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Mlasxun JI.A.
HeocecnmmeTpuiHasi AMHAMHYECKAs 32124 NPSIMOTo NMbe303()eKTa 1Jist aHH30TPONHOI0
Nb€30KEePAMUYECKOr0 AKCHAJIBHO MOJISPU30BAHHOI0 UIHHIPA

PaccMarpuBaeTcsi HeOCeCHMMETPHYHAs JHHAMHYECKas 33a4a IPIMOro mbe30dpdexra st aHu30TPOITHOTO
[bE30KEPAMHYECKOr0 aKCHAaJIbHO MOSPU30BAHHOIO IWIMHIApPA INpU JCHCTBHM HAa TOPLEBBIX ITOBEPXHOCTSX
HOPMAJIbHBIX HAMPSDKCHHH, SBISIOMUXCS IPON3BOIBHBEIMU (DYHKIMSAMH pPaJHaibHON, yrJIOBOM KOOPIAMHAT H
BpeMeHH. HoBoe 3aMKHYTOE pellleHHe MOCTPOSHO METOIOM Pa3lIOKEHUs N0 COOCTBEHHBIM BEKTOP-(QYHKIHIM B
(dopMe  CTPYKTYpHOTO — auropuTMa KOHEUYHBIX HpeoOpasoBaHuil. [loydeHHbIE COOTHOLICHHS MO3BOJISIOT
OMPE/EIATh YaCTOTHI COOCTBEHHBIX HEOCECHMMETPHYHBIX KOJIEOaHHIl, HANPSHKEHHO-Ie(OPMHUPOBAHHOE COCTOS-
HHE JJIEMEeHTa, a TakkKe BCE IApaMeTPhl MHIYLHUPYEMOrO 3JIEKTPHYECKOrO ITOJIS.

We consider a non-axis-symmetrical dynamic problem of the direct piezoeffect for anisotropic piezoceramic
axially-polarized cylinder when normal stresses being arbitrary functions of the radial and angular coordinates and
time act on the end surfaces. A new closed solution is constructed by the method of decomposition in terms of
vector-functions in the form of a structural algorithm of finite transformations. The obtained expressions allow us
to determine the frequencies of natural non-axis-symmetrical vibrations, the stress-strain state of the element and
the parameters of the induced electric field.

Introduction

The most common structural elements of piezoceramic transducers are canonical bodies in
the form of solid cylinders of finite size (thick circular plates). To describe their operation in
real conditions and the enhanced functionality the need for the deeper analyses of time-
varying processes without which it is impossible to understand the effect of the interaction
of mechanical and electrical stress fields arises. However, existing methods of calculation of
the piezoelectric elements of structures with reference to non-stationary effects are far from
being perfect and most of them are approximate, but much of the research is associated with
the development of numerical [1,2] and approximate [3-5] methods of solution and also
bringing these problems to static [6,7].

In this regard, methods making possible obtaining closed solutions of unsteady initial-
boundary problems of elasticity theory for finite bodies in three-dimensional formulation are
of prime consideration now. With their help you can perform qualitative and quantitative
assessment of the coupling of electromechanical stress fields in the piezoceramic elements
of designs.

In the paper presented the dynamic problem is investigated using a consistent application of
the finite integral transformations on all spatial variables. This approach allows us to obtain
accurate, in the framework of the used models, estimated ratios in the most general form for
the test piezoceramic cylinder.
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1.The problem formulation. The solid anisotropic cylinder occupies the area Q:
{0<r, <b,0<0<L2m, 0<z < h} in the cylindrical coordinate system(l; ,0,z, ) and it

is made of a piezoceramic material with of a hexagonal system class 6mm! in which the axis
of symmetry is parallel to the axial coordinate.The end membrane-anchored surfaces with

electrodes ( z, = 0,/ ) are under the arbitrary dynamic load (normal stresses) ql* (I;, 0, r, )

, qz* (};, 0, t*) and connected to the measuring device with a high input resistance, what

corresponds to the “idling mode”. Various mechanical conditions can be satisfied on
cylindrical surfaces without electrodes. For the sake of definiteness we will consider them
free from normal and tangential stresses. In this formulation the problem simulates the
operation of the piezoelectric elements in the devices of the direct piezoelectric effect,
transforming a mechanical effect to the corresponding electric signal.

The mathematical formulation of the given problem of electro elasticity in the dimensionless
form includes a system of differential equations in relation to the components of the

displacement vector U(I’,@,Z,t),V(V,G,Z,l),W(I’,e,Z,Z), the potential of the
electric field (P(I’, 0,z,t ) and the initial-boundary conditions [8]:
10°U oU 10V 1 aV az 6q) o°’U

ViU+a Fa Fa,— a,— =0 (1.1

e e a0 R0 Corer Corer ar

oy 1OV 0V 10U 1oU 18w 18 oV
a,ViV+ P ta,—+a a, = ta,— ta,— >
00 o2 r 8r66 00 ro0oz roboz ot
a(VU+laV)+a2(V§W+1 6WJ+a76VI/+a( o1 6@] 82(p 61/2V
6’2 00 00° 0z o0z ot
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6(VU+18—VJ VW+L8W Jr—aW—a9 L

¢ oz 00 r* 00° 0z* r’

_ 16V oW o
z=0,L Cpog=0a (VU . ae)+a7g+a—(§:ql(r,9,t) (1.2)

10V ow 0
Gt =a11(VU+—£j+a7 —+ G‘ZP L (r,0,1)
U(r,6,0,6)=U(r,6,L,t)=0, V(r,0,0,0)=V(r,0,L,t)=0
0 1oV ow
Do, =—aloa—(zp+a12(VU s )+ —=0
0=0,2n U(r,0,z,t)=U(r,2nn,z,1t), v :a—U (1.3)
00 10-0 OO jp=2mn
V(r,0,z,t)=V (r,2nn,z,t), a :8_V ,
69 |6=0 86 |6=2mn
ow oW

W(,,,sz,t):W(r,Znn,Z,t)o %w:o _g\ezz

! Piezoceramics this class is a core material for manufacturing the conversion elements of different devices. It is
explained how the parameters of these high piezoelectric materials and the ability to change their properties in a
wide range by varying the molar concentration.
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190) op
:03 :t = a2 H 7t s T ="
9(r:0,2,1) = o(r.2nn,2,1) 000 90 02

r=1,0 csw_l:6_U+al3l(U+a_Vj+ana_W+alza_(P:0 (1.4)
or r 00 0z 0z

Grzrlzaz(a_W—{-a_Uj—‘raga—(p:O, Gre\rzlzal l a_U_V +6_V =0

or oz or L 60 or
Dr\r:l:_a()a_(p—'—as a_W+a_U =0

or or 0z
U(O,e,Z,t)<OO, V(O,e,Z,t)<OO, W(O,@,Z,t)<oo, (p(O’e,Z’t)<oo;
t=0 U(r,@,z,O):UO(r,O,Z), U(r,e,Z,O):UO(r’e’Z), (15)

V(r,O,Z,O):VO(r,O,Z), V(r,G,Z,O):VO(r,O,z),
W(r,@,z,O)zWO(r,G,z), W(r,G,Z,O)zWO(r,B,z);
where {U,V,W} ={U*,V*,W*}/b, Q= (p*e33/(bC”), {r.z,L}={r.,z.,h}/b,

2
. 0 10 1 1 o 1
t=tb Cll/p’ v122 Tt V§=V12+_2’ V=—+—,
or ror r r or r
oo g Co o (Gt , (GG | (GG o eta)
1= 5 2 — 5 ) 4 = s s =" L > 6 s
Cll Cll Cll Cll QI e33
_ LGy _ s _Cg, _ Gl _ Cy _ & _C,
a7_C sy Qg =—"" Ay =—7F—, Gy ="5 > all_c > Ay = s Ay =—-,
1 €33 €33 €33 1 €33 G,

{611"]2} = {ql*,q;}/C“ ; t, —time; p,C, e — bulkdensity, electric constants and

piezoelectric modules of the anisotropic piezoceramic material (m,s =1,6);

€1, €53 — dielectric permeability in the radial and axial directions; U VW, (p* —

the components of the vector of displacements and the potential of the electric field in a

dimensional form; U,,U,, V,,V,,,

WO,WO — displacements and their velocities known at
the initial moment of time.

Equations (1.3) and (1.4) at » =0 are the conditions of periodicity for circular areas and
regularity of solutions. In equations (1.5) and those below the dot means differentiation by ¢
2. The construction of the general solution.The solution is made by the method of integral
transformations consistently using the sine and cosine Fourier transform with finite limits on
variables & and z , as well as a generalized finite transformation [8] on the radial coordinate
r. Each time first you must perform the procedure of standardization (harmonization of
boundary conditions on the corresponding homogeneous coordinate). At the first stage the
following representation is used for this purpose:

{U(r,e,z,t),V(r,G,z,t)}=H1(r,@,z,t)+{u(r,@,z,t),v(r,e,z,t)} 2.1
W(r,0,z,t)=H,(r,0,z,t)+w(r,0,z,t)

(p(r,B,z,t):H3(r,6,z,t)+x(r,9,z,t)

Here H, =(LZ—22)(C]1 +q2), H,=a,'H,
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-1 z2 L z2
Hz=a9(a10_l) Z_E_Z q,+ 2L

The substitution of (2.1) for (1.1) — (1.5) gives a new initial boundary problem regarding
functions u(r,@,z,t),v(r,e,z,t),w(r,@,z,t),X(r,e,z,t)with homogeneous boundary
conditions on coordinates z and . As this takes place, differential equations (1.1) and

boundary conditions (1.4) do not agree with F; + F, and N, + N, , and the initial conditions

(1.5) should be replaced by U, V,, W, .

To the transformed boundary value problem (1.1) — (1.5) we consistently apply the sine and
cosine Fourier transform with finite limits on variables z and 0 using the following
transformants:

{us (r.0,n,1),v, (r,@,n,t)} = JOL{u (r,@,z,t),v(r,@,z,t)} sin(j,z)dz, (2.2)
{wc (r,@,n,t),xc (r,@,n,t)} = IOL{w(r,@,z,t),x(r,e,z,t)} cos(jnz)dz

{U (r m,n t) w. (r,m,n,t),(pc (r,m,n,t)}z
_J~2n r 0,n, t (r,e,n,t),xc(r,B,n,t)}cos(m@)d@,
Vs(r,m,n,t)zj.: vs(r,O,n,t)sin(mG)dO,

with the appropriate conversion formulas

{us(r 0,n t) (r 0,n t) (r,@,n,t)} = (2.3)

- ip*l (U, (r.m,n,t), W, (r,m,n,t),q,(r,m,n,t)} cos(m0)

M

% (r,e,n,t) =YV (r,m,n,t)sin(me),

s
1

{u(r,e,z,t),v(r,e,z,t)} =%i{ (r.0,n,t),v,(r,6,n t)}sinjnza

n=1

3
Il

{(w(r.0,2,),%(r.0,2,1)} = ZQ {w.(r,0.n,1),x,.(r,6,n,1)} cos j,z

2n, (m=0) o L, (n=0)
{n, (m#0) "_{L/Z, (n#0)

As a result we get the following initial-boundary problem concerning the Fourier
transformants U_(r,m,n,t),V, (r,m,n,t),W, (r,m,n,t),¢ (r,m,n,t):

j,=nn/L, p—

m

m’ mov, m oW, op, OU,
VleC—a, rz U azjnU +a375—a4r—2Vs—a5]n o —aj, ar' _ 82 =Rlc (24)
2 2
oU oV,
aVIV, =TV, )V, —a e U g, W g, 0~ = R,
N ) r or ro 81,‘ ‘

3c

2
asj, [VU +— J+a2( W——W]—a7]W+ag£ ch — (p) ]
m2

2
a@jn(VU +_ )+a8 (V;Wc - Wj ]I1Wc (V2(pc 2 (pcj+a10j (Pc _R C’
r
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r= 1’0 aa(’]; +al3%(Uc +mVS)_a]1jan _a12jn(pc = ch\r:l > (25)
ow, . 0 or. 1
aZ( 8}; +Jnch+a8%:Y20rl’ a1|: ars _;(mUC+V_¥):|:Y33|Fl’
0 ow, .
—ay aq;c +as[ 0rc +]nch =Y,
U, (0,m,n,t)<o0, V, (0,m,n,t)<co, W (0,mn,t)<o, ¢ (0,mn,t)<own;
t=0 Uc(r,m,n,O):UOC(r,m,n), Uc(r,m,n,O):UOC(r,m,n), (2.6)

Vs(r,m,n,O):VOS(r,m,n), Vs(r,m,n,O):VOS(r,m,n),
Wc(r,m,n,O)zWOC(r,m,n), VK(r,m,n,O)zWOL,(r,m,n);
where {R,., Ry, R,.Y, .Y, Y, .Uy Uy, W,

le?72c¢? " 4c0 OL"WOL'} =

2n . .
= J.O {F‘IS’F3C’F4C’Nl.v’NZC’N4c’u0s’u0s’W0£’W00}Cos(me)de’

0c>™ 0c?

{RZS’}/;X’VOS’VOX} = J.OL{FZS’N}?’VOS"'}OS}Sin(me)de’
{Fls’ 237NlS7N3S’u05’uOS’VOS"}OS} =J.OL{FDFz’NlaNs’”o’do’vo""o}Sin(jnz)dz’

. L . .
{F3c7F;1caN2c=N4c’W0c’W0c} = Io {F37F4aN2=N4’W07W0}COS(JnZ)dZ'
Standardizing the problem once more (2.4) — (2.6) we represent the Fourier transformants
U,V ,W.,o, as follows:

UL,(r,m,n,t)zH4 (r,m,n,t)+U:(r,m,n,t), 2.7
4 (r,m,n,t) = H, (r, m,n,t)+ v (r,m,n,t),

w, (r,m,n,t) =H, (r,m,n,t)+W: (r,m,n,t) ,

0, (r,m,n,t) =H, (r,m,n,t) +Q. (r, m,n,t) ,

Where H4 = (r - 1) YIc|r:1 2 HS = afl (V - 1) Y3s|r:1 > H6 = a; (}" - 1)(Y26\r:1 - aSYSC\rzl ) 2

a a
— 8 2
H7 = (7" - 1) YSc\r:l 4 Ych\r:l - 2 Y4c'|r:l - )720\7’:1 :
a,a, + ag ag

The substitution of (2.7) for (2.4) — (2.6) gives the initial- boundary problem regarding
functions U:, V:, W:, (pz with homogeneous boundary conditions on the coordinate 7. And
R;, and U, Ugc Vg Vo*s Moo
right-hand parts of differential equations R, ,R, ,R,.,R,. (2.4) andinitial conditions
UposUpos Vs Vs Wi, W, (2.6).

0c2>™~ 0c>” 0s>7 0s?
The initial — boundary problem (2.4) — (2.6) regarding functions U”, V", W, ¢’ is solved using

it is necessary to take R’ ,R; ,R; Wo*c instead of the

2527 3¢

a structural algorithm of the generalized method of finite integral transformations (FIT) [9].
Enter into the segment [0,1] a generate FIT with the unknown components

K, (M7 )5 Ky (Ko ) Ky (Mo 7)5 Ky (Myor”) O the vector-function of the kernel of

transformations:
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G (hypomont)= [ (UK, + VK, + WK, )rdr, (28)

2.9)

ZG{KI,KZ,K3,K HIK,

i=1

[[[K2+K}+K2]rar,

inm ||

{u:.v: . w ..}

c

I,

inm ||

where kinm — are positive parameters that form a countable set (i = l,ioo)
The equality (2.8) is a transformant and (2.9) are inversion formulas of the FIT method.
Circular frequencies of non-axis-symmetrical oscillations of the cylinder ®,,, are associated

with the following function A,

_ 2w |G (2.10)

(Dinm
b \p
Subjecting a system of equations and conditions (2.4) — (2.6) under U, V", W, ¢ functions

to transformations in accordance with the structural algorithm [9] we get a countable set of
Cauchy problems for the transformant G(xilzm,m,n,t), the solution of which has the

following form:
G(7,,,»m,n,t)=G, cos (A, t)+G, sin (L
xsind,,, (1—1)dt.

and a homogeneous boundary problem for components K, K,,K,,K,:

: dK K
Vf—alm —a,ji+ M\ |K + a3m d a4ﬂ2 Kz—asjn—3—a6jnd t=0 (2.12)
r rdr r dr

inm? inmt) / A’inm _}\‘;:m Jl: F (7\’inm > m’ }’l, t) X

@.11)

inm d]"

7 d
m . om? m?
asj, (VK1+—KZJ+ a|Vy——|—a;]j, +/1,f1m K, +|aq V2 jn K,=0
r r r’
m le le
asJ, (VKl +7K2j+|:ax [Vi _r_zl_j5:|K3 _|:a9 (Vg _r_z}_alojj:|K4 =0

dK

2
d
[a,V2 3 5 —a,J, +7»12nmJ (aSﬁ—+a4r jK +agj, K3+a6jn%[(4=0

r=1 d—r1+al3(Kl+mK2)—a“jnK3—a12jnK4:O (2.13)
K
dKy g —o. dKi_o 9Kk Kk 0
dr dr

r=0 K <o, K,<wo, K,<wo, K, <.
Here F (4, mn.t)= _[;[R;Kl + R, K, + R, K, + R, K, ] -rdr

o (Ao, j (U K, +Vy K, + Wy K, |-rdr

inm?

inm?>

Gy (Apsmt,n) = I[UJCKI+V(;K2+VI.{;K3:|.rdr
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Investigating the system (2.12) we can come across two cases, i.e. m =0 and m # 0. When
m =0 an axisymmetric problem is considered, the solution of which has been obtained by
the author and is described in the work [10].

To solve (2.12) when m#0 new functions K, K, are introduced on the basis of the
following representations:

K,=r'K,, Kg=r'K, (s=+1) (2.14)
Then the particular solutions of the system of differential equations are found by the method
of decomposition of functions K, + K into the following power series:

(KiK. Ko K }=r" Y {E,.R,.Y,.P,}r’ (B=const). (2.15)
'=0,2,4

After substitution (2.15) inf (2.12) we equate all multipliers with the same degree to zero and
obtain values for the parameter [3, as well as expressions for the coefficients
E f,R . Y g ,P.. The result is four partial solutions which allow representing functions
K +K, .

Substituting functions K, + K, in the boundary conditions at »=1 (2.13) forms a
homogeneous system of equations for constants D), <D, . Seeking for its non-trivial solution,
we obtain a transcendental equation for computing A, eigenvalues and expressions for
D, + D, . Thus obtained solutions also meet the conditions of regularity of the solution in the

center of the plate (the boundary conditions (2.13) at » = 0 ). Consistently applying inversion
formulas (2.9), (2.3), (2.2) to the transformant (2.11) we obtain, taking into account (2.1) and

(2.7), the following decomposition for U(r, 0, z,t) (r 0,z, t (r.6,2,1), (r, 0, z,t):

U(r,0,z,t)=H += Z{ZP [H +ZGK 1K | }cos mo }sm]'nZa (2.16)

nl m=0

(r0,50) z{ 'i[fz ST

m=1 =

sin(m0) }smjnz,

0

P (001 0 { A )
=0

=0

}cos(me)} cos j,z>
}cos(m@)} Cos j,z -

The potential difference Q ) between the end surfaces with electrodes in the piezoceramic

mm

cp(r,e,z,t)=H3+iQI{ Pm H +ZGK IX,

cylmder is determmed by the following equality:
0(t.)= ”[‘P r.0,L,1.)=0(r.,6,0,t.) ] -r.dr.d6. 2.17)

Numerical analys1s 0f results. As an example, we consider piezoceramic cylinders made
from ceramic compositions PZT-4, PZT-19, which have the following physical
characteristics of the material:

PZT—4: {63176337615}:{_5'27 15.1, 12~7} Kun/w?, {8113533}:{646, 5~62}X10_9 /v,
1C15C0, G5, Gy, Cs, G = {13.9, 7.8, 7.4, 115, 2.5, 3.0}x10" HA, p=7700 xeiv®,
{k, ks k) ={0.58, 0.39, 0.6}
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PZT-19: fe, . ep.e;) ={~4.9, 149, 10.6)Kam™, (g, e} ={7.73, 7.26}x10" @/ m,

2 3

{Clp C]z, C13> C33, C55a C66} = {109, 6.1, 54, 9.3, 2.4, 2.4} x10" HM™, p=7730 KI/M ™,
{k, k5. ks } ={0.56, 0.29, 0.64}°.

The table shows the numerical values of the spectrum of natural frequencies ©,,,
(m = 0,1,2); piezoceramic (PZT-4, PZT-19 — respectively upper and averages) and the
ceramic cylinder (the bottom number) element having elastic characteristics similar to the
composition of the PZT-19.

The numerical values of the elastic characteristics of piezoelectric ceramics PZT-4 more than
the same value was PZT-19, at about the same electrical parameters. This results in a higher
range of frequencies of natural oscillations. The highest difference is 9%. In addition, the
first natural frequency of non-axis- symmetric oscillations corresponds to the formation of
one half-wave on the angular coordinate ( = 1) and along the cylindrical surface (n = 1)

of the element under investigation.
In addition, connectivity electroelastic fields having dimensions of the cylinder has a
significant impact on the entire frequency spectrum and leads to an increase in the numerical
values. The greatest difference between the calculated for the piezoceramic (averages
number) and elastic (the bottom number) elements, reaches 8.5%.

Table

o) m=0 m=1 m=2

inm

kln | n=1 | n=2|n=3|n=1|n=2|n=3|n=1|n=2|n=3

i=1 | 1224 | 276.5| 336.1 | 80.6 | 173.1 | 262.4 | 100.8 | 179.2 | 265.8

113.4 | 257.2 | 3179 | 77.2 | 165.5 | 251.6 | 92.8 | 169.6 | 252.5
983 | 166.7 | 2462 | 77.0 | 163.8 | 246.6 | 92.7 | 169.2 | 250.2

i=2 | 2069 | 3773 | 426.7 | 126.5 | 200.2 | 281.3 | 1589 | 221.8 | 298.9

187.2 | 344.3 | 396.5 | 117.5 | 190.6 | 273.1 | 145.2 | 209.2 | 285.5
152.0 | 227.5 | 297.6 | 111.9 | 184.7 | 267.1 | 133.5 | 199.4 | 276.8

i=3 | 2456 | 4443 | 4875 | 173.8 | 2272 | 299.6 | 213.4 | 265.8 | 326.6

2269 | 434.5 | 485.1 | 158.7 | 214.1 | 287.5 | 195.1 | 247.1 | 315.7
200.3 | 285.7 | 351.4 | 1363 | 203.2 | 281.6 | 1703 | 230.0 | 300.4

Fig.1 shows graphs of the variation of vertical displacements W( r,0,z, t) and the potential
difference in time ((¢)when evenly distributed harmonic load of ¢, intensity and with a
frequency of forced oscillations B acts on the end surface of the cylinder composition PZT-

19(0<r<1,0<0<7): ¢(r,0,0)=q,(r,0,1) = g,H (1—0)sin B¢, where F (...) -

is the Heaviside unit function.

2 Electromechanical coupling coefficients: kp’kl 5,/{33 — respectively planar, shear, tension (compression) in

thickness.
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Fig.1. Graphsof W(I’,@,Z,Z)and Q(l‘) in time:
1-w(1,1/2,0,¢), 2= W (1,31/2,0,¢), 3— O(¢)

Functions W(l, n/2,0,t), w(1,31/2,0,t), Q(t) are denoted by figures 1, 2, 3, respectively

and the dotted line shows the nature of the changes in the external load with time.
It is obvious that the vertical component of the vector of displacements at the non-loaded
section at @ =3r/2 is significantly less than the corresponding values in the zone of the load

action at 0 = n/ 2.

The calculation results also show that under harmonic loads the assumption of steady state
of forced vibrations used in the study of dynamic problems is true only when frequencies of
forced oscillations are substantially less than the first natural frequency. At the high —
frequency external influence due to the superposition of the reflected waves of deformation
there is a more complex dependence of the change in the stress-strain state and the electric
field of the system in time.

Conclusions. On the basis of the conducted researches it is possible to formulate the main
results:
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1) There has been built a new closed solution using the basic calculation ratios to describe
the operation of the typical elements of piezoceramic transducers of resonant and non-
resonant classes in the form of a solid cylinder exposed to dynamic non-axis-symmetric
mechanical loads. In particular the design of piezoelectric power generators [11];

2) Numerical calculation results show that the use of the constructed algorithm of calculation
allows in comparison with numerical methods to obtain more accurate values of the range of
natural frequencies, the stress-strain state and the electric field of the piezoceramic cylinder;
3) In the case of high-frequency external harmonic load the assumption of steady-state forced
oscillations cannot be used in the study of elastic and electro-elastic systems;

4) Calculated ratios allow you to automate the research, which significantly increases the
theoretical level of engineering calculations.
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