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Abstract

A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is
performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general
analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive
for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients
(transformation coefficients) for sensing, actuating, and energy harvesting. As a particular case, we derive an
analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a
rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency,
and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented.
Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting
coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained
as particular cases. The result for a low frequency (static) system is obtained as a particular case by approaching the
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vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower
force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the

strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed
model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA) composites.

1. Introduction

Piezoelectric materials have found widespread applications in the last decade in sensors,
actuators, loud speakers, etc. because of their ability to convert electrical energy to
mechanical, thermal, and magnetic energy, and vice versa. This has led to an accumulation
of research to develop piezoelectric based energy harvesting devices as power generators in
a variety of portable and low power consuming devices. The process of extracting energy
from the surrounding environment is termed as energy harvesting. Energy harvesting, which
originated from the windmill and water wheel, is widely being considered as a low
maintenance solution for a wide variety of applications.

Note that energy harvesting techniques are numerous [3, 5-11, 14-16, 18- 20, 22-26].
Photovoltaic-solar energy is directly converted into electrical energy using polarized solar
cells (semiconductor devices); mechanical (vibrations), electrostatic method -a relative
movement between electrically isolated charged capacitor planes is utilized. The work
against the electrostatic force between the plates provides the harvested energy,
electromagnetic method — an electromagnetic induction arising from the relative motion
(rotation or linear) between a magnetic flux and a conductor is used, piezoelectric method-
active materials are employed to generate the energy when mechanically stressed [3, 5-11,
14-16, 18- 20, 22-26].

Other attractive area for harvesting energy is from thermal sources. Thermal energy
(temperature gradient) is converted into electrical energy using e.g. Seebeck’s effect [10, 24].
Thermal-energy (temperature variation) is converted via the pyroelectric effect [9, 18, 23,26].
Mention that using a thermoelectric module a limited temperature gradient due to the limited
heat exchange (Seebeck’s effect), a maximum efficiency of ~3-4% can be expected.
However, on the contrary, a pyroelectric device may reach efficiency up to 50% of efficiency
[3,24].

Vibration energy can be converted into electrical energy through piezoelectric,
electromagnetic and capacitive transducers. Among them, piezoelectric vibration-to
electricity converters have received much attention, as they have high electromechanical
coupling and no external voltage source requirement, and they are particularly attractive for
use in MEMS [1, 2, 4, 13,17,21].

Authors in [20] discussed a recent commercial wristwatch that uses thermoelectric modules
to generate enough power to run the clock’s mechanical components. The thermoelectric
modules in the clock work by the thermal gradient produced through body heat. Pyroelectric
effect is another possibly for converting heat into electricity. Authors in [9, 16, 23, 26]
proposed a pyroelectric energy harvesting using materials such as PZT-5A, PMN-PT, PVDF,
and thin-films. It was concluded that with a higher pyroelectric coefficient, more power is
generated. Authors [18] proposed a thermal energy harvester with a piezo-shape memory
alloy (SMA) composite. The combined electro elastic coupling of the piezoelectric with the
thermal response of the SMA was studied.

More details about energy harvesting methods, challenges, and thermal sources, the reader is
referred to 3, 10, 18, 22, 26].

A piezoelectric energy harvester in an infinite degree of freedom system is often modeled as
a mass+ spring + damper + piezo structure (as a lumped model) together with an energy
storage system. This approach is simple but cannot capture all phenomena’s specific to
distributed system. We model an energy harvester as a distributed system and in particular
we show that effect of boundary conditions on energy harvesting coefficient can have a
significant influence.
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The work presented in the paper deals with the modeling of harvesting from mechanical,
electrical (piezoelectric), and thermal (pyroelectric) bi-morph type structures. Also, the
influence of boundary condition, in plain conservative follower force, vibration frequency,
and material properties on a bimorph energy harvester is analyzed while under a thermal-
electrical field. The pyroelectric and thermal expansion coefficients are also considered.
The proposed model for the bimorph can be extended for more general cases, for example:
to the composites made of magneto-thermo-electro-elastic shape memory alloy’s (SMA).

2. Model and Constitutive Equations
A thermally active thermo-piezoelectric bilayer structure of length 2L and thickness

H =h, +h,, where h,is the thickness of the piezoelectric layer and h, is the thickness
of the elastic layer is considered. The system of coordinates is chosen in such a way that X

axis is directed along the neutral line, the X, axis is directed across the width, and the X
axis is orthogonal to both of them. For simplicity, the structure is assumed to be a two

dimensional X plate-layer, where the field functions depend only on the space coordinates

X and X; . We also consider a piezoelectric layer that is poled in the X; direction (Fig. 1a,
b).

Furthermore, we assume that

e The material of each layer is linearly elastic,

e  The strains and displacements are small,

e The length of the composite is much larger than its total thickness (L >> H),

e The thermal field distribution is constant across each layer,
e Bernoulli’s (Kirchhoff’s) hypothesis is valid for both layers. The displacement in

X and X, directions are given as

u1(><1,><3)=U(><1)—x3%
Uy (%, %) = w(x)

()
X3
(a)
Py P,
0 a X
Nx (c)
3 (b
""""""" 4 i"‘ x3
------ Az |z, Thermo-elastic
| | -
X )
Zy 1 EO X2
‘l/ Thermo-piezoelectric

Fig. 1. (a) Thermo-piezoelectric and thermos-elastic bi-layer under thermal field ¥ and a conservative
compressive follower force F:(‘) ; (b) Locations of neutral line from the interfaces; (c) The bi-layer’s

cross section.



Based on the above assumptions, the equations of motion and Maxwell’s electro-magneto
static equations for the thermo-elastic and thermo-electro-elastic layers are written as
([1,2,4,13,17,21)

azu(.k)
T =o' at—; ?)
Di(,r) =0 and QJmEj(kr; = 05 ( k= L 2) ) (3a,b)

Where F, =6—F, Tij
) 6&

Ei is the electric field, and €jm I8 the permutation index. The superscript “k” is used to

is the stress tensor, P is the density, Di is the electric displacement,

denote the layer, with k=1 indicating the thermo-piezoelectric layer and k=2 indicating the
thermo-elastic layer.

The constitutive equations are written in a form of
s = SEI)T-(D + d?.” Egl) +a’9
DY =d()T()+8 +p"9

i ij

“

for thermos-pieso-electric layer, where we introduce one index notation for tensors. For
example:

two index stress T and one index stress T relatedas T, =T, T, =T,, T, =T, andctr

(for details see [9, 12, 13, 17]).

For demonstration purposes only constative equations (4) fori =1 can be written as
S( +§(2 +513 +dles +OL()9
1 _ (1
D’ =d/T +d12 +d13 +813ES +p1
For the thermo-elastic layer

S? sh”T(z) +a?9 (i =1,6) (5)

In these equations, S is the strain vector, T| is the stress vector, 3 is the thermal field

across the two layers, S; is the compliance matrices of the piezoelectric and pure elastic

media, dij is the piezoelectric coefficient, g is the dielectric permittivity, O, 1is the

i
thermal expansion coefficient, and [3 is the pyroelectric coefficient.
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Within the scope of Bernoulli’s (Kirchhoff’s) hypothesis of plate-layer theory, only the strain
S is induced in the plate-layer. This strain is given by

ou, (X, % ) _ ou(x) x o’w

= = &e— XK 6
S ox o Y X, ©)
ou O°'W(X,,t
where € = (X1) is a strain along the neutral axis and K = #’) is the bending
OX, OX;

of the neutral axis. Eqn. (6) denotes the linear behavior of the strain S over the entire cross

section of the plate-layer and X; defines the vertical distance from the neutral axis.

Next, the boundary conditions for the electrical quantities are provided. If there are no
electrodes on the surface of the plate-layer and if the layer on these surfaces is in contact with
a non-conductive medium (i.e., insulating glue or a vacuum or air), the component of the

.. . 1 . .
electric induction vector Dl( ) normal to these surfaces is equal to zero, i.e.

D" =0 (7
For the electrical field, the following boundary conditions should be satisfie

X =7

— D§k+l) , E(k)

1
X=%

_ El(k”)

®)

X =7

where (K=0,1,2) and X; =Z_ is used to denote the location of the interface surfaces as
shown in Fig 1. Later, we will assume that the surrounding air is a vacuum. If the electrodes are

in a closed circuit condition with a known complex conductivity Y =Y, +1Y], then [9, 17]

= [ d'jf” dr = 2vY ©)

I is the surface over the electrodes, V is an applied voltage, and | is the magnitude of
the current. If the electrodes are in an open circuit condition, then

| = H dgfl) dr=0 (10)

For the mechanical load on the surface of the plate-layer,

(2)
TS

+ 1 -
= b T( ) = b
%=, a, 5 lx=z a, a1
T® — q+ TO
3 3> 13

X3=2,

X3=2 - q3

Where g and ¢ are the forces applied at X; =Z, and X; =Z,. The boundary

conditions on the composite edges are provided in the discussion of the vibration of a bilayer
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composite. In order to construct a theory of plate-layers, some additional assumptions
regarding the electrical quantities must be made. As in the theory of piezoelectric shells and
plates, the assumed hypotheses depend on the electrical conditions on the surfaces of the

composite layers. For the piezoelectric layers, the electric field component Eil) (X1 R X3,t)

will be assumed not to be a function of the coordinates X and X;, i.e.

1 12
B (% %,,1) = By (D) (12
Note that more realistic general theory for transversely polarized piezoelectric plates is
developed in [2]. Assumption (12) can be interpreted as a particular case from [2].

3. Tangential Force and Bending Moment.
Using the above constitutive relations (4)-(5) and representation (6), we express the induced
stresses in the layers of various phases as

1
Tl(l) = 31(1) ( = XK - dﬁ) (151)3) (13)

for the thermo-piezoelectric layer and

1
T® 2?(8— X3K—oc§2)8) (14)
1

for the thermo-elastic layer. By integrating the stress over the thickness, we obtain the
resultant tangential force T, as

2 %
T1ZZle(k)(&,Xs,t)dXs=A8—BK—%1E0—%9 (15)
k=lz,

where Z,,Z and z, are locations of layers surfaces from the mid-plane (in our case it could

be neutral plane) with z —z, =h, ,Z, -7 = h,;

2

(1)
5 Z-% 27 , dih . alh, ah, o
b} 1 )
28] e SH SHEE
The bending moment M| s calculated according to
2 %
=ZIX3T1 X,t)dx, = Bz~ Dx—CE, ~C,9 (17
k=lz,
where
3 (D2 (HR2
D= hp + hr3n C __d31hp C _Otf)hi_al hp 18
38D 367 TH Hd) T T 52 HdD) (182-0)
1 1 Si S 3

In the context of the above simplification, the second equation in (4) is used to result in
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0

D, = [ D{dx, =C,E,~C,x—R,9 (19)
-h

Where
U] 42
€ d
C, :8(313)(1_ Klz)hP’ Ci=- ;3 hlz)rl’ Kl2 = 8(13)l a°’
) My o (20a-¢)
d;, (al d;, (1)]
L= . R=| =0 |he.
8(313) (i) sﬁ)

We then combine Eqns (15), (17), (19), and write

Ae—Br-AE -A3=T,
Be-Dx-CE,-C,8=M,, (21a-c)
C,E -Cx-PR3=D,.

The unknown function W(X1 ,{) should be determined using Eqn. (2), Maxwell’s Eqns. (3),

and the boundary conditions on the composite edges X ==* L.

Note: From Eq (21) we can see that if the coefficient B # 0, then the bending term k
produces a tension T1 and vise version. These two modes can be decoupled only if B = 0.

However, it should be noted that the coefficient B is always zero for symmetric laminated
composites. Also, in a general case, this coefficient depends on the choice of the coordinate

system, and by choosing the position of the system of coordinates correctly, K, Tl , € and

M, can be decoupled by B = 0. From which we can determine for example Z, location
of system of coordinates from the bottom surface of plate-layer. For pure elastic case such
choose give us location of neutral line. In our case (bi layer plate-strip), the Z, location of

the system of coordinates from the bottom surface of bi-layer is

/sl +hy/eY +2hh, /57
2(h, /s +h,/s?)

In addition to B =0 if we consider also low frequency vibration then longitudinal and
transversal motions of plate-layer can be fully decoupled.

4. Equations of Motion of Bilayer Thermo-Electro-Elastic Composite
In plate-layer theory, the equations of motion are obtained by integrating the three-
dimensional equations of motion (2)-(3) over the plate-layer thickness. We write the
equations of motion in the following form;
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oT, o’u . o'w

Thpx —pdl_
ox TP P

oQ o*w

ox —+X,=p e (22a-c)

M, du =z dw
x ot Pexet

Where p=tbp +1pr, 5= 00(z - 2)+ B2 - 2),
6:%(213 — zé)+%(z§ -2, X, =0 —q;q and q areapplied shear stresses

to the top and bottom of the composite, respectively, X, =0, —C; 0, and Q; are the

applied normal stresses to the top and the bottom of the composite, respectively.
The total charge Q on each electrode connected to the generator circuit is obtained by

integrating the induction D3 from (9) and (19) over the entire surface of the electrodes T .

Then, the conduction current is calculated as

|__U Dmdr VY =— ‘2? a[FCEO I'P,9— c_[_[ dl“j (23)

5. Problem Formulation for a Plate-layer with Arbitrary Support Locations

We assume that the plate-layer occupies the interval —L < X < L and is fixed at arbitrary
points X, ==%C . This plate-layer is subjected to a tangential follower force Ff) at the free

ends X = L (see Fig 1). It should be noted that a cantilever plate-layer is obtained for

C =0 and a simply-supported plate-layer is obtained for C= L.
As we mention above (see paragraph 4, Note) by choosing a position of a system of
coordinates so that the coefficient B =0 and considering low frequency type of motions,

then the bending equation can be decoupled from longitudinal motion and from (22) we can
get ([1,2,4,13,17,21])

o'W oW o'W
D—-R—F=p—

OX, OX; ot
where F(') is a follower tangential force. Next we are interested in a bilayer’s pure bending
harmonic motion i.e. (\N(Xl,t) B (t) ,S(t)) = (W(Xl), E, O)émt , where @ is the
circular frequency of motion. The displacements are denoted as

W (x)=w(x)ifc<x <L

(24)

W (%)=w(x)if -L<x <—C (25a-c)
w (%) =w(x) if -c<x <¢
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We solve Eqn. (24) with the boundary conditions at X, = +L and continuity conditions at

X =*C . The boundary conditions at X =%*L are written as
d’w Y
M1=—Dd—)¢—CIE—Cse=0 anszd—Xlle. (26)
The continuity conditions yield
W (c)=w,(c)=0, w,(—c)=w,(-c)=0, dvé)ic) _ dV(\;zx(lC)
dwy (-¢) _dw () d'w(c) d'w(c) d'w(c) dw(c)
& d Cod¢ o o

For simplicity, we will consider the symmetric problem. In this case, W, ()(1) =W (—X1 ) ,

W, ()(1) =W, (—Xl), and the conditions at X, =—C and X = —L (Eqns 27b, d, and f)

are replaced by the symmetry conditions

dW2 (0) — 0 d\NZ (0)
dx, Codx

Note that boundary value problem (24)-(28), without thermos-electric properties was
discussed in [12] by prof V.Ts. Gnuni (2006).
Next, the following non-dimensional parameters are introduced; X = X /L, a=c/L,
21 21 4D
L _3RLS) L 3o’ls)p,
30 - 2 >
2K he

=0. (28)

1/2

As Y Q*s(1+ho) " AS
p= o 3 - 3 and
s+h s+h s+h

1/2

As Y Q*s(1+ho) v AS
q= ( j + + , where =57 /5",

s+h’ s+h’ s+h’

h=h,/h,, andc=p_ /p,.

The solution of (24) is given by

W (X) = 4k COSh( px) +a 4k Sinh( px) +
& 41 COS ( C]X) +8,, 4 SIN ( qx)

Where &4 1)> @.ak_1)> Brackery A4 &40 (k=1,2) are unknown coefficients to

(29

be determined from the boundary conditions (25)-(28).
Using the boundary conditions (25)-(28) for unknown coefficients @4, &, 4> ,ax

and @, 4, (k =0,1) the following system of linear algebraic equations are obtained

- L2 - 2 -
A-XT :BCIEXOT1 +BCSGXJI, (30)
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v; vai
Where X' and X,, are transposes of

=(a.8,8,8,,&,8,a,3 ) and X, =(0,0,0,0,0,0,-1,0). (31)
We also let A=

0 0 0 0 0 p 0 ¢
0 0 00 0 p’ 0 -¢
cosh pa  sinh pa cosQa singo 0 0 0 0 (32)
0 0 0 0 cosh pa  sinh pa cosQa singo

psinh po pcosh pa —Qsinge  Qgcosge  —psinh pa  —pcosh pa  Qsinga —Qcosqa
p’cosh pa  p’sinh pa —Q*cosqa —Q’singqa —p’cosh pa —p’sinh pa g’ cosqa  Q’singa
p’cosh p p’sinh p —g’cosq —Q’sinq 00 00
p’sinh p  p’cosh p ¢’sing  —g’cosq 00 00

Assuming A:det(A)th from (30), we find all unknown coefficients

X =(a,a,,a,,a,,a,8,3,,3 ), ic

I R

X7 =C-X[EX0T1], (33)
where the matrix C has elements C = (C.;) equalto

3 . R 2 2

C:(C -): Aldet( A)= A"'A and E:LC E+L—C 0 . The solution (29) is
1,] D 1 D 9

then re-written in the following form

W, (X) __XEand (34)

W, (X) = _\ZTZ E (35)

The detailed expressions for the coefficients in (34)-(35) are presented in Appendix A.
Having the solution for (29) or (34)-(35), we determine the conversion and energy harvesting
coefficients for piezoelectric-thermoelastic bimorphs. Under thermodynamic equilibrium,
the internal energy density of an infinitesimally small volume element in the piezoelectric
material is given by

” (%%1) =%S“’T1“’ +%E§”D§" (36)
Substitution of (6) into (36), and using (4), we obtain
o 4.C P
UP K3+—=2=E -—E39, 37
2
Where K =———-, and C2 and F)9 are defined in Eq (20a,e). The energy for the thermo-

elastic layer is given by

. 1
(%, %,t)= S(z’ — (k) + O; X, 9 (38)
1

2

34



Once we determine the internal energy density of each layer, the total energy of the bilayer
bender is obtained by volume integration. Assuming that the width of the structure is unity,
we write

Lhy L 0
U(t)= [ JuPdxdx + [ [UMdxdx. (39)
-LO ~L-hy
Using the symmetry conditions W, (X1) =W (—X1 ), W, (Xl) =W, (_X1) , and non-
dimensional parameters X=X, /L, @ =c/L, Eqn. (39) results in

CSL

(40)

U(t)=C,LE’ -PLE,9+ —jkz

or using (34)-(35), we write
Ut)=v,E +v,9" +7,E,9, (41)
where V;, (1 =1,2,3) are presented in Appendix B. By treating the electrical and the

coupled terms as U () = QV,, where Q(t) is the charge and V(1) is the voltage, we
derive the generated charge by substitution into Eq (41). An expression for the electrical field
in terms of voltage E(t) =V, (t)/h, is obtained. This is differentiated with respect to
V,, where hp is the distance between the top and the bottom surfaces of the electrodes in

the piezoelectric layer as shown in Fig 1. The result is

au(t) 2

Q) = () _ Ny ) +29(t) =GV, (1) +Q,9(h), 42)

N, I h,

where
2y C’L

C =2h_ CL 1ﬁ ’

"R h2( YL
:y_3: P L 2CC L CC L A3ab
=y h hDA2R1 hDARz (43a,b)

p P
The values of R and R2 are presented in appendix B. Using Eq (43), we determine the

amplitude of the generated charge as:

a) from the applied voltage
jot \4 2 C12 L
V(1) =Vve”, Qg =CV :F(CZLJF DA? R)V, and (44a)
p
b) from the thermal gradient 9 = 0"

RL,2CCL, CCilL

R+-——=R)b.
2
h, ' h DA h,DA i)

. Vv . .
Recognizing that Qgen =CV, the capacitance is

Qun = Q0= (—

2 C’L
== (C,L+==R). (45)
" DA’ R
The generated voltage amplitude from 9 is
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9
Qgen

Ve = (46)
gen
CV
The generated electrical energy amplitude from & is
1
9 8 \/9
U gen ~ EQge“Vgen' (47)

6. Discussions and Numerical Results.
The non-dimensional thermal energy harvesting coefficient finally derived in the following
form

Ulet

<o _ 91 Ygen - 3(OLTh2—S)[2R 2R4j
= L9 _(1-P)+= b Bt 8

Qu a"d{’Lo =P 4 (s+h’) (A* A

where ai; = a'!” /al”, f)Z(pgl)SH))/(OLgl)dg)), h=h, /h,, and s=s7/s) .

We can state that expression (48) is derived for the first time in such a general form. In

(48)

particular, for a static case, assuming also Ol; = 0 expression (48) coincide with counterpart

derived in [18]. The material properties shown in Table 1 will be considered during the
numerical simulation of Eqn. (48). It should be noted that the derivation in this work can be
extended to the magneto-thermo-electro-elastic shape memory alloy (SMA) composites. For
simplicity, the two materials for shape-memory alloy can be also PZT-5A with an aluminum
substrate (this case is discussed in [18]).

Using the following properties, the critical bucking load is A, =1.65. This is determined
using the formula for a static Euler’s column

n’D
Pcr = 2

4L
The value of the follower force will be taken below the critical value.
Numerical results and discussions presented in Part II of this paper.

(49)

APPENDIX A
h px q
V. =, p’ cosh px+a,f — 2P Lo P e, ———
1 =P X @ cosh p(1-a) P * cosh p(1-a)
h px pa’
V, = . P’ cosh pX+o ZL+(z) o, ——————,
2= 0P X cosh p(1-a) P * cosh p(1-a.)
P’ q

A=pq + +T),
P (q2 cosh p(1-a) p’cosh p(1-a) )
ptanh po + (tan qo

q

sinq(l—oc)+%tanh p(1-a)(sing(l—a)+

T=2cosq(l-a)—

2

;. Pptanh pa. + qtan go cosq(l—a)—%smqu_o‘))’

q
®, =1—tanh p(1—o)tanh px,
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p

, =acosq(l—cx)+(sinq(1—cx)+ ptanh pa +qtan go

q

®; = —CoS OX+ ptanh po +qtan qo sin gX + Epsin gxtanh p(1-a),

q
p (l—oc)(—cosqx+ ptanh po + qtan qou

cosg(1-a))tanh px,

®, =—cos(
q

N ptanh paq+ (tan o cosq(l—oc)j,
s =1+tanh potanh pX, o =cosq(1—o)(1+tanh patanh px),

sin qx] —

gsin qx[sin q(l — oc)

@, =—cos O+ tan OjoLsin g, @ = cos g(1— o) (—cos gX+ tan go.sin OX).

APPENDIX B
0 d2V2 2 o 42y 2 ey o g2y
= dx+ L| dx, = 2 aX + Ldx,
R J; ( dx? ~0[ dx’ R _-L dx? -([ dx’

C’L LC? LC?
=C,L+=R, v, =—R+—R,
Y 2 DAZ R, 7, DAZ R DA R,
2CC,L CC.L
v,=—PL+ Dlﬁg R+ bi R,.
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