iiwz: the rectangular plate performs harmonic oscillations about
the unperturbed equilibrium state. And the region of instability M, by the correlation
a,, <0 is determined. It follows, that in the region M, of the characteristic equation (3.17)

has a pair of purely imaginary roots 7\,1 , = +i® and two real roots 7\,3 <0, A >0

This means that one of the two proper motions of the plate is dampened, and the other the
movement of plates is unlimited deviation exponentially from the equilibrium state.
The boundary of the stability region M, is a hypersurface

a, =0. (3.23)
Or, in accordance with the expression (3.19), is

2(q+1)-(q—+q° =1=v)=(1-v)* =0. (3.24)

where the characteristic equation (3.17) has a zero root ?\.0 =0 of multiplicity 2 and a pair

of pure imaginary roots are equal to A, :iiw/Z(q+1)-5¢;1 according to the

expressions (3.18).

The condition (3.24) determines the loss of stability of the disturbed motion of the
system “plate—flow” in the form of a localized divergence in the vicinity of the free edge
X =0 of the plate [10].
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The critical velocities V, of the localized divergence that delimites the stability

loc.div

region M, and the region of instability M, of the system perturbed motion are determined
by substituting the first root Q. g, = Oocaiy(V) Of equation (3.24) in expression (2.8). It

follows that the reduce critical velocity V|, 4, - D’l(a0p0b3) of the localized divergence

depends on the parameter N and Poisson's ratio v : when a fixed value of parameter n the
critical velocity is less than in plates made of materials with a large Poisson's ratio, and
when the fixed of parameter v it reaches the lowest value when n=1 (tabl.2).

Thus, in the case in which a> b the system “plate-flow” loses stability in a localized
divergence in the vicinity of the free edge Xx=0 of the plate at all the velocities

V2V,

loc.div of localized divergence does not

of the gas flow. The critical velocity V,

oc.div

depend on the coefficients ,, and Sn . The presence of the inertial moment I, (%, #0)

of rotation on the hinged edge X=a leads to the stabilization when the inertial mass m,

(Sn =0) on the free edge x=0 is absent.

2.4. Let us consider the case corresponding to the condition a< b.
Numerical studies of the characteristic equation (2.11) has shown that its solution
corresponding to the occasion, meet the condition

g>1. (3.25)
Then, introducing the notation

r=\2q-zny, (3.26)

the characteristic equation (2.11) and expression (2.7) can be written, respectively, as

8, OL* +(a,% +a,0)A +a, =0, (3.27)

V =r’D(g,p,a’)". (3.28)

Here

a,, =sh(r)—2sh(r/2)-cos(x/3r/2) ; (3.29)

a, =[1/2-exp(~r)+exp(r/2) cos(x/3r /2)]- 1*; (3.30)

a,,=[ch(r)—exp(r/2)-sin(r/6-/3r /2)—exp(~1/2) -sin(7/6+/3r /2)]-T (3.31)

a,, =[—1/2-exp(r) +exp(r/2)-sin(r/6 =31 /2)]-r* ; (3.32)

y=ab'; j=1aD"; s=ma'D". (3.33)
From expressions (3.29) and (3.31) it is obvious that

a,>0,a,>0atal r>0. (3.34)

It can be shown that in the absence of flow plates V =0 or r =0 the characteristic
equation (3.27) describes by the correlation

YoM +3-(+8)- A2 =0. (3.35)
At all values of ):(4 €(0,©) , S e (0,00) the equation (3.35) has a pair of purely
imaginary roots and the zero root 7\,0 =0 of multiplicity 2. This means that when the gas
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flow velocities V > V",

=0 then the perturbed motion of the system loses stability in the
form of divergence: the plate “buckles”.

Note that the correlations (3.27), (3.35) and (3.28) are identical with the corresponding
equations describing the characteristic equation and the formula for calculating the gas flow
velocity to the problem of stability of a streamlined a supersonic flow of gas, an elongated

plate 0 < x<a, 0<y<o with a free edge X=0 under the same assumptions.

Therefore, the behavior of the disturbed motion of the system “rectangular plate — flow”
in this case is the same as in the case of a system “elongated plate — flow”.
In accordance with the first of the inequalities (3.34), the stability region M, defined by

the correlations

a12i+a22é:3>0, a,>0, A>0. (3.36)
Here
A= (a123~( + 8228)2 - 47~Csaozazz (3.37)

is the discriminant of the biquadratic equation (3.27).
And the instability regions M,, M,, M, will be determined, respectively, by the

correlations: a,, <0, A4>0; a12)2+a228<0, a,>0,4>0;a,>0, A<0.

The boundaries of the stability region M, of the condition au;:(n + a228n >0 are the

hypersurfaces
a, =0, (3.38)
A4=0. (3.39)

On the hypersurfacies (3.38) and (3.39) the characteristic equation (3.27) has a zero root
7\0 =0 of multiplicity 2, and a pair of the purely imaginary roots 7\,1’2 =+im

respectively.
On the boundary of the stability region M, of the

a,f+a,0>0, 4>0, a,=0, (3.40)
the perturbed motion of the system loses the static stability: there is a divergence of the
panel. The critical divergence velocities V, ;, are determined by substituting the roots

I, 4y of equation (3.38) into the expression (3.28).
On the boundary of the stability region M, of the

a,%+a,0>0, a,>0, A4=0, (3.41)
and on the boundaryof the static instability region M, of the

a,f+a,0<0, a,>0, A=0, (3.42)
the system perturbed motion loses its dynamic stability: there is a panel flutter. The critical

flutter velocities V, , and V, , ,

respectively, delimited of the regions M, M, and of the

regions M,, M, are determined by substituting the roots of equation (3.39) into the
expression (3.28). According to the correlations (3.28) and (3.37) the reduced critical flutter
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velocities V, ,-D™'(g,p,a’) and \7cr'ﬂ -D™'(a,p,@’) depend on the parameter

cr. fl

k=

35,
The numerical investigations showed the following.
For all k €[0,00] at the velocities V >V =0 of the gas flow is a loss of static

stability of the system disturbed motion, i.e. divergence: in the plate undergoing harmonic
oscillations, there is tension, leading to change its shape: the plate “bulge” with limited
velocity “buckling”. In accordance with these values k €[0,0.06) is possible only the loss
of stability of the disturbed motion of the system in the form of divergence. In this case, the
transitions from the region of stability M, in the divergence instability region M,
alternate: when the velocities V >76.22-D(a,p,@’)”" of the gas flow the perturbed
motion of the system, being statically unstable, becomes stable, and at the velocities
V >V ~483.73-D(a,p,@’) " of the gas flow again loses static stability.

cr.div
For values K e [0.06,0.3) we have the loss of stability of both types: as the divergence of
the panel, and panel flutter. Originally statically unstable perturbed motion of the system at
velocities V >76.22D(a,p,a’)" of the gas flow becomes stable. But when the

velocities V >V

' q we have the “soft” transition from the region M of stability in the

region M, of the dynamic instability: the harmonic vibrations of the plate gradually
transformed into self-oscillations, i.e. the flutter oscillations.
Table 5 presents the values of the reduced critical flutter velocities V, 4 - D™ (g,p,@")

with an accuracy of the order of 10~ for several values of the parameter ke [0.06,0.3).

Table 5.

é 0.06 0.08 0.1 0.2 0.25

\V . .D*‘(a0p0a3) 125 98.61 89.31 76.76 76.34
cr.

In this case, the reduced critical flutter velocity V 4

-D™'(a,p,@’) decreases with

the growth K €[0.06,0.3) (table. 5).
At velocities V >V

w1 >V, of gas flow is a “soft” transition from the region of static

instability M, to the region M, of the dynamic instability. We can say that the

phenomenon of the buckled panel flutter is observed. There is as well as a “smooth”
transition to the flutter oscillations in addition to the monotonous “buckling” of the plate
that does not have an oscillatory character.

Table 6 presents the values of the reduced critical flutter velocities \7cr'ﬂ D7 (a,p,2")

with an accuracy of the order of 10~ for some values of the parameter ke [0.3,0). As can
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be seen from table 6, the critical flutter velocity V. -D7'(a,p,@’) grows with the

cr.fl
parameter K=7%-8".

It means that when the values of K e [0.3,0) the inertial moment of rotation | applied
to the hinged edge X =a of the plate leads to the stabilization.

However, the reduced critical flutter velocity \7cr'ﬂ -D*I(aop0a3) is approximately

equal to 6.33 when the value of parameter |§ =oo that by an order of magnitude less than

the critical flutter velocity at ke [0.3,00) (tabl. 4, 6).

Table 6.

R 03 04 0.5 08 )
J - ’ 4.61 4 - . 112
V, . -D'(a,p,@’) 74.6 78.40 79.50 86.35 9

R 1.2 1.5 2 5 10
_ = -
V. ,-D7(a,p,a) 96.07 10054 | 105.15 | 12276 | 132.65

K 20 50 100 1000 10000
_ = 3
V. ,-D ™ (a,p,a) 140.61 147.19 | 15142 | 157.46 | 160.10

Of the identity of the dispersion equation (3.27) and the dispersion equation obtained in
[8] in studying the problem of panel flutter of a plate elongated in the assumption that
inertial mass and rotation moments applied simultaneously to the free edge X =0 and to the
opposite hinged edge X=a do not exist, should identity in the behavior of the disturbed
motion of the system “elongated plate plate—flow” these problems.

Thus, in the case when a<<b the behavior of the disturbed motion of the system
“rectangular plate-flow”, similar to the behavior of the disturbed motion of the system
“elongated plate-flow” (0 < x<a,0 < y <o). Namely, when the velocity of the gas flow is

absent (V =0), the system perturbed motion is statically unstable. In the flow (V # 0) the
behavior of the system perturbed motion depends on the value of the ratio of relative values
of concentrated inertial moments |, and masses Im, are applied, respectively, to the hinged

edge x=a and free edge Xx=0 of the plate.

Conclusion. Using an analytically method, investigated by special cases of the problem
of panel flutter, where the General case is studied in [1]. On the partition of the space of the
“essential” parameters of the system “plate—flow” in regions of the stability and instability
is performed. The boundaries of the region of stability are investigated. The boundaries of
the divergence of panel, localized divergence and panel flutter are determined. We found
the “dangerous” of the boundaries of the stability region in the sense of terminology work
N.N. Bautin [14]. You move through them arises the phenomenon of panel flutter, leading
to a loss of strength and occurrence of fatigue cracks in the material of the plate. For
different values of the problem parameters was found the critical velocity of divergence,
localized divergence and flutter. In problems of panel flutter in a linear formulation, as a
rule, the critical velocity of divergence less than the flutter critical velocity [2-4, 8, 9, 12].
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As well as in [1], in this work, we obtained unexpected results. It turned out, that depending
on the relation between the parameters of the problem the flutter critical velocity can be
both less and greater than the divergence critical velocity. A number of new mechanical
effects are revealed. In particular, shows the stabilizing role of the inertial moment of
rotation, applied on the hinged edge of the plate. And also, from a comparison of the
obtained results with the results of [8], it was found that the effect of the inertial moment of
rotation on the behavior of the disturbed motion of the system “elongated plate—flow” does
not depend on its place of application: for hinged edge, or free edge of the plate.

These results can be used for the preliminary quantitative analysis of the problem panel
flutter in the nonlinear statement [4, 12, 15, 16].
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