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3azaua onTHMAJILHON CTAOMIN3AaLMU BPALATEIBLHOT0 IBHKEHUsT BOJTYKA

B Hacrosei pabote paccMaTpHBaeTCs 3a1aua ONTHMAIbHOH CTAOMIIM3aliY BPallaTeIbHOTO JBIKEHHS BOIYKA
B JIMHEHHOM mnpuOmDkeHHH. Ilo HampaBICHHSM COOTBETCTBYIOIIMX OOOOIIEHHBIX KOOPIMHAT BBEJCHHBI
YIPaBISIONINE BO3ACHCTBHS, MIPOBEPEHA IOJHAS YIIPABIIEMOCTh JIMHEHHOTO NPHOJIMIKEHHS TTOTyYeHHOH CHCTEMBI
ynpasinenus. PenieHa 3amaya onTHMaibHOIM CTaOMIM3aLMM 3TOM CHCTEMBI Ha KJIACCMYECKOM cMbicie. [lotom
MIPeANoIaraeTcs, 4To Ha BOJYOK Ha KOHEYHOM UHTEPBalle BPEMEHH AEHCTBYIOT MHTETPAJIbHO Majlble BO3MYILAIOLINE
cuibl. ITocTaBnieHa u peleHa 3a1a4a ONTHMAIBHON CTaOMIM3AIMK U B 3TOM ciTy4dae. [l 000MX cirydaeB MOCTPOSHBI
ontuManbHble (GyHKIMH JIAMyHOBAa M ONTUMAbHBIE YHPABIAIOINE BO3ICHCTBHS, MOIyYEHBI ONTHMAJIbHBIC
3HAYEHHUS MHHAMU3HPYeMbIX (yHKOHOHanoB. CpaBHEHHE ONTHMAaIbHBIX 3HAYCHHH MUHUMH3HUPYEMBIX
(DYHKIMOHAJIOB ITOKA3aJI0, YTO 3aTPaueHHAst JHEPTHs B CIIydae ONTHMATEHON CTAOMIIN3aluH P HHTETPaTbHO MaJIbIX
BO3MYILIECHHSIX MEHBIIE, YeM IIPH PEIICHHH 3TOH 3a1a4 B KIIACCHIECKUM METOIOM.

Cwhhiywh U.Q., Nthquyh U.
2Znih ypnnwljui pupddwi oujinhiwy uinwphjugnip

Uojuwwnwupnid nhinwpljynid k hnjh yunnwlju pupddwt oyynhdwy uthwphjugdwi juinhpp qdughtt
Uninunpmpjudp: Zudwyunuupiub pinhwbpugdus §nnpphtiunnitiph nunpnipudp  tkpunishyng
ntjujupnn  wqpbkgnipniukp, uwnniqus o ounwgyuws  pjudupynn  hwdwlupgh  gdwghu
Uninuwynpuipjutt phy nEjuwjupbhmpmip b psduws Eouyy hwdwlwpgh hwdwp  oupinhdwy
unwphjugdwt juinhpp: Ujunthbnb Bipunpguws £ np hnjh Jpu dwdwbwlh JEppuynp dhowljuypnid
wqnud ki hintigpuyny thnpp qpgnnn nidtip: Quubpyus b nisdws E twl oyyinhdw) unnwphihqughugh
uunhpp wyn nypnud: Bplynt nypbph hwdwp b jurnigqus tu Ljuyniungh oyyunhdw) $niuljghwbpp b
owunhdwy nEjudupnn wqnkgnipniiibpp juhws  hwdwljupgh  wwpudbnptphg: Unwugdus
Uhtuhdhqugynn $mbghntiwmukiph owpinhuiwy wpdtpubppp, npnilg hudblunmpeiniip gnyg £ by, np
huwntgpuyny thnpp gpgenwdubph nhwpnd owynnhduy uwphjugdwt dudwbwy swjiudny Eubpghwi
wytih thopp E, put puuwuis pdwuwnny wyn juinhpp niskhu:

The present work considers the optimal stabilization problem in motion of a Spinning Top when integrally
small perturbations act during a finite interval of time. The optimal stabilization problem of considered motion is
assumed and solved. In direction of the generalized coordinates introduced input controls, fully controllability of
linear approximation of the obtained control system is checked up and the optimal stabilization problem of this
system on classical sense is solved. Then, the problem will be limited to one input control, it is shown that the
considered system is not fully controllable and for this case the optimal stabilization problem under integrally
small perturbations of mentioned system is solved. For both cases optimal Lyapunov function is constructed, the
optimal controls and the optimal value of performance index are obtained. The comparison between the optimal
values of performance indexes proves that energy consumption at stabilization under integrally small perturbations
is less than solving that issue in classical sense.
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1.Introduction

Studies in the theory of optimal stabilization problem have begun from analytical design of
regulators assumed by A.M. Letov [1-5]. Solution of the problem in this formulation is
obtained by the classical variational method. To solve the problems of optimal stabilization,
N.N. Krasovskii [6] proved the fundamental theorem of Lyapunov's second method, which
is a connection method between Bellman dynamic programming [7] and the theorem of
Lyapunov asymptotic stability. In [8], the problem of stabilizing controllers design in
unstable motion of control system is considered. In [9, 10], the problem of stabilization of
nonlinear control systems is studied. Like, the theory of stability, analogous to the theory of
Lyapunov stability in the first approximation is developed [9], and, the problem of the
minimization of the integral quality estimation for small initial perturbations is solved [10].
Rumyantsev [11] has carried out the task of optimal stabilization with respect to the variables,
and has proved a theorem, that generalizes the fundamental theorem of optimal stabilization
of all variables. In [12], the solution of stabilization problems and optimal stabilization of
unstable motion of control system with sign-constant Lyapunov function usable state space
has proved. Problem of stabilizing systems with alternate control is discussed in [13]. Using
of alternate control imposes an additional condition for stabilizing control. It was shown, it

should provide not only the asymptotic stability of the motion ¢ = 0 but also the absence of

sliding modes in the system ¢ = F'(q,u). Methods of studying stability and transition

processes in linear stationary systems are investigated in [14].

It is well known that the circular movement of the top round its vertical axis will be stable if
it rotates at a higher speed than a certain angular speed. The question is: how is it possible to
provide the needed angular speed? In the present paper the optimal stabilization problem in
motion of a spinning top as a rigid body is solved.

2. Problem Statement
Consider heavy spinning top, rotating around its dynamical symmetric axis with rotational

(angular) velocity (. Let’s two external forces applied on the spinning top only: the

gravitational force P applied to the center of mass C of the spinning top, and the reaction

—

R, reliance on O (Fig. 1). Position of the dynamical symmetric axis z relative to the

spinning top fixed axis ENC (vertical axis OC) will define with the angles o and 3 [15]
(Fig. 2).

»
(&

Fig. 1
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@

Fig. 2
We introduce the axes of x, y,z (Fig. 2) and p,q,r — the angular velocity about x, y,z
axes, respectively, are defined by

p=a&, q=Pcosa, r=@—Psina. 1
Kinetic energy 1" and potential energy I/ of system will be
1 2 A2 2 1 - 2
T=—I(a"+B°cos”"a)+—1_ (p—Psina] ,
L (@ +p )+ (0-Bsina) o
Il = Plcosa.cosf,
where / is distance between the centre of gravity of spinning top, C and the point O, I,

and [ . are moments of inertia of the spinning top around the axes x and z , respectively (as
the spinning top is rotating and Oz is dynamical symmetric axis, [ =/ )

Now, we investigate the stability of the motion

a=0, a=0, B=0, B=4, 3)
¢ =@, = ®=const.

Using of Lagrange equations [16], the system of differential equations of the spinning top
motion will be

d | .
—(I a)+—=1PBsin2o+ 1 @B cosa—
dt( ¥ ) 2 B OB

[T .
—512[32 sin 2o = Plsino.cos B,

%(Lﬁcos2 a—1, (¢—B8ina)sina) _
= PlsinfBcosa,
d

E(IZ (('p—Bsin OL)) =0.

“
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Let's make following notations:
X =0, X,=0, X5 =0,

X, =B, x5 =0—9,. 5)
so, we obtain the first approximation of differential equations of the spinning top motion (4)
in the form of X = A4 - x as follows:

X, =x,, X,=b-x,—+a-x,,

X, =x,, X,=va-x,+b-x;, x,=0,

2
1 Pl

a= (I—Z 0\)} , b= ]_

* (7
The characteristic equation for the system of differential equations (6) will be obtained as
follows:
MM+ (a—2b)17 +57) =0
so, we obtain
(%, =0, A*+(a=2b)27 +b* =0. @®)

since rank4 = 4, and under the following condition:

2.1 Pl
o> 1— 9)

z

(6)

all the roots of the second equation of (8) are purely imaginary, so, the system of
differential equations (6) is marginally stable in the sense of Lyapunov [17].

Let's @ is given rotational (angular) velocity. Let's consider the input controls #, and i,
inthe X, and X, generalized coordinate directions, respectively, so the spinning top motion
(3) would become asymptotically stable. Then, the system of differential equations of the
spinning top motion (6) will be

X, =X,, X,=b-x,—va-x,+u,

Xy =Xy, )'c4:\/;-x2+b-x3, Xy =U,. o

Let's make following notations:
1
¥y = kxy, yzzﬁxz’ Yy = kxs,
1 1
y4:ﬁx4a yszﬁxs; (11)
ulzﬂ, uzzu—z, kzé, t' =+at.
a Ja a

Let's write the system of differential equations (10) in dimensionless form
{)"1:]{)/2» Vo =Y~y tuy, (12)

W=ky,, Yy=y,+ys, Vs =u,.
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[0
dr'’

That is, it is required that optimal controls ulo and ug be found so that the system (12) would

Here y, =

be asymptotically stable and the functional would acquire a minimal value.

It is quite easy to see that in case any of the input controls ulo and ug is missing the problem
will not be solved (the system will became a not fully controllability) and there is no need to
introduce more directories. Actually, full controllability [6] of system of differential
equations (12) can be checked easily, and turned out that it is full controllable as following
calculations;

rankK = rank[B, AB, A°B, A’B, A“B} =5,

where_ _ ) _
0 k0 0 O 00
1 00 -10 1 0

A=|0 0 0 k& O} B=|0 0|
011 0 O 00
000 0 O 0 1

Let's solve the problem of optimal stabilization of the system of differential equations (12)
in the given sense in [6] while minimizing the performance index

I[u]:T(iyf +22:u,fjdt. (13)
o \Li=l k=1

3. Solution of the problem
Let's make up the expression [6]

5.0V 5 , 2 ,
Blul=Y =y, +> vl +Du; (14)
i=1 a.yi i=1 k=1

since the expression (14) at optimal control takes the minimum value equal to zero [6], then

B =0, (15)
and

Bl o (=12 (16)
8u ui:u’()

where u = (“1 u, )T and ulo are optimal controls.
For Lyapunov function we will search in the form of
1 1,
V:EZcijyiyj+5055y5. 17
i,j=1
and C; — constants.

From equation (16) we obtain

0 1oV 0 10V
ul =———; ud=——" (18)
20y, 2 Oy,
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By substituting the values u ;) of the equation (18) into equation (14), considering of
equation (15), and using equation (17), we obtain the system of equations to define constants

¢, (,j=1...5)
1, k
—chz +c,+1=0, Ecll +—=c), +=Cyp ——C,Cyp =0,

1 1 1 1
3 Cia +§cz3 _chzczs =0, _5012 +§CIS +§cz4 _chzczzx =0,

2

1, k
—Zczz + ke, +c,, +1=0, ECB +—Cpy t—Cyy ——

19)
k 1 k 1 1
64T TS0y +§c44 _Zczzcz4 =0,

2 2 2
k

1,
_Zczs +ey +1=0, _5023 +Ecs3 +§c44 _Zc23cz4 =0,

1 1
—10224 —Cyy +hey, +1=0, —chzs +1=0.

The obtained solutions for constants ¢, ,Css are independent from the value of &, and are
listed below:

¢, =10,8284; ¢, ==%2,0000. (20)
In order to obtaining the solutions for constants C;;,C;53,C145C05Cs35C245C335C345Cas »

let's solve the system of equations (19) for various value of k (for example
k=0.5,1.0,1.5,2.0,...,50.0), choose those solutions for which the Lyapunov’s

function becomes positively definite, then plot the graphs of mentioned constants vs. & .

For example the graph of constant ¢;; vs. k is plotted below:

21,00
o
IE

18,00

15,00
12,00 \
9,00

6,00

y = 14,155x049

3,00

0,00 T T T T T T T T T k 1

0,0 50 100 150 200 250 30,0 350 40,0 450 50,0

Fig. 3. Constant ¢;; vs. k and best estimated functions of constant ¢,; vs. k.
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The dependence of constant ¢,; on k is displayed in fig. 3. The dots illustrate the solutions
of ¢, of the system (19) for corresponding k values, while the curve shows the best

estimated functions of constant ¢, vs. k.

Finally, for each values of &, we can similarly find the best estimated functions of constants
clol,clo3,clo4,c§2,c%,cg“,ci,c&,cff4 vs. k, and we’ll have;

! =14.155067%°;  ¢f, =8.1943k*%; ¢ = —0,8284;

ey = (2x10™)k =(3x107°) &> +0.0002k" —0.0074k" +

+0.1226k> —0.9883k —22.8510;

ey = (1x107)k* =(2x107)K* +0.0012k* —0.0408k" + @1)
+0.8058k> —11.7640k —14.7780;

¢, =18.2040k"; ¢2, =18.4430k —2.5861;c%; = 84.0200k"*;

¢?, =85.0500k —6.0128; c3, =82.5020k"*%; ¢, = 2,0000.

Thus, optimal Lyapunov function will be
0 0 0 0
C C C C
VO y’.”’y :Ayz_’_iyz_’_ﬁyz_’_ﬁyz_’_yz_
( 1 5) 7 71 5 2Ty 5 4 5 22)
0 0 0 0 0
—0.8284,y, + 3V Vs +CuV Yy F Ca o Vs +Cou Yy Yy + VsV,

and optimal controls will be
0

0 0
0 Cyn €3 Coq4
u, =04142y, ——=y, ——y, ———y,,
1 N ) Y2 ) V3 ) Vs (23)
0
Uy ==Vs-
For the optimal value of the performance index in equation (13) we obtain
0 0 0 0
0 0 Cii 2 , Cn 2 G3 2  Cy 2 2
I'=v (yIO""’ySO) =L Yio H Vyg H o Vit Yo + Vo —
2 2 2 2
0 0 0
—0.8284 Y0750 + 1310 Y30 T CaioVao T 3 Va0V30 + 24

+6’5)4)/20)’40 + 034)’30)’40’
where y,, =y, (0) (i = 1,...,5).

4. Second Problem and its Solution

Consider again the system of differential equations (12). We assume that
u, =u; u, =0.Then the system of differential equations (12) will obtain

{yl =kyys Yy =Y —Ystu,

Vs =kyy, Vy=y,+y;, s =0.
Let's replace the following problem: Finding such input control u° which will ensure the
stability of the solution y;, =0 (i =1,...,5) of the system of differential equations (25)

(25)

under integrally small perturbations [18] and will minimize the performance index.
As the following calculations the system of differential equations (25) is not fully
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controllable;

rankK =rank| B,, AB, A'B,, A'B,, A'B, |= 4,
Where B, =[0 1 0 0 0]

Hence, the optimal stabilization problem for the system of differential equations (25) in the
sense [6] is not solved.

The system of differential equations (25) may solve the optimal stabilization problem under
integrally small perturbations [18]. Minimized performance index should be adopted in the
form of

/4
1 ) =I[ny +u2jdt. (26)
o\ i=l

Thus, it is required to resolve the optimal stabilization problem under integrally small
perturbations for the system of differential equations (25) while minimizing the performance
index in equation (26).

The expression of Bellman for the system of differential Equations (25) in this case will be

oV orv oV oV
Blu]=—+——hy, +——(y, =y, +u) +——ky, +
ot oy oy, Oy @7
ov 2 2, 2, 2,2
+6y Dyt y)+y +y;, +y; +y, +ud,
4

since the expression in Equation (27) at optimal control takes the minimum value equal to
zero [18], then

% :a—V+2u0 =0, so we obtain
oul _o 0y,
1
u’ = ——a—V. (28)
2 0y,
As
Bl =0, (29)
by substituting the value u® of the equation (28) into equation (29), we obtain
ov or ov oV oV
—t—ky, +—(y, =y, +—ky, +—(p, + y;) +
o 1 ky, o, =) o, ky, o, (7, +3)
1 or ) (30)
S C
For Lyapunov function we will search in the following form [18]:
V(t.y)=v,(n)+ Vi (e.y)+ 7, (0) (31)

where

v, (y) —the quadratic form with constant coefficients;

4 (l‘ R y) —the first degree form with respect to y with the coefficients depending on time
L
V, (t ) — the function of time 7.
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By substituting the value V(l‘, y) of the expression (31) into equation (30), we obtain
V, =V, =0, and the equation (30) can be written as

ov., ov., oV, ov.
_Zkyz +—2(y1 —y4)+—2ky4 +_2(y2 +y3)+
o, 0y, 0y oy,

(32)

2
1
+yf+y§+y§+y§—z(g;/2j =0,
2

1 4
Function V, (y) we can search in the form of V, (y) = 5 chyiyj. Then we can find

i,j=1
the solutions for constants C;;,C5,C35Ci4>Ca25Ca35Caa5C335Cs45Cay» Which are similar to

(20) and (21) exclusive of Cs;.

Thus, optimal Lyapunov function will be

0 0 0 0
C, C C C
V°(y1,...,y4)=§yf +%y§ +?y§ +fy§ —0.8284y,y, + 3

0 0 0 0 0
FCEN Y3 T CuV Vs T C3 V3 T Cou )y Yy T C34 Y3 Va5
and optimal controls will be
0 0 0
0 Cyp Cy Coy4
u =04142y, ——==y, ——=y, ——=y,. (34)
1T, 2T, V3 5 M4

For the optimal value of the performance index in equation (26) we obtain
0

0 0
=V (p iy, )=Sy2 202 G on ) Cas g0
1 (ylo J’40) > Yo 5 Y20 5 Y30 > Yao (35)

—0.8284,,,, + C103y10y30 + 0104)/10)’40 + C§3y20y30 + Cg4y20y4o + C§4y3oy4oa
where o = 3,(0) (i=1...,4)

5. Conclusion

In the present work solved the optimal stabilization problem in motion of a Spinning Top.
For constructing the solution in direction of the generalized coordinates introduced input
controls, fully controllability of linear approximation of the obtained control system is
checked up and the optimal stabilization problem of this system on classical sense is solved.
Then, considers the optimal stabilization problem in motion of a Spinning Top when
integrally small perturbations act during a finite interval of time. The optimal stabilization
problem of considered motion is assumed and solved too. For both cases optimal Lyapunov
function is constructed, the optimal controls and the optimal value of performance index are
obtained.

A comparison between the values in Equation (24) and Equation (35) of the performance

indexes in Equation (13) and Equation (26) has shown that / 10 <I°.

It shows that energy consumption in stabilization at the given sense in [6] is more than
stabilization under integrally small perturbations [18].
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