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Asetucsin B.B., Crenansin B.C.
KomM0uHUpOBaHHOE YIIPABJIeHHE FAPAHTHPOBAHHBIM MOHCKOM MOIBHIKHOI0 00HEKTA MPH reOMEeTPUIECKUX
OrpaHuYeHusIx

PaccMarpuBaercst 3aa4a rapaHTHPOBAHHOTO IIOMCKA JBIKYILETOCS Ha TOPH30HTAIBHON INIOCKOCTH HCKOMOTO
00beKTa, HayaJbHOE COCTOSIHME KOTOPOrO M3BECTHO C TOYHOCTBIO JIO 3aJaHHOTO MHOXecTBa. Ilomck
OCYIIECTBIACTCS B TPEXMEPHOM IIPOCTPAHCTBE YNPABISIEMbIM II0 YCKOPEHHIO HIIyNIMM OOBEKTOM, Ha
BEPTHKAIBHYIO KOOPJHHATYy KOTOPOTO HAJIOXEHO TI'€OMETPUYECKOe OrpaHMuYEHHME, 3alpellaroniee HINymeMy
O0BEKTY IOJHUMATHCS BBIIE 3aJaHHOI [OIMYCTHMOH BBICOTH. Pa3paGoTaH aniropuT™M KOMOHHHPOBAHHOTO
yIpaBIIeHHs, IPU KOTOPOM TapaHTHPOBAHHBI MOMCK HCKOMOrO OOBEKTa PEeaM3yeTcsi 10 HPOCTPAHCTBEHHOM
TPAeKTOPHH, COCTOSIIEH M3 NPSMOJIMHEHHBIX YYAaCTKOB M KPUBOJIMHEHHBIX y4YacTKOB B BHJE OKPYXKHOCTEH ¢
MOHOTOHHO YOBIBAIOIMMHU pajguycamu. [l reoMeTpuueckux M (U3MYECKUX MapaMeTpoB 3aJaud IOJNYYeHO
YCIIOBHE, IIPH KOTOPOM IIPE/I0KEHHbII alIrOPUTM YHPABICHUS pa3pelliacT 3a/[a4y rapaHTHPOBAHHOTO [OKMCKA.

In this paper we consider the problem of locating an object moving on a horizontal plane, whose initial position
is known to be from a given subset of points of the plane. The search is carried out by the means of accelerating an
object through space, which adheres to certain geometrical constraints on the vertical plane such as that the object
cannot move past a certain maximum elevation. A combined control algorithm has been developed, that is
guaranteed to locate the object by means of a varying linear and curvilinear trajectories, modeled as circles with
varying radii. Geometrical and physical parameters have been calculated which allow to solve the problem of
guaranteed positioning.

Introduction. The problem of a variation law development of searching object’s (SO)
controlling acceleration vector limited by absolute value is considered. SO starts three-
dimensional motion from a given initial state of rest and has to detect the moving target object
(TO) in a finite time. TO’s motion is horizontal and controlled by acceleration. The initial
state of TO is known to SO up to a given set of uncertainty. The absolute values of the
acceleration and the velocity of TO are limited. SO is geometrically constrained, so that it
cannot collide with known still obstacles (e.g. ground) or the maximum elevation is limited
in case of the object being a flying device. TO is considered to be detected if it lies within
the circular base of a cone whose apex’s coordinates are the current coordinates of SO. In [1]
the time-optimal guaranteed search problem is solved without elevation constraints. A
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minimax approach was developed which allows to reduce the problem of optimal guaranteed
search, i.e. fastest absorption of the domain of uncertainty that is expanding with maximal
speed, to the optimal control problem with free right end solved with the Pontryagin’s
Maximum Principle [2] in the class of control problems with constant acceleration.
Nevertheless, the implementation of the approach mentioned in [1] depending on the initial
parameters of the searching system seems impossible for the problem of guaranteed search
with constraints on elevation (including optimal guaranteed search) due to limited
possibilities for detection disk expansion necessary for absorption of TO’s uncertainty
domain expanding in time. For this reason this paper offers another approach based on
development of a combined control algorithm for SO allowing a multi-step search of TO by
means of linear and curvilinear regions with monotonically decreasing radii. Other
approaches to the related problems see in [3-5].

1. Problem statement. Suppose there are two point objects X and Y, where X is
the searching one and Y is the target. X performs three-dimensional motion in the

gravitational field of the Earth and Y on the surface of the Earth. The motion equations of
the objects can be given in the following form:

X: X = Wyos xzzwxz’ )'6'3=WX3—g,
XI(O) = Roa X, (0) = 0, X, (0) = 07
%5(0)=0, x,(00=0, x(0)=0,

0<x;(t)<h, |WX1|SWX, Wy =Wy Wyas Wys) ' 120,

(1.1)

Y: V. =w,, i=L2,
0 . -0 .
yi(O)y=y., 3=y, i=12, (12)
. . . . NT T
OV @< 7=00)" s W =Wy, m,)", 120,

In (1.1), (1.2) X;, y, — geometrical coordinates of the objects X,Y ; w,., w,, —
coordinates of controlling accelerations of objects, which are piecewise continuous vector-
functions of ¢ ; W, W, — maximal possible values of controlling accelerations W, , W,
respectively; V), — maximal possible speed of the object Y ; h — maximal allowed value of

coordinate X, of the object X during the motion; g — gravitational acceleration; R, —

. .. T . .-
given positive number. The symbols ( ) and | . | are the operations of transposition and

Euclidian norm of vectors, respectively.
Let us suppose that the only information about the phase coordinates of Y known to X
is a given uncertainty set Y belongs to at the initial moment.

(yo,)-)o) EDOXDO’ D, = {yo eR*: ‘yo‘s Tots Do = {yo eR*: ‘yo‘ <V}
(13)

TO is considered to be detected at the very first moment ¢ =¢", when the following
statement is true

YA G e [yt —x, ()| SUE), X, =(x,,%,) (1.4)

—i.e. it belongs to the moving circular base of the following cone:
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EeR: |E(0)—x, ()| <1(t) = Cx, (1)
C=|thL, 0<|OL|<7I/2 T (1.5)

G(x(0),C) =G(x,(0),x,(0),C) =G,  x(0)=(R,,0,0).
The detecting disk (1.5) of SO (1.1) at the moment # while using all possible piecewise

G(x(1),C) =

continuous controlling accelerations (admissible controls) W, (1), |Wx (’C)| <w,,
0<1t<t, on the plane (x,,X,), represents a disk with a moving center (by means of
control (W, (¢), Wy, (t)) with center x, ()= (x,(¢),x.,(t)) and varied by using
Wy, () scalar control with [(¢)=Cx;(¢): [(t)>0 radius when w,,(t)>0 and
[(#) <0 when w,,(¢)<0.

According to (1.5), at the initial moment the detection disk G, = (R,,0) is a point on
the axis O)C1 . We assume, that Ro > 1, i.e. initially the uncertainty disk has no intersection
with the detection disk:

D,nNG,=9. (1.6)

The primary problem. For a given initial state (xo,)'co) and given initial disk of
uncertainty D), (1.3) and disk of detection G (1.5), satisfying (1.6), find a number 7" >0
and admissible control W, () of object X on the [to , T ] interval, so that for any initial
state (1°,7°)(1.3) of ¥ and any admissible control Wy (¢) on the [Z‘O, T ] interval, the
detection condition (1.4) is satisfied at some moment # " notlaterthan T: ¢t" < T .

We will call the number 7' > 0 and the admissible control W, (), 0<t<T of the

X guaranteed search time and guaranteeing control, respectively.
For the system (1.1) — (1.6) when solving the time-optimal guaranteed search problem

without the constraint on axis X; in [1] we introduce the concept of uncertainty domain at
moment 7 : D(T) on the plane (,,),) is consisting of end points
y(T)=,(T),y,(T)) of all trajectories of TO (1.2) for all possible initial states
( yo, j/o) eD, XDO and constructed with all kind of piecewise continuous admissible

controlling accelerations Wy () = (wy, (£), wy,(2)), |Wy (l‘)| <W,, 0<t<T with a

constraint on speed |y(t)| <V,,0<t<T.

Considering the above, in [1] an approach is suggested consisting of constructing an
admissible control on motion of X , such that the detection disk of SO absorbs the disk of
uncertainty (expanding in time) within a minimal guaranteed time 7 :

D(T) 2 G(x(T)). (1.7)

which ensures the fulfillment of the condition (1.4) at some point # " <T in time.

Based on the minimax approach, it was found that for guaranteed detection it is
sufficient to consider the case when TO is initially on the boundary of the uncertainty domain
(1.3), has no acceleration and has a vector-speed directed radially away from the center of
the disk

3’ :(yf),yg):(Vyyloro_l, Vyyzoro_l), wy(1)=0, 0<¢<T, (1.8)
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i.e. the radius of the disk D(t) is increasing linearly:
r(t)=r,+tV,. (1.9)

Thereby the optimal guaranteed search problem was reduced to the problem of optimal
control with free right end, which was solved with the Pontryagin’s Maximum Principle [2]
in the class of problems with constant accelerations. However, in presence of the constraint

on the axes X; (1.1) in some cases depending on the initial state of the searching system, the

implementation of this method of absorption (1.7) seems impossible in the problem of
guaranteed (including optimal guaranteed) search, as the possibilities are limited for the
detection disk to expand which is necessary when having the conditions (1.8), (1.9). For this
reason, this paper offers another approach based on development of a hybrid control
algorithm for SO allowing a multi-step search of TO.

2. Fastest maximum elevation reaching step. In this step, SO performs a vertical
motion on purpose of reaching the maximum elevation with zero speed at the end of the
motion. Such a motion is implemented with the solution of the following optimal
performance problem.

Problem 1. Find a controlling acceleration w),(¢), £ €[0,#], i=1,2,3 (1.1), that

ensures the movement of X (1.1) from a given initial state of rest (1.1) to a given terminal
state of rest

xl(tl) = Ro> xl(tl) =0, x2(t1) =0, xz(tl) =0, x3(t1) =h, x3(t1) =0, (2.1)
within the minimal time 7.

This is a two-point optimal control problem. According to the Pontryagin’s Maximum
Principle of optimal control [2], providing the quickest transition from one point to another

in the phase space is the vector function Wy = (W}, (£), Wy, (t), wy;(t)) with the
following components:
Wy =Wy, =0, 0<t<1,

Wiy =Wysign[ (1, /2-0)h], 4 =2hw, [(W, +g) (W, -2)] -

Thus, the control (2.2) ensures SO to reach maximum elevation Xx; = h with zero

2.2)

terminal speed within minimal time £, (2.2). At the time ¢ =/, the radius of the detection
disk reaches a maximum value / (l‘l) =(x, (tl) = Ch , and the detection disk on the plane

Ox,x, takes the following form:
G(t) ={(x.x,): (5, =R +x3 =1*(t)), I(t))=Cx,(t,)=Ch }|. (2.3)

Since Y in the time interval 0 <¢ < f, can be at a maximum distance from the center

of the initial disk of uncertainty, if and only if at the initial time it is on the boundary of the
uncertainty set (1.3) and has an initial velocity (1.8), which provides expansion of the disk of

uncertainty with the highest rate V}, (1.9) then at the moment ¢ = £, it can be located in any

point of the circle

D(tl):{(yl’y2): iy :’iz}» n=rlt)=r+Vi,. (2.4)
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3. Step of fastest contiguation of the detection and uncertainty circles. While X is
on the maximum permissible height with the zero-speed state (2.1) at the moment # =¢,, it

performs a linear horizontal movement along the axis 0x1 in the direction toward the center
of the circle of uncertainty within the time interval #, <¢ < ¢, until the first contactat f =,
of the detecting circle G(Z,) and the circle of uncertainty D(%,) .

Since TO within the time interval ¢, <¢ </f, continues its motion having maximum

absolute value of the velocity vector (1.8), then at the time =7, it can be anywhere on the

boundaries of the uncertainty circle

D) ={(y,3,): ¥ +5 =15}, (3.1)
where given (1.9), (2.4) ¥, is calculated as follows:
n=r(t)=n+V,(t,—t)=1r+V,t,. (3.2)

This means that the required motion of SO can be implemented by the control vector
wy = (Wy, (), wy, (1), Wy;(¢)) , wherein the second and third components are specified
as
W) =0,wy,()=g, t,<t<t, (3.3)
and the first component is determined by solving the following optimal control problem.

Problem 2. Find an optimal control W}, (¢), t, <t <t, which satisfies the constraint

|WX1(t)|S\/W)?_g2 G4

(given (1.1), (3.3)) and along with given control constants (3.3) provides the displacement of
the X from a rest state (2.1) to the terminal rest state

x () =r+V,t,+Ch, x,(,)=0, x,(t,)=h,
x(4,)=0, x(4)=0, x()=0

within a minimal time 7, — ¢, .

3.5)

Note that the first two boundary conditions in (3.5) can also be written in the form
x(t,)=r+Ch=y/(t,)+Ch, x,(t,) = y,(t,) =0 in view of (3.1), (3.2), express the
situation of outside contact between the circles G and D at time £, .

Since with the given controls (3.3) the system (1.1) does not move by the coordinates
X,,X; (with boundary conditions (2.1) and (3.5)), then the problem 2 is reduced to one-

dimensional (regarding the coordinate X, ) problem of optimal control with free right end:

Y =wy, x(4)=R,, %)=0, x()=r+Vt,+Ch, x(,)=0. (3.6)
Solving (3.6) as a two-point optimal problem, analytical expressions for the optimal
control and the corresponding minimum travel time is found:

Wy =g - g*sign{[(t,+1,)/2-1](r, +V,t, + Ch—R, )} (3.7)
12/y _ 2VY2 4 R, —Chz—ro —sztl
Wy-g Wy-g Wy-g

t,=t,+2| - : (3.8)

where 1, is calculated according to (2.2).
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Thus, at the moment ¢ = ¢, in the state (3.5) of the object X, the circle of the detecting
disk
. 2, .2 _ 72
G(ty) ={(x.x,): [x, = x,(,) +x; =12(t,), I(t,)=Cx,(t,)=Ch | (3.9)
contacts the circle of uncertainty (3.1), (3.2) inside.

4. Helper problem. Starting at moment # = £, (3.8), when SO is in the rest state (3.5)
and the detection disk (3.9) and the uncertainty disk (3.1) are in contact, SO performs the
search via flat motion X; =/ and the detection disk has a constant radius / = Cx,(t) = Ch

, t 2 t,. Taking into account the equations of motion (1.1) and (3.5) for the Xx; coordinate

and the velocity X, at the moment ¢ =¢,, X carries such a motion with

=g 1>t,. (4.1
It follows that only the flat movement of the X which is defined by the first two

)

so that the pole O s in the center of the disk of uncertainty, and the polar axis runs through

equations (1.1) is a subject to review. We introduce the polar coordinate system (p ¢,

the center of the detection disk having coordinates (3.5) at the moment =%, . In the first

two equations we switch to polar coordinates pP,(p associated with the original Cartesian

coordinates X,, X, with the following relations:

X, =pCcos®, X,=psing. 4.2)
The equations of the plane motion of SO (1.1), represented in polar coordinates are as

follows:

. d . .
P—pP" =w,, E(p(p)=wq,, (4.3)

where w » and w, are radial and tangential components of acceleration of the X,
respectively. They are associated with the first two components of the vector of controlling
acceleration W, = (Wy,, Wy, Wy,) as follows:

Wy =W, COSQ—W, SINQ, Wy, =W, SINQ+W, COSQ. (4.4)

In view of (4.1), (4.4) the constraint on the absolute value of controlling acceleration
(1.1) takes the form

N :\/wf)+w; <ywi-g*. 121, 4.5)
and the initial conditions (3.5) will be
p(t,)=r+Ch, p(1,)=0, ¢,(1,)=0, ¢(,)=0. (4.6)

For the detection of TO, SO carries a circular motion around the center O with a radius
p(l‘z) = const by choosing a direction for the encircling maneuver, which actually is the

positive direction of the reference polar angle.
Then, motion controls (4.2) will be

) .
—p(6,)9" =w,, p(t,)o=w,, 4.7)
Let us find the variation laws for the controlling accelerations w, (#) and w,(?)

which satisfy the constraint (4.5), while moving circumferentially with the constant radius
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p(l‘z) according to the equations (4.7), the center of the detection disk goes from the state
of rest (3.6) to the state of rest
p(t,)=rn,+Ch, p(t)=0, ¢,(t)=0, ¢(,)=0. (4.8)
within a minimal time 7, —7, .

The required controls w, (#) and w,(¢) are as follows. Constraining the tangential
control acceleration:
‘W(p(f)‘ﬁas tet,,t.], (4.9)

where € > 0 and f,— are unknown constant and time respectively.
First, from the two-point optimal control problem (4.6) - (4.9) we determine the optimal
controlling tangential acceleration W, - The maximum principle implies that the desired

control is an on-off control with the switching point £ = 7 :

w, =esign| 2n(t—1)]. t=(L+5,)/2. 1, =1,+2\2mp(t,)e " . (4.10)

Then, by integrating the second equation (4.7) with the control (4.10) and the boundary
conditions (4.6), (4.8), we find the function of the angular velocity of the time @(¢), and

after applying it in the first equation (4.7), we find the variation of the radial acceleration of
the time

g (t—t2)2 p (1), t,<t<T,

2

e (—t+21—1,) p'(t,), 1<t
The concave and continuous function (4.11) produces zeros on the ends of the interval

, <t<t:w/(t,)=w,()=0.Intheinterval £, <¢ <{, it monotonically increases and

w, (1) = (4.11)

in the interval T<¢ <7, it monotonically decreases, producing the maximal value on the

middle T= (¢, +1,)/2 of the interval:

max w, (¢) = w, (1)

t,<t<t,
From (4.9) and (4.12) follows
2 2 2.2, .2
Wp(t)+w(p(t)<47t8 +e°, ,<t<t,. (4.13)

20 N2 el _
t=(t,+,)/2 =& (L tz) P (tz)/4 t*—tzzzm =2me. (4.12)

By virtue of (4.13), in #, <t <t, the constraint (4.5) is ensured, if the following
inequality is satisfied for € > 0 :

e’ +e7 <W;—g’. (4.14)
The solution of the inequality (4.14) is
-1
86(0,80], €, =\/(W;—g2)(4n2+1) . (4.15)

Thus, € =¢, (4.15) is the maximal value when the constraint (4.14) is not violated

where the time 7, and control (4.10) are optimal:

t, =1, +221p(t,)e, . w, = gosign{2n[(t* +t2)/2—t]} : (4.16)
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Moving with maximal velocity ¥}, SO being on some point of circle D(%,) (3.1) at
the moment #=1¢,, within the time #, —¢, will pass a distance V,(f, —f,) and at the
moment f =/{, can be maximally displaced from the origin, i.e. on some point of circle
D(t,)= {(yl,yz) C Yy =r } with the radius 7, =7, +V, (¢, —¢,) . From this and
(4.16) follows, that if the condition

r,—r, =2V, 2mp(t, e, <2Ch, (4.17)

is satisfied, then within the optimal time of one full rotation of SO around the center O, TO

does not have enough time to leave the circular ring with width 2/ =2Ch and stay
undetected.

5. Combined control algorithm. Suppose that for the given initial parameters
7y, Ry, C, 0V, ,W,,g attime t =t, the condition (4.17), written in the form

\27p(t,)e,' < ChVy! (5.1)

is satisfied.
Starting from ¢ = ¢, , with the tangential acceleration equal to zero W, = 0, SO moves

as fast as possible along the axis Ox1 in the direction of the pole O from the state

(4.6)((3.5)) performing a displacement Axl(l) >0 (defined below). Using (4.4) and the

following controls

Wi () ==} - gsign{[ (1, +6,) /12—t | Ax ), (5.2)

-1/2

* * _ D (72 _ o2
Wi, (=0, w()=g, 1, <t<t, t3_t2+2\/Ax1( (Wx_g )
X will make the below transition to the state of rest within a minimum time #; —1, :

x,(t)=pt,)=p(t,)-Ax", x,(,)=0, x()=0, x()=0. (5.3)
Meanwhile, during the time #, —¢, the uncertainty disk of TO (moving with V)
velocity) will expand and its radius reaches the value
rity)=rn=n+V,(t—t,) (5.4)
at the moment 7 =17,
We require that at time ¢ = £, the right point (#(,),0) of intersection of the circle of
uncertainty with the axis Ox, be more left than the right point (x(f;)+ Ch,0) of

intersection of the circle of detection with the axis Ox,: r(t;) <x,(#;,)+Ch, i.e. with
(5.3), (5.4) the following condition to be satisfied
V,(t,—t,) <2Ch—Ax". (5.5)

The inequality (5.5) sets a constraint on desired value for Axl(l) >0 and after

replacement of #; —7, with (5.2) it is reduced to the following inequality:

AV 128, (W2 - g7) A —2ch <o, (5.6)

and the solution is
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-1

2
A" €(0, a), a:[—VY\/(W;—gz)_m +\/V5(W,§—g2) /2+2Ch} .6

If during the time 7, —¢, the detection of ¥ is not happening, then at =7, being in

the state (5.3), for which Axl(l) is from the interval (5.7), SO performs a fastest possible

rotation with the constant radius p(z,) = p(¢,) — Ax" in the way described in the section

4 from the rest state

p(ts) = p(tz) - Axl(l)a p(ts) =0, (P(t3) =0, (i)(t3) =0 (5.8)
to the terminal state of rest
p(t,) =p(t) =p(t,) - Ax", p(2,)=0, o(t,)=2m ¢(,)=0 (5.9)

within a minimal possible time 7, — ;.
SO performs such a relocation with the tangential (4.16) and radial (4.11) control
accelerations, also with the control (4.1), related to the time interval £, <7 <17, :

w, =gsign{2n] (4, +4) /12—t ]}, 1, =1+ 2{2mp(t)e,' (5.10)
e2(t-1,) p (1), L<t<t,

T, =(t,+¢,)/2.
&2 (~t+2t,—1,) p'(t,), T, <1<, o=lre)

w,(#) =

we() =g, =t<t,
where p(f;) and €, are deduced from (5.8) and (4.15), respectively.

Given the constraint (5.7), the desired value for Axlm will be determined from the

following equation:
rt(t,— L)W, =1, +2Ch—Ax", (5.11)
which, using (5.2), (5.4) and (5.10) is transformed to

W, 2(plty) ~ A ey = 2Ch 2V, |l (W7 - 27

Here, the value of p(tz) using (2.2) (3.2) (3.8) (4.6) is expressed in terms of the given known

-1/2

—Ax. (5.12)

parameters 7y, R, C,h,V,, W, , g of the problem.
With the condition (5.1), the equation (5.12) is solvable against Axl(l) on the interval

(5.7). Solving it, we find the value for Axl(l) wherein during the full rotation time 7, — £,

around O, TO moving with constant velocity from the boundary of the uncertainty disk, will
be detected. The radius of the disk will be:

-1/2
r(t) =mn :r2+2VY\/Axf‘>(W,§—g2) . (5.13)

Thus, if no detection of TO (1.4) occurs at any moment ¢ € [Z,,t,] of the time interval
t, <t <t,, then the execution of the combined control (5.2), (5.10) during the time #, —1,
results to reduction of the diameter 7, =7(f,) of the uncertainty domain by Axl(l);
0< Axl(l) < Ch <r,, ie. the uncertainty domain of TO at time f =1, is contained in a

circle with a radius
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r=rt)=rn-A&">0, 0<r<r. (5.14)
Here, the following cases are possible:
a) r(t,)=r,<Ch, b) r(t,)=r2Ch. (5.15)

In case of (5.15)(a), let us find a condition, for which the controls

* 2 2 * *
Wo ==Wy—g, wy, =0, wy,=g, 1>t (5.16)

of linear motion along the axis Ox, from the state (5.9)(recorded in Cartesian coordinates

(4.2)), ensure satisfaction of the absorption condition (1.7) not later than some finite time T’

First, we integrate the equation (1.1) given the controls (5.16) and initial conditions
(5.9)((4.2)). Then, the resulting expressions for =1 we put in the final terms

x(T)-Ch=y(T), x(T)=20, y(T)=-r-V,(T-t,), (5.17)
describing the relative position of the disks G(x(7")) and D(T")[1], corresponding to the

absorption condition (1.7) [1].
The relations (5.17) can also be represented as the following system against the

parameter 7' >0 :
5« 2 ¢ 2 E3 2 E3
woI"+V,T+R, =0, w,T —w,t, —2wt,+2r(t,)=0,
* 2 *
R, =—wyt; =2w,t, +4r(t,)—2,t,.
If (5.18) is solvable against T > 0, then the controls (5.16) are guaranteeing on the

(5.18)

interval 7, <t < T, and the time 7" (minimal positive root of the equation (5.18)) is the

guaranteed search time, since at this point the boundary condition (5.17) is satisfied, which
is equivalent to the absorption condition (1.7) and detection condition (1.4).
If (5.18) is not solvable, then in both (5.15)(a) and (b) cases, starting from the moment

t =t, secondarily applying the controls (5.2) and (5.10) related to intervals 7, < ¢ < £, and

1, <t <[, respectively, will give

r=rt)=r,—Ax?, (5.19)

where Axl(z) is determined from the following equation:

KAt —t)V, =r,+2Ch-Ax?,  Ax* €(0,a). (5.20)
The equation (5.20) with the help of similar forumals (5.2), (5.4), (5.10), related to

differences (£; —t,), (5 —7,), (f; — L5 ), respectively, is recorded as

-1

2
2VY\/2n(p(t2) — A" - Ax? ) g,! =2Ch —2VY\/Ax1(2) (me-g) " —Ax. 21
Ax? e (O, a).
where Axl(l) is determined in the previous step on the interval £, <7 <7, .
According to (5.15), considering the following possible cases. In case of (5.15)(a), if the
solution Axfz) of the equation (5.21) satisfies the inequality

r, <A < Ch, (5.22)
then from (5.19) follows, that 7, =r(¢,) =71, —Axl(z) <0, i.e. the absorption of the

uncertainty domain by the detection domain happens at the moment  =1#,.
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In case of (5.15)(a), if the solution Axl(z) of the equation (5.21) satisfies the inequality

0<Ax? <r, <Ch, (5.23)
ie.
ro=r(t)=r,-A? >0 (5.24)

on the interval #, <f <{, no detection occurs, then the uncertainty domain at moment

t =t is contained in a disk with diameter 7(#,) =, <, , moreover, as it follows from

(5.19), (5.24) and equations (5.12), (5.21) with the condition (5.1)

AV =1 =1, <1 =1, = Ax? (5.25)
Similarly to the case (5.15)(a), we can use the control (4.1) when ¢ 2, and from the

equation (5.18), where 7, is replaced with # , we can find the guaranteed absorption time,

if (5.18) is solvable against T > 0 . Otherwise, and also in case of (5.15)(b), if on the interval

t, <t <t no detection happens and

0<Ax? <Ch<r,, (5.26)

then at # =, the relations (5.25) are relevant again. Then we move to the next step of the

combined control and so on, until one of the conditions (5.22) or (5.23) related to the current
step are satisfied.

Suppose that at moment ¢ =, , 7 > 3 before the 7 -th step, no detection has happened

2n>

during the time #,, , <t< t,, and therefore, the execution of the combined control on the

interval ¢, , <t<t, resulted to reduction of the radius 7,, , =7(f, ,) of the

uncertainty circle by Ax""™", 0<Ax"™" < Ch, i.e. the uncertainty domain of TO at

moment f =1, is contained in a disk with the

n,=r(t,)=r, , A", r, L >n, n>3. (5.27)
Starting from the time ¢ =7, by applying the controls (5.2), (5.10) successively on time

intervals #,, <t <t, ,mut,  <t<t, ,, respectively, we get

2n+l
— — (n)

r2n+2 - r(t2n+2) - r2n - A'xl > r2n > r2n+2 ’ nz 3 ’ (528)

where Axl(") is determined from equation

_ (n)
P T iy =1, Wy =15, +2Ch= A", n23,
recorded as

2Vy\/2n(r2 +Ch—ZAxfi)jsgl = 2Ch—2VY\/Axf"> (w3 -¢)
i=1

A" e (O,a), n>3,
with the help of similar to (5.10), (5.2), (5.8) recurrence formulas:

=1, + 242 ) =1, +2 A (W= g?)
bnia =l + ()80 Ly =h, + I ( x—& ) , (5.30)

p(t2n+l) = p(th) _Axl(l) =n+ Ch _zAxl(i)

i=1

" (5.29)
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Since, as if follows from (5.25), we have the recurrence relations

0<r, ,—1, =MA""<Ax" =r, -1, ,<Ch, nx3, (5.31)

then 0< Axl(l) <..< Axl(”) < Ch and the search process ends at such #, when
(n) (n) _ (n) .

r, SAx" <Ch or Ax,"’ <r,, <Ch.Inthefirstcase, 1,, , =7, —Ax;"”" <0, i.ethe

absorption of the uncertainty domain by the detection disk is happening at time ¢ =1, ,,,
and the detection of TO is occurring at some point of time on the interval #,, <t <%, .In
the second case, the uncertainty domain at time ¢ =%,,,, is contained in a circle with radius
7(ty,.4) = Typeq <T,,, and the controls (5.16) related to current time interval ¢,, <t <T

(where T is the minimal positive root of the equation (5.18) written for the time 7,, ) lead

to the achievement of the absorption condition.
Here is an example of numerical implementation of the search control algorithm (5.27)
- (5.31) for the system (1.1) - (1.6) with the following parameters

W,=100ms?, V, =5ms', 7,=25m, h=50m, (5.32)
R,=5000m, g=98ms? C=1.

First, for the parameters (5.32), with formulas (2.2), (2.4), (3.8), (3.2), (4.6), (5.18) the
values f, =1,42s, 1 =32,10m, #,=15,38s, 7, =101,90m, p(t,)=126,90m,
€, =15.64 ms were calculated, respectively and it has been established the feasibility of
the condition (5.1), which by the proposed control algorithm ensures the detection of TO
within a finite time. The calculation results showed that starting from time #, the search

process, followed by detection of TO is carried out in three phases with combined control in
the form of controls (5.2) (5.10) related to each step:

Step-1

15,38s=1¢, <t <t,=30,72s, Ax" =2329m, r,=r,—Ax", r,=101,90m — r, =78,61m,
Step-2

30,72s =t, <t <t,=44,31s, Ax” =32.04m, 7, =r,—Ax?, r,=78,62m —r, =46,58m,
Step-3

4431s=t, <t <t,=54,43s, r,=1r,—Ax”, Ax” =49,44m, r, =46,57m —>r(t,)=0.
The table shows that the uncertainty domain of TO narrows after each step (the radius

of the circle containing this region is reduced) and at the end of the third step it disappears.
Consequently, at time #, =54,43s the uncertainty domain is absorbed by the detection

circle, i.e. the detection of TO happens not later than the guaranteed search time 7" =7, .

Conclusion. For the problem of a guaranteed search of a moving object, a constructive
combined control algorithm is developed, which allows the searching object moving in a
fixed-height horizontal plane of a three-dimensional space to perform the search of the target
object within a finite time. Using the produced guaranteeing controls in an explicit form, the
search, followed by the detection of the target object is carried out on the spatial trajectory
consisting of linear sections and curvilinear sections in a form of circles with monotonically
decreasing radii.
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