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Շարժական օբյեկտի երաշխավորած փնտրման կոմբինացված ղեկավարումը երկրաչափական 
սահմանափակումների դեպքում 

Դիտարկվում է հորիզոնական հարթության վրա շարժվող որոնելի օբյեկտի երաշխավորված 
փնտրման խնդիրը, որի սկզբնական վիճակը հայտնի է տրված բազմության ճշտությամբ: Փնտրումն 
իրականացվում է եռաչափ տարածության մեջ արագացմամբ ղեկավարվող օբյեկտի կողմից, որի 
ուղղահայաց կոորդինատի վրա դրված երկրաչափական սահմանափակումն արգելում է փնտրող 
օբյեկտին բարձրանալ ավելի, քան տրված թույլատրելի բարձրությունը: Մշակվել է կոմբինացված 
ղեկավարման ալգորիթմ, որի դեպքում որոնելի օբյեկտի երաշխավորված փնտրումն իրագործվում է 
տարածական հետագծով՝ կազմված ուղղագիծ հատվածներից և կորագիծ հատվածներից՝ մոնոտոն 
նվազող շառավղներով շրջանագծերի տեսքով: Խնդրի երկրաչափական և ֆիզիկական պարամետրերի 
համար ստացվել է պայման, որի դեպքում ղեկավարման առաջարկված ալգորիթմը լուծում է 
երաշխավորված փնտրման խնդիրը:  

 
Аветисян В.В., Степанян В.С. 

Комбинированное управление гарантированным поиском подвижного объекта при геометрических 
ограничениях 

 

Рассматривается задача гарантированного поиска движущегося на горизонтальной плоскости  искомого 
объекта, начальное состояние которого известно с точностью до заданного множества. Поиск 
осуществляется в трехмерном пространстве управляемым по ускорению ищущим объектом, на 
вертикальную координату которого наложено геометрическое ограничение, запрещающее  ищущему 
объекту подниматься выше заданной допустимой высоты. Разработан алгоритм комбинированного 
управления, при котором гарантированный поиск искомого объекта реализуется по пространственной 
траектории, состоящей из прямолинейных участков и кривoлинейных участков в виде окружностей с 
монотонно убывающими радиусами. Для геометрических и физических параметров задачи получено 
условие, при котором предложенный алгоритм управления разрешает задачу гарантированного поиска.  

 

In this paper we consider the problem of locating an object moving on a horizontal plane, whose initial position 
is known to be from a given subset of points of the plane. The search is carried out by the means of accelerating an 
object through  space,  which adheres to certain geometrical constraints on the vertical plane such as that the object 
cannot move past a certain maximum elevation. A combined control algorithm has been developed, that is 
guaranteed to locate the object by means of a varying linear and curvilinear trajectories, modeled as circles with 
varying radii. Geometrical and physical parameters have been calculated which allow to solve the problem of 
guaranteed positioning. 
 

 

Introduction. The problem of a variation law development of searching object’s (SO) 
controlling acceleration vector limited by absolute value is considered. SO starts three-
dimensional motion from a given initial state of rest and has to detect the moving target object 
(TO) in a finite time. TO’s motion is horizontal and controlled by acceleration. The initial 
state of TO is known to SO up to a given set of uncertainty. The absolute values of the 
acceleration and the velocity of TO are limited. SO is geometrically constrained, so that it 
cannot collide with known still obstacles (e.g. ground) or the maximum elevation is limited 
in case of the object being a flying device. TO is considered to be detected if it lies within 
the circular base of a cone whose apex’s coordinates are the current coordinates of SO. In [1] 
the time-optimal guaranteed search problem is solved without elevation constraints. A 
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minimax approach was developed which allows to reduce the problem of optimal guaranteed 
search, i.e. fastest absorption of the domain of uncertainty that is expanding with maximal 
speed, to the optimal control problem with free right end solved with the Pontryagin’s 
Maximum Principle [2] in the class of control problems with constant acceleration. 
Nevertheless, the implementation of the approach mentioned in [1] depending on the initial 
parameters of the searching system seems impossible for the problem of guaranteed search 
with constraints on elevation (including optimal guaranteed search) due to limited 
possibilities for detection disk expansion necessary for absorption of TO’s uncertainty 
domain expanding in time. For this reason this paper offers another approach based on 
development of a combined control algorithm for SO allowing a multi-step search of TO by 
means of linear and curvilinear regions with monotonically decreasing radii. Other 
approaches to the related problems see in [3-5]. 

 
 

1. Problem statement. Suppose there are two point objects X  and Y , where X  is 
the searching one and Y  is the target. X  performs three-dimensional motion in the 
gravitational field of the Earth and Y  on the surface of the Earth. The motion equations of 
the objects can be given in the following form: 
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  (1.2) 

In (1.1), (1.2) ix , iy  – geometrical coordinates of the objects ,X Y ; Xiw , Yiw  – 
coordinates of controlling accelerations of objects, which are piecewise continuous vector-
functions of t ; XW , YW  – maximal possible values of controlling accelerations Xw , Yw  

respectively; YV  – maximal possible speed of the object Y ; h  – maximal allowed value of 

coordinate 3x  of the object X  during the motion; g  – gravitational acceleration; 0R  – 

given positive number. The symbols  Т  and   are the operations of transposition and 
Euclidian norm of vectors, respectively. 

Let us suppose that the only information about the phase coordinates of Y known to X 
is a given uncertainty set Y belongs to at the initial moment. 

0 0 0 2 0 0 2 0
0 0 0 0 0( , ) , { : }, { : }Yy y D D D y R y r D y R y V           .  

(1.3) 
TO is considered to be detected at the very first moment t t , when the following 

statement is true 
( ) ( ( ))y t G x t  , т.е.  ( ) ( ) ( )cy t x t l t    ,  1 2( , )c c cx x x       (1.4) 

– i.e. it belongs to the moving circular base of the following cone: 
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       (1.5) 

 The detecting disk (1.5) of SO (1.1) at the moment t  while using all possible piecewise 
continuous controlling accelerations (admissible controls) ( )Xw  , ( )X Xw W  , 

0 t   , on the plane 1 2( , )x x , represents a disk with a moving center (by means of 

control 1 2( ( ), ( ))X Xw t w t  with center 1 2( ) ( ( ) ( ))c c cx t x t ,x t  and varied by using 

3 ( )Xw t  scalar control with 3( ) ( )l t Cx t : ( ) 0l t   radius when 3( ) 0Xw t   and 

( ) 0l t   when 3( ) 0Xw t  . 

According to (1.5), at the initial moment the detection disk 0 0( ,0)G R  is a point on 

the axis 1Ox . We assume, that 0 0R r , i.e. initially the uncertainty disk has no intersection 
with the detection disk:  

0 0D G  .        (1.6) 

The primary problem. For a given initial state 0 0( , )x x  and given initial disk of 

uncertainty 0D (1.3) and disk of detection 0G (1.5), satisfying (1.6), find a number  0T  

and admissible control ( )Xw t  of object X  on the  Tt ,0  interval, so that for any initial 

state 0 0( , )y y (1.3) of Y  and any admissible control ( )Yw t  on the  Tt ,0  interval, the 

detection condition (1.4) is satisfied at some moment t  not later than T : Tt  .  
We will call the number 0T  and the admissible control ( )Xw t , 0 t T   of the 

X  guaranteed search time and guaranteeing control, respectively. 
For the system (1.1) – (1.6) when solving the time-optimal guaranteed search problem 

without the constraint on axis 3x  in [1] we introduce the concept of uncertainty domain at 

moment Т : ( )D T  on the plane 1 2( , )y y  is consisting of end points 

1 2( ) ( ( ), ( ))y T y T y T  of all trajectories of TO (1.2) for all possible initial states 
0 0

0 0( , )y y D D    and constructed with all kind of piecewise continuous admissible 

controlling accelerations 1 2( ) ( ( ), ( ))Y Y Yw t w t w t , ( )Y Yw t W , 0 t T   with a 

constraint on speed ( ) Yy t V , 0 t T  . 
Considering the above, in [1] an approach is suggested consisting of constructing an 

admissible control on motion of X , such that the detection disk of SO absorbs the disk of 
uncertainty (expanding in time) within a minimal guaranteed time Т : 

( ) ( ( ))D Т G x Т ,        (1.7) 

which ensures the fulfillment of the condition (1.4) at some point t T   in time. 
 Based on the minimax approach, it was found that for guaranteed detection it is 

sufficient to consider the case when TO is initially on the boundary of the uncertainty domain 
(1.3), has no acceleration and has a vector-speed directed radially away from the center of 
the disk  

 0 0 0 0 1 0 1
1 2 1 0 2 0( , ) ,Y Yy y y V y r V y r     ,           ( ) 0, 0Yw t t T   ,           (1.8) 
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i.e. the radius of the disk ( )D t  is increasing linearly:  

0( ) Yr t r tV  .                                     (1.9) 
Thereby the optimal guaranteed search problem was reduced to the problem of optimal 
control with free right end, which was solved with the Pontryagin’s Maximum Principle [2] 
in the class of problems with constant accelerations. However, in presence of the constraint 
on the axes 3x  (1.1) in some cases depending on the initial state of the searching system, the 
implementation of this method of absorption (1.7) seems impossible in the problem of 
guaranteed (including optimal guaranteed) search, as the possibilities are limited for the 
detection disk to expand which is necessary when having the conditions (1.8), (1.9). For this 
reason, this paper offers another approach based on development of a hybrid control 
algorithm for SO allowing a multi-step search of TO. 

 

2. Fastest maximum elevation reaching step. In this step, SO performs a vertical 
motion on purpose of reaching the maximum elevation with zero speed at the end of the 
motion. Such a motion is implemented with the solution of the following optimal 
performance problem. 

Problem 1. Find a controlling acceleration  ( )Xiw t , 1[0, ]t t ,  1,2,3i   (1.1), that 

ensures the movement of X  (1.1) from a given initial state of rest (1.1) to a given terminal 
state of rest  

1 1 0 1 1 2 1 2 1 3 1 3 1( ) , ( ) 0, ( ) 0, ( ) 0, ( ) , ( ) 0,x t R x t x t x t x t h x t             (2.1) 

within the minimal time 1t . 
This is a two-point optimal control problem. According to the Pontryagin’s Maximum 

Principle of optimal control [2], providing the quickest transition from one point to another 
in the phase space is the vector function 1 2 3( ( ), ( ), ( ))X X X Xw w t w t w t     with the 
following components: 

    
1 2 1

1
3 1 1

0, 0 ,

sign / 2 , 2 .

X X

X X X X X

w w t t

w W t t h t hW W g W g

 



   

          
   (2.2) 

Thus, the control (2.2) ensures SO to reach maximum elevation 3x h  with zero 

terminal speed within minimal time 1t  (2.2). At the time 1t t  the radius of the detection 

disk reaches a maximum value 1 3 1( ) ( )l t Cx t Ch  , and the detection disk on the plane 

1 2Оx x  takes the following form: 

 2 2 2
1 1 2 1 0 2 1 1 3 1( ) ( , ) : ( ) ( ), ( ) ( )G t x x x R x l t l t Cx t Ch      .      (2.3) 

Since Y  in the time interval 10 t t   can be at a maximum distance from the center 
of the initial disk of uncertainty, if and only if at the initial time it is on the boundary of the 
uncertainty set (1.3) and has an initial velocity (1.8), which provides expansion of the disk of 
uncertainty with the highest rate YV  (1.9) then at the moment 1t t  it can be located in any 
point of the circle 

 2 2 2
1 1 2 1 2 1( ) ( , ) :D t y y y y r   ,       1 1 0 1( ) Yr r t r V t   .         (2.4) 
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3. Step of fastest contiguation of the detection and uncertainty circles. While X  is 
on the maximum permissible height with the zero-speed state  (2.1) at the moment 1t t , it 

performs a linear horizontal movement along the axis 1Ox  in the direction toward the center 

of the circle of uncertainty within the time interval 1 2t t t   until the first contact at 2t t  

of the detecting circle 2( )G t  and the circle of uncertainty 2( )D t . 

Since TO within the time interval 1 2t t t   continues its motion having maximum 

absolute value of the velocity vector (1.8), then at the time 2t t  it can be anywhere on the 
boundaries of the uncertainty circle 

 2 2 2
2 1 2 1 2 2( ) ( , ) :D t y y y y r   ,       (3.1) 

where given (1.9), (2.4) 2r  is calculated as follows:  

2 2 1 2 1 0 2( ) ( )Y Yr r t r V t t r V t      .    (3.2) 

This means that the required motion of SO can be implemented by the control vector 

1 2 3( ( ), ( ), ( ))X X X Xw w t w t w t    , wherein the second and third components are specified 
as 

2 ( ) 0Xw t  , 3 ( )Xw t g  ,   1 2t t t         (3.3) 
and the first component is determined by solving the following optimal control problem. 

Problem 2. Find an optimal control 1( )Xw t , 1 2t t t   which satisfies the constraint  
2 2

1( )X Xw t W g        (3.4) 
(given (1.1), (3.3)) and along with given control constants (3.3) provides the displacement of 
the X  from a rest state (2.1) to the terminal rest state 

1 2 0 2 2 2 3 2

1 2 2 2 3 2

( ) , ( ) 0, ( ) ,
( ) 0, ( ) 0, ( ) 0

Yx t r V t Ch x t x t h
x t x t x t

    
    

   (3.5) 

within a minimal time 2 1t t . 
Note that the first two boundary conditions in (3.5) can also be written in the form 

1 2 2 1 2( ) ( )x t r Ch y t Ch    , 2 2 2 2( ) ( ) 0x t y t   in view of (3.1), (3.2),  express the 

situation of outside contact between the circles G  and D  at time 2t . 
Since with the given controls (3.3) the system (1.1) does not move by the coordinates 

2 3,x x  (with boundary conditions (2.1) and (3.5)), then the problem 2 is reduced to one-

dimensional (regarding the coordinate 1x ) problem of optimal control with free right end: 

1 1 1 1 0 1 1 1 2 0 2 1 2, ( ) , ( ) 0, ( ) , ( ) 0X Yx w x t R x t x t r V t Ch x t         .    (3.6) 
Solving (3.6) as a two-point optimal problem, analytical expressions for the optimal 

control and the corresponding minimum travel time is found: 

    2 2
1 2 1 0 2 0sign / 2X X Yw W g t t t r V t Ch R          ,    (3.7) 

2
0 0 1

2 1 2 22 2 2 2
2 YY Y

XX X

R Ch r V tV Vt t
W gW g W g

        
   

,   (3.8)    

where  1t  is calculated according to (2.2). 
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Thus, at the moment 2t t , in the state (3.5) of the object X , the circle of the detecting 
disk  

 2 2 2
2 1 2 1 1 2 2 2 2 3 2( ) ( , ) : [ ( )] ( ), ( ) ( )G t x x x x t x l t l t Cx t Ch        (3.9) 

contacts the circle of uncertainty (3.1), (3.2) inside. 
 

4. Helper problem. Starting at moment 2t t  (3.8), when SO is in the rest state (3.5) 
and the detection disk (3.9) and the uncertainty disk (3.1) are in contact, SO performs the 
search via flat motion 3x h  and the detection disk has a constant radius 3( )l Cx t Ch 
, 2t t . Taking into account the equations of motion (1.1) and (3.5) for the 3x  coordinate 

and the velocity 3x  at the moment 2t t , X  carries such a motion with  

3 ( )Xw t g  ,     2t t .      (4.1) 

It follows that only the flat movement of the X which is defined by the first two 

equations (1.1) is a subject to review. We introduce the polar coordinate system ( , ,О  ) 
so that the pole О  is in the center of the disk of uncertainty, and the polar axis runs through 
the center of the detection disk having coordinates (3.5) at the moment 2t t . In the first 
two equations we switch to polar coordinates ,   associated with the original Cartesian 

coordinates 1 2,x x  with the following relations: 

1 cosx    ,   2 sinx    .        (4.2) 
The equations of the plane motion of SO (1.1), represented in polar coordinates are as 

follows: 

 2 w    ,    ( )d w
dt   ,         (4.3) 

where w  and w  are radial and tangential components of acceleration of the X, 
respectively. They are associated with the first two components of the vector of controlling 
acceleration 1 2 3( , , )X X X Xw w w w  as follows: 

1 cos sinXw w w    ,    2 sin cosXw w w    .       (4.4) 
In view of (4.1), (4.4) the constraint on the absolute value of controlling acceleration 

(1.1) takes the form 
2 2 2 2 2 2

1 2X X Xw w w w W g      ,      2t t ,          (4.5) 

and the initial conditions (3.5) will be 

2 2 2 2 2 2( ) , ( ) 0, ( ) 0, ( ) 0.t r Ch t t t               (4.6) 

For the detection of TO, SO carries a circular motion around the center O  with a radius 

2( ) constt   by choosing a direction for the encircling maneuver, which actually is the 
positive direction of the reference polar angle. 

Then, motion controls (4.2) will be 
2

2( )t w   ,   2( )t w   ,     (4.7) 

Let us find the variation laws for the controlling accelerations ( )w t  and ( )w t  
which satisfy the constraint (4.5), while moving circumferentially with the constant radius 
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2( )t  according to the equations (4.7), the center of the detection disk goes from the state 
of rest (3.6) to the state of rest  

2 2( ) , ( ) 0, ( ) 0, ( ) 0.t r Ch t t t               (4.8) 

within a minimal time 2t t  . 

The required controls ( )w t  and ( )w t  are as follows. Constraining the tangential 
control acceleration: 

( )w t   ,    2[ , ]t t t ,   (4.9) 

where 0   and t – are unknown constant and time respectively. 
First, from the two-point optimal control problem (4.6) - (4.9) we determine the optimal 

controlling tangential acceleration w . The maximum principle implies that the desired 
control is an on-off control with the switching point t  : 

 sign 2w t        ,     2 / 2t t   ,    1
2 22 2 ( )t t t 

     .  (4.10) 

Then, by integrating the second equation (4.7) with the control (4.10) and the boundary 
conditions (4.6), (4.8), we find the function of the angular velocity of the time ( )t , and 
after applying it in the first equation (4.7), we find the variation of the radial acceleration of 
the time 

 
 

22 1
2 2 2

22 1
2 2

( ), ,
( )

2 ( ), .

t t t t t
w t

t t t t t



 


      
       

 (4.11) 

The concave and continuous function (4.11) produces zeros on the ends of the interval 

2t t t  : 2( ) ( ) 0w t w t    . In the interval 2t t t   it monotonically increases and 

in the interval t t    it monotonically decreases, producing the maximal value on the 

middle  2 / 2t t    of the interval:  

  12 2 22

2 2 1
2 2/2 2 2 ( )

max ( ) ( ) ( ) ( ) / 4 2 .t t t t tt t t
w t w t t t  


        

         (4.12) 

From (4.9) and (4.12) follows  
2 2 2 2 2( ) ( ) 4w t w t       ,     2t t t  .         (4.13) 

By virtue of (4.13), in 2t t t   the constraint (4.5) is ensured, if the following 

inequality is satisfied for 0  : 
2 2 2 2 24 XW g      .     (4.14) 
The solution of the inequality (4.14)  is 

     12 2 2
0 00, , 4 1XW g


       .  (4.15) 

Thus, 0    (4.15) is the maximal value when the constraint (4.14) is not violated 

where  the time t  and control (4.10) are optimal: 
1

2 2 02 2 ( )t t t 
     ,       0 2sign 2 / 2w t t t        .  (4.16) 



60 

Moving with maximal velocity YV ,  SO being on some point of circle 2( )D t (3.1) at 

the moment 2t t , within the time 2t t   will pass a distance 2( )YV t t   and at the 

moment t t  can be maximally displaced from the origin, i.e. on some point of circle 

 2 2 2
1 2 1 2( ) ( , ) :D t y y y y r     with the radius 2 2( )Yr r V t t    . From this and 

(4.16) follows, that if the condition 
1

2 2 02 2 ( ) 2Yr r V t Ch
      ,                (4.17) 

is satisfied, then within the optimal time of one full rotation of SO around the center O , TO 
does not have enough time to leave the circular ring with width 2 2l Ch  and stay 
undetected. 
 

5. Combined control algorithm. Suppose that for the given initial parameters 

0 0, , , , , ,Y Xr R C h V W g  at time 2t t  the condition (4.17), written in the form  
1 1

2 02 ( ) Yt ChV            (5.1) 
is satisfied.   

Starting from 2t t , with the tangential acceleration equal to zero 0w  , SO moves 

as fast as possible along the axis 1Ox  in the direction of the pole O  from the state 

(4.6)((3.5)) performing a displacement (1)
1 0x   (defined below). Using (4.4) and the 

following controls  

  2 2 (1)
1 3 2 1( ) sign / 2X Xw t W g t t t x         ,                      (5.2) 

2 ( ) 0Xw t  ,   3 ( )Xw t g  ,      2 3t t t  ,       1/2(1) 2 2
3 2 12 Xt t x W g


     

X  will make the below transition to the state of rest within a minimum time 3 2t t : 
(1)

1 3 3 2 1( ) ( ) ( )x t t t x      ,   2 3( ) 0x t  ,   1 3( ) 0x t  ,     2 3( ) 0x t  .    (5.3)  

Meanwhile, during the time 3 2t t  the uncertainty disk of TO (moving with YV  
velocity) will expand and its radius reaches the value 

3 3 2 3 2( ) ( )Yr t r r V t t            (5.4) 

at the moment 3t t . 

We require that at time 3t t  the right point 3( ( ),0)r t  of intersection of the circle of 

uncertainty with the axis 1Ox  be more left than the right point 3( ( ) ,0)x t Ch  of 

intersection of the circle of detection with the axis 1Ox : 3 1 3( ) ( )r t x t Ch  , i.e. with 
(5.3), (5.4) the following condition to be satisfied   

(1)
3 2 1( ) 2YV t t Ch x    .          (5.5) 

The inequality (5.5) sets a constraint on desired value for (1)
1 0x   and after 

replacement of 3 2t t  with (5.2) it is reduced to the following inequality: 

  1/2(1) 2 2 (1)
1 12 2 0Y Xx V W g x Ch


      ,          (5.6) 

and the solution is  
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 (1)
1 0,x a  ,       

2
1/2 1/22 2 2 2 2 2Y X Y Xa V W g V W g Ch
         

. (5.7) 

If during the time 3 2t t  the detection of Y  is not happening, then at 3t t  being in 

the state (5.3), for which (1)
1x  is from the interval (5.7), SO performs a fastest possible 

rotation with the constant radius (1)
3 2 1( ) ( )t t x      in the way described in the section 

4 from the rest state 
(1)

3 2 1 3 3 3( ) ( ) , ( ) 0, ( ) 0, ( ) 0t t x t t t                      (5.8) 
to the terminal state of rest 

(1)
4 3 2 1 4 4 4( ) ( ) ( ) , ( ) 0, ( ) 2 , ( ) 0t t t x t t t                 (5.9) 

within a  minimal possible time 4 3t t . 
SO performs such a relocation with the tangential (4.16) and radial (4.11) control 

accelerations, also with the control (4.1), related to the time interval 3 4t t t  :  

  0 4 3sign 2 / 2w t t t        ,        1
4 3 3 02 2 ( )t t t     ,      (5.10)  

 
 

22 1
0 3 3 3 4

22 1
0 4 3 3 4 4

( ), ,
( )

2 ( ), ,

t t t t t
w t

t t t t t



 

      
        

          4 3 4 / 2t t   .  

3 ( )Xw t g  ,     3 4t t t  , 

where 3( )t  and 0  are deduced from (5.8) and (4.15), respectively. 

Given the constraint (5.7), the desired value for (1)
1x  will be determined from the 

following equation: 
(1)

3 4 3 2 1( ) 2Yr t t V r Ch x      ,     (5.11)    
which, using (5.2), (5.4) and (5.10) is transformed to 

  1/2(1) 1 (1) 2 2 (1)
2 1 0 1 12 2 ( ( ) ) 2 2Y Y XV t x Ch V x W g x

          .   (5.12) 

Here, the value of 2( )t  using (2.2) (3.2) (3.8) (4.6) is expressed in terms of the given known 

parameters 0 0, , , , , ,Y Xr R C h V W g  of the problem. 

With the condition (5.1), the equation (5.12) is solvable against (1)
1x  on the interval 

(5.7). Solving it, we find the value for (1)
1x  wherein during the full rotation time 4 3t t  

around O , TO moving with constant velocity from the boundary of the uncertainty disk, will 
be detected. The radius of the disk will be: 

  1/2(1) 2 2
3 3 2 1( ) 2 Y Xr t r r V x W g


     .         (5.13) 

Thus, if no detection of TO (1.4) occurs at any moment 2 4[ , ]t t t   of the time interval 

2 4t t t  , then the execution of the combined control (5.2), (5.10) during the time 4 2t t  

results to reduction of the diameter 2 2( )r r t  of the uncertainty domain by (1)
1x ; 

(1)
1 20 x Ch r    , i.e. the uncertainty domain of TO at time 4t t  is contained in a 

circle with a radius   
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(1)
4 4 2 1( ) 0r r t r x     ,         4 20 r r  .    (5.14) 

Here, the following cases are possible: 
a) 4 4( )r t r Ch  ,            b) 4 4( )r t r Ch  .      (5.15) 

In case of (5.15)(а), let us find a condition, for which the controls 
2 2

1X Xw W g    ,   2 0Xw
  ,   3Xw g  ,             4t t ,      (5.16) 

of linear motion along the axis 1Ox  from the state (5.9)(recorded in Cartesian coordinates 

(4.2)), ensure satisfaction of the absorption condition (1.7) not later than some finite time T
.  

First, we integrate the equation (1.1) given the controls (5.16) and initial conditions 
(5.9)((4.2)). Then, the resulting expressions for t T  we put in the final terms 

1 1 1 1 4 4( ) ( ), ( ) 0, ( ) ( ),Yx T Ch y T x T y T r V T t           (5.17)    

describing the relative position of the disks ( ( ))G x T  and ( )D T [1], corresponding to the 
absorption condition (1.7) [1]. 

The relations (5.17) can also be represented as the following system against the 
parameter 0T  : 

2 2 2
1 4 1 1 4 1 4 4

2
4 1 4 1 4 4 4

0, 2 2 ( ) 0,
2 4 ( ) 2 .

X Y X X X

X X Y

w T V T R w T w t w t r t
R w t w t r t t

   

 

      

    
       (5.18) 

If (5.18) is solvable against 0Т  , then the controls (5.16) are guaranteeing on the 
interval 4t t Т  , and the time Т (minimal positive root of the equation (5.18)) is the 
guaranteed search time, since at this point the boundary condition (5.17) is satisfied, which 
is equivalent to the absorption condition (1.7) and detection condition (1.4).  

If (5.18) is not solvable, then in both (5.15)(а) and (b) cases, starting from the moment 

4t t  secondarily applying the controls (5.2) and (5.10) related to intervals 4 5t t t   and  

5 6t t t  , respectively, will give  
(2)

6 6 4 1( )r r t r x    ,                     (5.19) 

where (2)
1x  is determined from the following equation: 

(2)
5 6 5 4 1( ) 2Yr t t V r Ch x      ,        (2)

1 0,x а  .              (5.20)  
The equation (5.20) with the help of similar forumals (5.2), (5.4), (5.10), related to 

differences ( 5 2t t ), ( 5 4r r ), ( 6 5t t ), respectively, is recorded as 

    1/2(1) (2) 1 (2) 2 2 (2)
2 1 1 0 1 12 2 ( ) 2 2Y Y XV t x x Ch V x W g x

          ,   (5.21) 

 (2)
1 0,x а  . 

where (1)
1x  is determined in the previous step on the interval 2 4t t t  . 

According to (5.15), considering the following possible cases. In case of (5.15)(а), if the 
solution (2)

1x  of the equation (5.21) satisfies the inequality  
(2)

4 1r x Ch   ,            (5.22) 

then from (5.19) follows, that (2)
6 6 4 1( ) 0r r t r x     , i.e. the absorption of the 

uncertainty domain by the detection domain happens at the moment 6t t . 
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In case of (5.15)(а), if the solution (2)
1x  of the equation (5.21) satisfies the inequality  

(2)
1 40 x r Ch    ,      (5.23) 

i.e.   
(2)

6 6 4 1( ) 0r r t r x       (5.24) 

on the interval 4 6t t t   no detection occurs, then the uncertainty domain at moment 

6t t  is contained in a disk with diameter 6 6 4( )r t r r  , moreover, as it follows from 
(5.19), (5.24) and equations (5.12), (5.21) with the condition (5.1) 

(1) (2)
1 2 4 4 6 1x r r r r x       .   (5.25) 

Similarly to the case (5.15)(а),  we can use the control (4.1) when 6t t  and from the 

equation (5.18), where 4t  is replaced with 6t , we can find the guaranteed absorption time, 

if (5.18) is solvable against 0T  . Otherwise, and also in case of (5.15)(b), if on the interval 

4 6t t t   no detection happens and   
(2)
1 40 x Ch r    ,    (5.26) 

then at 6t t  the relations (5.25) are relevant again. Then we move to the next step of the 
combined control and so on, until one of the conditions (5.22) or (5.23) related to the current 
step are satisfied. 

Suppose that at moment 2nt t , 3n   before the n -th step, no detection has happened 

during the time 2 2 2n nt t t    and therefore, the execution of the combined  control on the 

interval 2 2 2n nt t t    resulted to reduction of the radius 2 2 2 2( )n nr r t   of the 

uncertainty circle by ( 1)
1
nx  , ( 1)

10 nx Ch   , i.e. the uncertainty domain of TO at 

moment 2nt t  is contained in a disk with the  
( 1)

2 2 2 2 1( ) n
n n nr r t r x 

    ,     2 2 2n nr r  ,     3n  .     (5.27) 

Starting from the time 2nt t  by applying the controls (5.2), (5.10) successively on time 

intervals 2 2 1n nt t t    и 2 1 2 2n nt t t   , respectively, we get   
( )

2 2 2 2 2 1( ) n
n n nr r t r x     ,     2 2 2n nr r  ,     3n  ,          (5.28) 

where ( )
1
nx  is determined from equation 

( )
2 1 2 2 2 1 2 1( ) 2 n
n n n Y nr t t V r Ch x        ,    3n  , 

recorded as 

 

 

1/2( ) 1 ( ) 2 2 ( )
2 1 0 1 1

1

( )
1

2 2 2 2 ,

0, , 3,

n
i n n

Y Y X
i

n

V r Ch x Ch V x W g x

x а n





 
          
 

  


 (5.29) 

with the help of similar to (5.10), (5.2), (5.8) recurrence formulas:   
1

2 2 2 1 2 1 02 2 ( )n n nt t t 
      ,       1/2( ) 2 2

2 1 2 12 n
n n Xt t x W g



     ,   (5.30) 

(1) ( )
2 1 2 1 2 1

1
( ) ( )

n
i

n n
i

t t x r Ch x
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Since, as if follows from (5.25), we have the recurrence relations 
( 1) ( )

2 2 2 1 1 2 2 20 n n
n n n nr r x x r r Ch
          ,        3n  ,         (5.31) 

then (1) ( )
1 10 ... nx x Ch       and the search process ends at such n , when 

( )
2 1

n
nr x Ch    or ( )

1 2
n

nx r Ch   . In the first case, ( )
2 2 2 1 0n
n nr r x     , i.e the 

absorption of the uncertainty domain by the detection disk is happening at time 2 2nt t  , 

and the detection of TO is occurring at some point of time on the interval 2 2 2n nt t t   . In 

the second case, the uncertainty domain at time 2 2nt t   is contained in a circle with radius 

2 4 2 4 2 2( )n n nr t r r     and the controls (5.16) related to current time interval 2nt t Т   

(where Т  is the minimal positive root of the equation (5.18) written for the time 2nt ) lead 
to the achievement of the absorption condition. 

Here is an example of numerical implementation of the search control algorithm (5.27) 
- (5.31) for the system (1.1) - (1.6) with the following parameters  

100XW  ms-2,  5YV  ms-1,  0 25r  m,  50h  m,     (5.32)   

0 5000R  m,    9.8g  ms-2,      1C  . 
First, for the parameters (5.32), with formulas (2.2), (2.4), (3.8), (3.2), (4.6), (5.18)  the 

values 1 1,42t  s, 1 32,10r  m, 2 15,38t  s, 2 101,90r  m, 2( ) 126,90t  m, 

0 15.64  ms-2 were calculated, respectively and it has been established the feasibility of 
the condition (5.1), which by the proposed control algorithm ensures the detection of TO 
within a finite time. The calculation results showed that starting from time 2t  the search 
process, followed by detection of TO is carried out in three phases with combined control in 
the form of controls (5.2) (5.10) related to each step: 

(1) (1)
2 4 1 4 2 1 2 4

Step -1
15,38s 30,72s, 23.29m, , 101,90m 78,61m,t t t x r r x r r          

(2) (2)
4 6 1 6 4 1 4 6

Step-2
30,72s 44,31s, 32.04m, , 78,62m 46,58m,t t t x r r x r r          

(3) (3)
6 8 8 6 1 1 6 8

Step -3
44,31s 54, 43s, , 49, 44m, 46,57m ( ) 0.t t t r r x x r r t          

   

 The table shows that the uncertainty domain of TO narrows after each step (the radius 
of the circle containing this region is reduced) and at the end of the third step it disappears. 
Consequently, at time 8 54,43st   the uncertainty domain is absorbed by the detection 

circle, i.e. the detection of TO happens not later than the guaranteed search time 8Т t .  
Conclusion. For the problem of a guaranteed search of a moving object, a constructive 

combined  control algorithm is developed, which allows the searching object moving in a 
fixed-height horizontal plane of a three-dimensional space to perform the search of the target 
object within a finite time. Using the produced guaranteeing controls in an explicit form, the 
search, followed by the detection of the target object is carried out on the spatial trajectory 
consisting of linear sections and curvilinear sections in a form of circles with monotonically 
decreasing radii.  
 

 
 



65 

References 
 

1. Avetisyan V.V., Stepanyan V.S. Optimal guaranteed dynamic search of mobile object on 
the plane // Mechanics. Proceedings of National Academy of Sciences of Armenia, Volume 
68 (2015). Issue 4. P. 45-61.  
2. Pontryagin L.S. and others. The mathematical theory of optimal processes. – M: Nauka. 
1988. 344 p. 
3. Chernousko F.L. Controlled search of movable object // PMM. 1980. Volume 44. Issue 1. 
P. 3-12. 
4. Melikyan A. A. The problem of time-optimal with the search for a target point // PMM. 
1990. Volume 54. Issue 1. P. 3-11. 
5. Petrosyan L.A., Zenkevich N.A. Optimal search in conflict situations. – Leningrad 
University. 1987. 75p. 
  
 
About authors: 
 

Vahan Avetisyan – Dr., Professor, Department of Mathematics and Mechanics, YSU, 
Tel.: (+374 94) 44 95 60;   
Е–mail: vanavet@yahoo.com   
 

Vahan Stepanyan – Ph.d student of the Faculty of Mathematics and Mechanics, YSU, 
Tel.: (+374 98) 900846;    
Е–mail: nop144d@gmail.com    

  
Received  25.12.2015 


