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Drawing on the discontinuous solutions of the elasticity theory for orthotropic plane, the study purports to offer
exact solutions to mixed boundary value problems for orthotropic plane with absolutely rigid thin inclusion on one
of the major directions, when one edge of it is wholly coupled with plane and the other side is in contact with plane
under the condition of Coulomb friction.

Axonsn B.H., lamrosn JLJL.
O HaNpPsIZKEHHOM COCTOSIHHHE OPTOTPONHOIH IVIOCKOCTH ¢ A0COIOTHO KECTKHM BKJIIOYEHHEM

B Hacrosimieli paboTe, Ha OCHOBE Pa3pbIBHBIX PELICHHH TEOPUHM YNPYTOCTH Ui OPTOTPOIHOW IJIOCKOCTH,
NIOCTPOEHO TOYHOE pPellleHHe CMEIIAHHOW 3a[a4u sl OPTOTPOIHOM INIOCKOCTH, KOTOpas Ha OJHOM U3 IJIABHBIX
HAaIpaBJIeHHI COIEPKUT aOCOIIOTHO JKECTKOE TOHKOE BKIIOUEHHUE, OJJHA U3 JUIMHHBIX CTOPOH KOTOPOTO HOIHOCTHIO
CIIeTIVIEHA C IIOCKOCTHIO, a IPYyrasi CTOPOHA KOHTAKTUPYET C HEH B yCIOBHUAX CYXOTO TPEHHUSL.

Zulynpyuilt 9.'G., Fwownyul LL.

Pugundwl] Ynpwn ukpppuy wupnibwlnng oppnnpny hwppnipju
lupjuduyht Jhgulh dwuht

Munidtwupyuws L oppnunipny hwppenipjut hwppe npidnpdughnt h&wlyp, bpp wyt oppnwnpnuyhuygh
quunp minpmpiniibkiphg dkhh Jpu wupnibwlynud b pugwpdwly Ynown ukpnpul;, nph plup
Ynnubtphg Uklp wdpulgdus khhudpht, huly djniu Yonuh b hhuph Yntnwljnh inknuwiwunud inknh nith
othdwtt Unintth opkipp: Unnwgquws L juipph npnphy hunjuuwpnudubpp bplip uhignijjup hinnkqpuy
hwjwuwpnudutph hwdwlwpgh nbupny b junmigdl) £ bpw thwly psnwdp: Unwgdl) Eu wupq
puwtwdltp tkpppuljh wunndwh waljjut b jntnwulnh nknudwuebpnd gnpénn jwpnidutph npnodwi
hwuwp: 8nyg £ nipyws, np Ynunwljnuyghtt jupnudubpp ukpppulh Swypwlbnbpnud, pugh tptip whuyh
wunhfwbwghtt  bquijhmpmniuutphg nukt twl, ohudwb  wnuwnipjudp  wuwjdwiwynpguws,
nguphpdwlul tquijhnipniu:

Introduction

A large number of research papers focus on the assessment of stress characteristics of
elastic papers are devoted to study stress state of elastic massive bodies with thin acute-angled
absolutely rigid inclusions within different models of contact of matrix with inclusion. The
problems outlined above largely differ both depending on the model of contact of inclusion
with matrix and elastic characteristics in case of compound bodies in boundary region could
have logarithmic and some types of power singularities. Among these researches are papers
[1-5], closest to the stated problem in present paper, as well as papers, given in [1]. In
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mentioned papers the exact solutions for some problems on stress state of homogeneous and
compound elastic planes and space with thin acute-angled rigid inclusions, one edge of which
is rigidly coupled and the other is in smooth contact with matrix is built. However, the case
where one of the edges is rigidly coupled with matrix and the other is in contact with it by
Coulomb friction, as the analysis suggests, is addressed for the first time.

1. The statement of problem and governing equations. Let the orthotropic elastic plane
in Cartesian coordinate system OX), the directions of axes of which coincide with major
directions of orthotropy of planes’ material, contain the absolutely rigid thin inclusion with
length 2a , filled the interval (—a, a) on line y =0. One of the long edges of inclusion is
wholly coupled with plane and the other is in contact under conditions of Coulomb friction.
It is assumed that the plane be deformed under action of moment M|, , normal and horizontal

concentrated loads F, and 7} , applied in midpoint X =& of inclusion (Fig.1). These loads
do not lead to detachment the inclusion from matrix.

Fig.1
Problem is to determine the angle of rotation of inclusion and contact stresses, acting in
regions of contacts of inclusion with matrix in explicit form, as well as to reveal the character
of their changes depending on elastic characteristics of planes’ material.
The stated problem can be mathematically represented as a following boundary value
problem:

G;” (x, +0) = G(y_) (x, —0)

T, (%.+0) =1, (x,-0) (‘x‘ > a).
U, (x,+0)=U_ (x,—O) ’
V. (x, +0) =V (x, —O)

(1.1a)
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U (x, —O) =0

V, (x,40)=V_(x,0) =yx+7, (x| < a). (1.1b)

0 (x,+0) = kG(;) (x,+0)
U, (x, y) and V, (x, y) are horizontal and normal components of displacements of points
of corresponding semi-planes, each of which is satisfying Lame equations for orthotropic
body in domain and is related with components of stress tensor G(yi) (x, y) s TS) (x, y) b

well-known formulas [6]. Y, Y, and O are constants, determining the angle of rotation and

rigid displacements of inclusion.
In order to solve the stated problem (1) we use the discontinuous solutions for orthotropic

plane, obtained in [1]:

S e e PR T

dx Y s—x TYSs—X
dv,(x,0) _a, IU’(s) jc@d £V
dx T S, X TLs—x (-0 <x <o) (1.2)
G(yi)(x,O):ﬂj@ds IT(S) ds +— G(x)
mYs—Xx T S—X
(+)( ,+0) = ijd IG(S)d +— 'c(x)
T ) S—X Ty S—X

o(x), ©(x), V'(x) and U'(x) be jumping functions of normal and horizontal components

of stresses and displacements correspondingly

_ (a12 \]allazz) - a”a_ b = (1+\/a11a22) .
) = O = ;
2\] a,a,, (, + Hz ay 2u,a,ay, (W +1y)

2
allb. _ bp(anay—ay’) | _ |94
12 1 = B -

ay 2\/a1 1Ay (W) +1,) ay
a;, =c; /ey 5 Wy =6 (¢ (i,j = 1,2) — (Cauchy tensor components).

Using relations (1.2) and satisfying the conditions (1.1b) on inclusion, previously
differentiating the conditions for displacements by variable X and taking into account that
the difference between normal displacements of points for both sides of inclusion are the

same, i.e. V(x ) =0 we come to the following system of singular integral equations to

b, =

determine the unknown jumping functions:
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j £ de=0
az (g) b2 aﬂ B (1.3)
Ia - dé - nja&_xd&—v
a U' a B
c)hofe) 26 [ Clag 20 16 2 [ 18 e

The system of equations (1.3) should be considered with conditions of equilibrium of
inclusion and the equality to zero of displacements at the end-points of inclusion, i.e. with
conditions

a

Ic(x)dx=PO; ]"C xX)dx =

o - (1.4)

j o (x)dx = MO,jU )dx = 0.

Thus the solution of stated problem is reduced to the solution of system of singular integral
equations (1.3) under conditions (1.4).

2. Solution of governing equations. The closed solution of system (1.3) should be built

under conditions (1.4). In this order, from second equation (1.3), using the first and last

conditions (1.4), we express function U ' (x ) by function G(x) . We get

b x—b,F,
U'(x) =2 o(x)+ 2220 @.1)
a, na,Na® —x’
Substituting the values for U ' (x) from (2.1) into the first and last equations (1.3), after
some transformations, the following system is obtained:

G(x)+nf (;) T )

a, ¢ o(&)de kb ¢ t(&)dE
A s e

T

—-a —-a

(2.2)

Here

—b,P, .
fl(x):—M' fo(x)==2yc, + i, (x); a; =2a,b, / b,;

a\/az—x2’
@, =2(c,b,+a3)/ ay; b =2(ab, +ab,)/b,.

/a
Let the functions @ ( )
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of (x) = cs(x) +7»j1:(x) (G=12),
A; (j=1,2)be the solutions of equation Xza; - kbl*k - al* = 0. The system of equations
(2.2) will be represented as two independent singular integral equations of second kind:

9, (x)+ i]; j gf)xdé—gj(X) (/=12) (2.3)

Here
A( Ny — A()
Ja® —x
4 v Ll+kn, o (140 )R
() _ .40 .4 J .
A()j —ZCZ}Lj, AIJ — b2 j,Azj _T’

g, =@\, = [kbl* +(-1)" (k) +4a)a; j /2.

In this case, the first three conditions (1.4) are written in the following form using functions
¢, (x)

_[ P; (x) dx = Po(j)§ _[ [7‘“2@1 ( 1(P2 Jde
-a -a (2.4)
(R =R +0 Ty j=12).

The solutions of the system of singular integral equations (2.3), satisfying the first of
conditions (2.4) are given by the formulas [1,6]:

1 7, X (x) ¢ gl(s) B sinmy, .
(x)= (x) - : ds |- LX: (2.5)
0, (5) 2{& -0 )y | R
Here X + -G / oF be the values of analytic in whole plane cutting along

interval (—a,a) functions Xj (Z):(z+a)_Y’ (Z—a)yf_1 (] :1,2) on the upper

bank of slit, where
®, (x) = (a + x)y/ (a - x)l_y’/ ;

yjzz—mln‘G‘+— 0<9, =argG, <2m G, =

1-ig,
1+iqj'

Taking into account that the numbers 7»_ i ( j=1, 2) are real, it is not difficult to state that
‘Gj‘ = 1. Therefore, the exponents v, = 8,/ 2m, (] = 1,2) are real.

Then, substituting the values of functions g, (x) in (2.5) and taking into account the values

of integrals [6,7]
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[ e o ) v, 1)) (<o)
j ®j§S)dS - {Sin(mj)wj(x)ll (|X|<a),

N z(s_x)zcos(nyj) Ja* - %

j; s, (s)ds _a(2yj—1)+ o [sin(nyj)(oj(x)_ll (|x|<a)

- az_sz(s_x): cos(ny,)  cos(my, ) a’-x’

for functions @, (x ) the following expressions are obtained:
Bl(j) (x) ng) (x)
+ )
a*-x 0;(x)
Here we use the following notation:

U)”Lg(“yf).

o,(x)=B)+ (% <a; j=1,2) 2.6)

B(()j) =—Y4, 1+q2 ; Bl(j) = l(j)x+e(()j); ng) :dl(j)x+d(§j);
J
el(']) =ves e(()") = ( 1+qu : ); d1(']) =-vd,;; d(()j) =—yd,; +m;
J
P _a(()j)qj A A _Po(j) sin(nyj) quéj)
VA + > My; = + 2 )
+9; s1n(rcyj) cos(nyj) T (1+qj)cos(nyj)

e .= .= =
Y l+¢: Yol+q sin(nyj) cos(nyj ’

Now we can determine the angle of rotation Y of inclusion. In this order we use the second

LA (1-ae(m)) P [ 4" 4 )]-a(f)a(zy 1)
, ; -1).

relation from (2.4). Substituting the values for functions @, (x) ( j=1 2) from (2.6) in

this relation, and calculating obtained integrals, after some simplifications, we find

M +M\D,—-A,D,

2.7
}\'1E2_7\'2E1 e
here
()
mna *
D, =———7"—my;
sm(nyj)

28



2 ‘
na’® . T (l_zyj(l_yj)) . naé’)
E, = g, + . T
2 sin (nyj ) sin (ny}.
Now we can determine normal and shear stresses, acting on long edges of inclusion.
Using formulas

o(x)= Ao (;2 :;:q’z (x) ;o ot(x)= P (;?:Ij (x)

first we determine the jump-functions of stresses. Substituting the expression for OF (x )

)d;j (j=12).

from (2.6), we get

U] _ 2 (1) (2)
G(x): 1 XZB(EI)—?LIB(EZ)+MB‘ (x)2 k]f?] (x)+7\.232 ()C)_?»]B2 (x) :
-\, Ja? —x o(x)  ofx) (2.8)
1) _p® (1) (2)
t(x)=— {50 g B (’C)2 B (x), B (x) B(x)|
A =R, Va* —x o (x) o)

Using obtained relations and two last formulas (1.2) the following formulas is obtained for
normal contact stresses:

la—x], K (x) K" (x) KI(Z)(x).

(2.9)
la+x|” Jit— 2 o (x)  o,(x)

o, (x,#0)=4, +Bln

In this case

4 = _ - M _ ).
: (xz—xl){a‘(sm(mz) sin(nyl)j+ . +a,(d ¢ )’

(7»231(1) (x)—?»lBl(z) (x))

B=———"2"K (x)==% ;
n(h, —1,) () 2(k, —1,)
2actg(my,)£h, 2actg(my, )t A,
K® _ o 1 2 g0 (). K@ __="M 2 L@ ().
1 (x) 2(7\‘2_7\11) 2 (x)’ I (x) 2(}\’2_}\‘1) 2 (x)

For shear contact stresses, acting in junction region of inclusion with matrix, we have
K (1) (2)

a—x X K,/ (x) K X

| | + I ( ) + ) ( ) + )4 ( )

la+x| Ja2- o(x)  o,(x)’

T, (x,—O) =A.+B.In

here
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A =y, +

2(h,—2))

Q) rd?
BY_ B0 _ (V) o o) | P MdT |
0 0 612( 261 lel ) a2 Sil’l(TE’Yl) Sil’l(TC’Yz) ]

b

* (1) (2)
A R UG SO}
’ 2

T 2n(h -0 (A =2,)
A a*ctg(ny )+1 A a*ctg(ny )+1 )
KW _ 1 1) 1% 2 B9 (x).
11 (x) 2(7\{2_7\11) 2 ( )’ (x) 2(7\‘2_7\41) 2 (x)

As we can see from obtained formulas, the contact stresses at the contact stresses at the
end-points of inclusion, besides three types of exponential singularities, have logarithmic
singularity, which is due to the rotation of inclusion, arising as a result of asymmetrical

loads. It is easy to check that in case of smooth contact (k = 0) when torsion moment
M, and horizontal load 7, are absent, we get ¥ =0 using formula (2.7). In

consequence of this the coefficients 4, , B, A, and B, become zero and logarithmic

singularity is vanished. From formulas (2.8) for stated case we get the expressions for
jumps of stresses mentioned in [1]. For this special case the expressions for contact stresses
are are the following:

0% (x,40) =L+ K (x)[ w(x) + o(~x)]:

a’—x
T, (x, —0) =K, [w(x)+ w(—x)].
Here
P P

K, =——_[l+qgtgny,]; K" =22{sinmy, + ——IF—|;

: n(1+q2)[ atgmn )i Ki 2| (1+q2)cosny1

La,ct -1
IIZI: ke géf;f%) JKI(I); G)(X):(a+x)_y' (a—x)y'_l;

j+1 * *
(qu(—l)j q; M =—k,=A=2a,/a,; y2=1—y1).

Summary. The exact solution for problem on a stress state of orthotropic elastic plane with
absolutely rigid thin inclusion on one of the major direction, when one long edge of inclusion
is wholly coupled with plane and the other side is in contact with plane under conditions of
Coulomb friction, is built by the method of singular integral equations.

It is shown that under asymmetrical loading of inclusion the contact stresses, acting on long
edge, besides exponential singularities, have logarythmic singularity as well. In stated
problem the simple expression for one of the most important mechanical characteristics,
which is angle of rotation of inclusion, is obtained.
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