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Asetncsin A.C.
O nocraHoBKe KPaeBbIX 32124 TEOPHH JIEKTPO-MATHUTO-YNIPYTOCTH B TPEXC/I0HOM KOMIIO3UTE ¢ Y4EéTOM
1IepOX0BaTOCTH IMOBEPXHOCTeH

PaccmarpuBaeTcst nuHAMH4ecKas 3ajada (PU3MKO-MEXaHHYECKHX CBS3aHHBIX IOJNEH B KOMIIO3HTaX CO
CTBIKAMH IIEPOXOBATHIX ITOBEpXHOCTEH. BBOIOM rumore3 MarHuTo- (3JIEKTPO, TEPMO) YHPYTUX CIOHCTBIX CHCTEM
(runore3pi-MELS) npoBomuTcss MOjaenMpoBaHME TPAHUYHOM 3aauydl KOHTAKTa ILEPOXOBATBHIX IOBEPXHOCTEH
CIUIONIHBIX CPE CO CBSA3aHHBIMH (DH3UKO-MEXaHHYECKUMH NOIMH. [Ipu OBYyX pasHBIX MOJENSX COCIMHEHMIT
TOJICTBIX IIBE30JMICKTPHYECKHX CIOEB BBIAEIACTCS IIPUIIOBEPXHOCTHBI TI'EOMETPHYECKH WIN (DH3HYSCKU
HEOJHOPOAHBII cioil. B cioe 3amaérest MOBEPXHOCTHO-IKCIIOHEHIIMAIBHOE MOBEICHNUE (HDH3MKO-MEXaHUUECKHUX
MoJNed MM TepMOJMHAMHYECKHX MOCTOSHHBIX. BEIOOpOM MOBEpXHOCTHO-dKCcIOHeHnuansHoi ¢yHkmuu (SEF)
obecrieunBaeTcs BIWSHHE IOBEPXHOCTHOH IIEPOXOBATOCTH B yPAaBHEHHMSAX W B TEPMOAMHAMHYECKHX
COOTHOIICHUAX 3aJa4d. B kauecTBe mpruMepa aHAIHM3UPYETCs PaCIPOCTPaHEHNE CIBUTOBOIO BOJHOBOTO CHTHANA B
HM30TPOITHOM JIU3JIEKTPHUKE.

he dynamic problem of coupled physical and mechanical fields is considered in composites with joints of
rough surfaces. By means of new proposed hypotheses of magnetic- (electro-/thermo-) elastic layered systems
(hypotheses-MELS) the boundary problem is modeled for rough interfaces contact of continuous media with
interconnected physical and mechanical fields. In various models of joints of thick piezoelectric layers
combinations geometrically or physically heterogeneous surface layer is allocated in which the surface-
exponential behavior of physicomechanical fields or thermodynamic constants are given. The effect of surfaces
roughness on the equations and the thermodynamic relations is achieved through the choice of surface-exponential
functions (SEF). As an example the propagation of the shear wave signal is studied in an isotropic dielectric.
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1. Introduction. Roughness and waviness as residual deformation of the surface layer of
the machined surface of deformable element (Fig.1), are the result of uneven edges of the
cutting tool, vibration, physical irregularities of the work piece material, etc. and generally
violate the material geometric or physical uniformity at the surface zones of the of elements
of structure. Quantitatively, the surface roughness is set regardless of the method of surface
treatment, but because of the nature of the origin of the residual inhomogeneities and
physicomechanical characteristics of the material, the surface of the structural element
reacts in different ways to electromechanical or thermo-mechanical loads, which in its turn
leads to an additional stress on the surface contrary to a case of perfectly smooth surface of
a homogeneous material. In studies of wave processes in structural elements, the fact of the
presence of residual surface inconsistencies in the manufacture of this element is often
neglected.

Naturally, this approach does not always allow to identify possible surface dynamic
phenomena of the wave process, especially in the propagation of the wave signal with
amplitude is comparable with size of the actually existing roughness on the surface of the
waveguide, or at least does not allow quantitatively to calculate more accurately the
characteristics of wave field in the surface area of the waveguide.

In terms of the reliability of research results, it is especially important to investigate
propagation of short waves in crystal structures.

The interaction of ultrasound with a rough surface is actively investigated, both from a
theoretical and experimental points of view, since the applications of elastic wave
phenomena are becoming ever more important in telecommunications (signal processing),
medicine (echography), metallurgy (non-destructive testing) and in other fields, too. E.g.,
millions wave filters, periodic topographic grid and resonators are currently produced each
month for mobile phones and computers.

The most important results related to scattering of the waves on the local surface defects,
such as grooves, random roughness, elastic wedges are obtained in [1-3], where various
theoretical approaches and practical rules for tackling of surface waves problems are given.

Calculation of the effects of roughness and it waviness on the surface of a body does
complicates the solution of the mathematical boundary value problem, but makes it
possible to identify near-surface effects and more accurately evaluate the quantitative
characteristics ~ of
the wave field in
the  near-surface

zone.
In [4] the
experimental
measurements and
calculations of
L T | | ! elastic wave propa-
gation and
dispersion are
Fig.1. Roughness contour and the basic roughness parameters: | - reported for a

base line, M- centre line, S~ the average pitch of the irregularities waveguide  with
randomly  rough
of the profile, Rmx — maximum height of the profile. surfaces, as a

model of incipient
corrosion.

Most theoretical studies of acoustic problems in rough surface were studied by means of
integral transform methods [5], or by the method of perturbation theory [6].
The propagation of surface acoustic waves across the randomly rough surface of an
anisotropic solid is studied in [7]. In a small roughness limit, the dispersion relation for
such waves is derived. The frequency dependences of the  dispersion
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and attenuation of surface acoustic waves are obtained for the case, when the wavelength is
"compared to the transverse correlation length of the roughness. Crystals of cubic,
tetragonal, trigonal, hexagonal, and orthorhombic symmetry, adopted in applications, are
considered. The effects of piezoelectricity are taken into account through the approach of
"partially stiffened elastic constants".

In paper [8] the dispersive effect of roughness is investigated for surface acoustic wave
packets (30-200 MHz frequency range) for different degrees of nanometer roughness on
silicon (001 cut) and (111 cut) surfaces. It is shown that the roughness induced frequency
dispersion effect is significant, and although available theories agree qualitatively with the
results, the theory is not adequate to predict the real surface acoustic wave dispersion.

The problem of a Love wave propagation in a corrugated isotropic layer over
a homogeneous isotropic half-space has been investigated in [9] and thee dispersion
relation in a corrugated layer medium bounded by irregular boundaries is derived. In
special cases, the dispersion relation is reduced for the corrugated layers bounded by

periodic boundary surfaces, d-cos(pX), d,-cos(pX) and d, -cos(pX).

In [10] a simple and efficient matrix method is applied to analyze the reflected waves from
a layered plate with certain interface features. It is shown that a thin, adhesive layer can be
modeled as an
equivalent  elastic
interface with zero
Piezodielectrik-2 thickness

characterized by
hs(x) two adjustable
parameters. The

% paper [11] presents

an  elastodynamic
analysis of two-
dimensional  time-
harmonic elastic

wave propagation in

Piezodielectrik-3 periodically
multilayered elastic
Piezodielctrik-1 composites, which

are also frequently
referred to as one-
dimensional
phononic  crystals,
with a periodic
array of strip-like interior or interface cracks. The transfer matrix method and the boundary
integral equation method, in conjunction with the Bloch-Floquet theorem are applied to
compute the elastic wave fields in layered periodic composites. The effects of
the crack size, spacing and location, as well as the incidence angle and the type of
incident elastic waves on the wave propagation characteristics in the composite structure
are investigated in details. In [12] authors have employed a numerical procedure to analyse
the adhesive contact between a soft elastic layer and a rough-rigid substrate. The problem
solution belonging to the class of the free boundary problems is obtained by calculating
Green's function, which links the pressure distribution to the normal displacements at the
interface. The problem is then formulated in the form of a Fredholm integral equation of the
first kind with a logarithmic kernel.

When two bodies are separated by a small distance, the roughness starts to play an
important role in the interaction between the bodies, their adhesion and friction. Control of
this short-distance interaction is crucial for micro and nanoelectromechanical devices,

Fig.2. Contact of rough surfaces in three-layer
piezodielectric composite
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microfluidics, and for micro and nanotechnology. In [14] the review of the current state of
this problem is considered and an introduction physical origin of the dispersion forces is
given. Critical experiments, demonstrating the non-additively of forces and strong influence
of roughness on the interaction between bodies are reviewed.

In the theory of magnetoelasticity the hypothesis approach has been often used in [15]
for vibration, stability and strength problems of thin-walled plates and shells.

In this paper, by introducing the new hypotheses related to distribution of the elastic
displacement and potential of electromagnetic fields in a thin elastic layer of variable
thickness of material with magneto-electric properties. The mathematical formulation of the
boundary value problem for the three-layer composite electro-magneto-elasticity of
piezoelectric crystals is established (Fig. 2).

2. Statement of the problem. Let us consider the propagation of shear plane electro

elastic signal f(xy,t)={0, 0, WX, y), (X, y), w(x, Y)jexpi(kx-ot) ..

three layer linear electro-magneto-elastic composite described by the following quasi-static
equations and linear constitutive relations of electro-magneto-elasticity in each n-th layer.

8Gi(jn) 82U-(n) aDA(n) aB(n)

_ i i  _ —(n) _ n pm _ (n)
o p " ox 0, ox 0, E grado'’, B grady
(2.1)
o ou™ oul oo oy™
m = C:I(J;()q —r 49 |+ (n]) + dr(nrl? — mechanical stresses,
ox,  OX, OX, OX,,
(n) (n) (n) (n)
DJ(”) - e(w'!? aai—l_ 8Uq sl(ln) % g,(,;” oy — electrical displacements, 2.2)
X, OX, OX OX., :
(n) (m) (n)
Bfn) d:;:,) 8;p +— ﬁu g(“) a(P ug;) aw — magnetic inductions.
X, OX, OX, OX.,

As it is known [16 ] , electro-magneto elasticity problems, as well as problems of the
plane and anti-plane deformations decouple not for all symmetries of crystal depending
both of mixed boundary conditions and the structure of the matrix of physical and

] (n) q(ﬂ) (n) M(ﬂ) d(n) (ﬂ)_
mechanical constant Cipa> Gpa> i > Hpas Gipg> &
Based on the linear equations and relations (2.1) u (2.2), without loss of generality, the
mathematical modeling of the electromagnetoelasticity boundary value problem is
presented in the paper for piezo dielectric multilayered composite, in the case of adhesive

electroelastic filling occupying region €, = {|X| < 0, hl (X) <y< hz (X) , Z| < oo}

and two adjacent piezo dielectric half-spaces (thick layer) occupying regions

Q, ={|x <o, —o<y<h(X), |7<x}
Q, ={[¥ <o, h(x)<y<w,

with rough surfaces Yy = hl (X) and Y= hz (X) respectively. The materials of adhered

electromagnetoelastic thick layers, adhesive and piezo dielectric crystals belong to the
class of 6mm hexagonal symmetry, physical anisotropy axis (the axis of polarization of
piezoelectric crystals) coincide with the geometric axes oz and the plane oxy coincides

Z|<oo}
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with the symmetry plane of piezocrystals. The coordinate axe OX is directed along middle
line of composite plane cut Y = [h2 (X)-h (X)]/Z (Fig.2).
The anti-plane deformation electroelastic equations can be written as
o w, e, oo  w,  dw, e, oD
G—Z+6—+ =P/ 2 & T =0,
OX OX oy o - " ox OX oy (2.3)

where 6(22) =G, (8Wn / 8y) +€, (a(.pn / 6}/) are electromechanical shear stresses,

n) =€ (a\N / 8}/)—8 (a(p / 8}/) are normal components of the electric displacement,
G = gz) are shear modulus, [, are the bulk densities, €, = QS are the piezoelectric

modulus, €, = SgT) are coefficients of dielectric permittivity in N=1,2,3 layers,
correspondingly.
On rough interfaces Y( X) = h (X) u y( X) = Q (X) the following electromechanical

conditions of the perfect contact of mechanical and electric ﬁelds should be considered:
o[y (x).t] =08 [ (0).t].08 [ (0. ] =0 [xh (x).t]. @)
DY’ [xh (x),t]=D{"[xh(x).t]. DI [xh, (x),t]=D [X h():t]: 05,
o [xh(0t]=0.[xh(x).t]. o [xh(x).]=0:[xh(x).t].
w [ xh(x),t]=w[xh(x t] w, [ x.h, (x),t]=w [ x.h (x).t], .7)

together with attenuation conditions

}i@wwl(x, y,t)—> 0 ylilﬂc%()(’ y,t)—>0 2.9)
ylim 0, (X, y,t)—> 0 ylil}l (pz(X, y,t)—> 0

In specific problems, layers may contact with each other directly, without an adhesive. In
this case in (2.3) the equations with index n=3 should be omitted and the boundary
conditions (2.4)-(2.7) should be transformed into new one at middle surface/line of the two

roughness Y = [hZ(X) - hl(X)]/Z

When the interface adheres by other electro-magneto-elastic adhesive, in an adhesive
layer equations do not coincide with (2.3) and the other equations should be considered.

Below it will be shown, that the assumption of the choice of materials and adhesives
interface layers does not violate the principle of generality of mathematical modeling of
boundary value problem for materials with different characteristics of
electromagnetoelasticity.

3. Boundary problem modelling [17]. Taking into account the fact that the value of
the maximum peaks and troughs in the surface roughness is much smaller than the
thickness of the effective boundary layers where the wave energy is localized, but
compared with length of propagating signal

H, =max‘hj(x)= hz(x)—hl(x)‘ < min{H;H,}
H, =max‘h}(x)‘ ~ L =2n/k

we can use a virtual model of a thin layer. Namely, for the gap of variable width between
two adjacent bodies we propose the new hypotheses of thin layer presenting in the inner
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layer for the elastic displacement and the potentials of the electric and magnetic fields in
the following form

ws(x,y,o{hzf%m} T (e hy00.0)—w (0 (x).4) ]+ (0 (x).0). 3.

o (% yt)= {h;x)h!r(y() )} L0, (xR (0,t) =0, (X B (x),1) [+ 0, (X K (X)), (3.)

w0030~ X o (00w, (xR 9. v, (e (1) 3

This character of hypothetical distributions of the unknown quantities is selected primarily
based on the need to compliance with the boundary conditions on the interfaces of a thin
layer .

By means of (3.1) and (3.2) the two pairs of boundary conditions (2.6) and (2.7) are
satisfied immediately. Naturally, under other boundary conditions, for example, when the
first layer is absolutely rigid, the distribution (3.1) takes the form

W, (X, y’t):{h;(/%t(yx({()} W, (X, h, (%), 1) (3.1%)

ensuring the fulfillment of the boundary conditions with a rigid boundary y=h(X)

w[xh(x),t]=0,  w[xh(x),t]=w[xh(x),t] Q2.7%)
When the first layer is the perfect conductor, the distribution (3.2) becomes similar to

(3.1 *) type

05 (% y.t) = le() h(x )} @, (%, h,(x),t) (3.2%)

ensuring the fulfillment of the boundary conditions with an electrically shorted
boundary Y = h (X)

o[ XN (X),t]=0, @[ xh(x),t]=p,[ xh ()] (2.6%)
In the introduced hypotheses, the different degrees {m, K, S} € {1; 2;3;...} correspond to

the lowest differentiation orders of required quantities in adhesive constitutive relations are
taken so that in equations describing the process in the variable thickness gap the
corresponding terms do not vanish. In the linear theory of the electro-magneto elasticity,
where (2.1) and (2.2) are taken into account, in the distributions (3.1) - (3.3) can be
takenm=Kk=s=1.

The proposed hypothesis of magneto-electro- elastic layered composite (hypothesis MELS)
in the form (3.1)-(3.3) allow us to estimate physicomechanical field in a thin slit filled with
an adhesive of appropriate characteristics.

In the framework of the proposed hypotheses for piezoelectric adhesive when
M=K =S=1 the mechanical stress and electric potential in layer are constant over the
thickness of the gap, but vary longitudinally along surfaces depending on the gap width.

& 2h(x)=h,(x)-h(x).

Introducing a new variable defining gap, the shear stress and electric displacement in the
gap region can be described as
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oG, OW(x,E,t) ve oD (%,&,1) D —e OW (X,&,t) e oD (x,E,t) o)
g g o

ot
Here W(XE)=w,(x 0, (x).t)-w (xR ().1),
(&) =g, (xh,(x).t) - (xh(x).t)

are the difference shear elastic displacement and the difference electric potential in the
region.

Hence, it is clear that the conditions of electromechanical field quantities finiteness
(continuity condition) lead to the requirement of a limited difference of elastic displacement
and electric potential at the surface irregularities. In fact, depending on the roughness of
interfaces of contacting layers a longitudinally inhomogeneous electromechanical load arise
at the interfaces of these layers.

On the other hand, these loads arise in a layer of sticker and satisfy to following equations

~ 82 82 a2
{G o P at} W (% y.)=0, ﬁ{%(x’y’t)_%w(x’y’t)}:0 35)

3
From (3.5), when {m, K, S} € {1; 2;3;...} based on the hypotheses (3.1) and (3.2) and the
last two pairs of boundary conditions (2.6) and (2.7), for the elastic displacements

W(X Y,t), N=12 and the electric potentials @,(X Y;t), N=L2  we obtain the new

boundary relations

|:é3§2 Pi =7 ¢ }{(hz(x) h(x)) 2(X’hz(X),t);Wl(X,hI(X)’t)}:O (3.6)

_22[[@2 (X, hz(x),t)+(p1 (X, hl(x),t)]w:l _

X X
{[W X, 1, (X),t) + W (%, h (%),t) ]hl( )= )}
Let us pay attention (3.5) to the nature of the dynamlcs of shear displacement in the

adhesive layer W, (X, Y,1) =W, (%, y)- f[x£c,(o)t], ¢, (@)=G,/p,.
By integrating the equations of electrodynamics (2.3) and using MELS hypotheses

(3.1),(3.2) related to linear distributions of elastic displacement and electric potential across
the thickness of a thin layer of stickers, and taking into account the boundary conditions

(3.7)

(2.4), (2.5), we obtain the generalized boundary conditions for stresses O (213) (X, y,t)

G » (X, Y, ) and electric displacements DS) (X, y,t) Dgz) (X, y,t)
~ OW, (X, Y,t ~ OW (X, Y,t
G2 2 (a ) _ G1 1 (a )

Yo lyn Yo len

{p e a—lez(x,Mx),mZ—?wl(x,mx),t)}—wimx)}

(3.8)

ot T ox 2
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81 a(l)l(xa yat) —82 ad)z(xa yat)
oy y=h(x) oy y=h (%)

&= |:hz(x) h(X) Lo (x h(X)at)+¢z(X’hz(X)=t)ﬂ

(3.9)

In (3.8),(3.9 Oté = 1+(% / €, ) (Gn / G3) : }(ﬁ are interconnection coupling coefficients in

a three-layer piezo dielectric composite Xﬁ :Qf / (Sn-Gn), n=12. , are
electromechanical piezoelectric coupling coefficients of adjacent half-spaces,

(I)n (X, y,t) =0, (X, y,t) —(%/Sn) W, (X, y,t) ,  N=L2. is the well-known notation

the of electroelastic potential for piezo dielectrics of 6MM class of hexagonal symmetry.
Thus the problem of the propagation of shortwave -electroelastic plane signal propagation
in multilayer piezo dielectric composite, by means of the MELS hypotheses is reduced to
the solution of the electro- elasticity quasi-static, anti-plane equations

2 2 2 2

Gnavll”%:‘-naw+<-3;1 k2 eha(pn: av;/n 3.10
o ay é’y ot (3.10)
Fw w & o

& @in"‘en ayzn —&, 8)3”_‘% 5';;;” =0, npu n=1, 2.

with attenuation conditions (2.8) and generalized boundary conditions (3.6)-(3.9) of full
electromagnetic contact which can be presented in a rather simplified form

|:G1 a\Nl(xa y,t) +Q a(Pl (Xa yat):|

oy oy y=hy(x) G.11)
_[Gz o (X y’t)+% 50, (X y’t)} =0
oy oy y=h,(x)
{q ow (xy.t)  0(x y,t)} )
1
oy oy y=h(x) (3.12)
W, (X, Y, t) 09, (X, Y1) 0
-1 & 8y —&, ay
y=h,(x)

{Gj - p, 82}{(%) h(x) 2(X’m(x)’t)zwl(X’“(X)’t)}o G13)

2 [ e v (x0.0] MR

_z ;z {[ L (% 0y (%), 1) + W (%, h (%), ) ]hl(x) h‘(x)}

(3.14)
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From these boundary conditions, it follows that non-smoothness boundary conditions
h(, n=L2 | £2nh(x)=h(x)-N(X) play an important role transforming

homogeneous boundary conditions into longitudinally conditions. The dynamics of
adhesive longitudinally inhomogeneous thin layer is conditioned by these boundary
conditions and may result both in a synchronism and in an internal resonance between
waves in the adjacent semi-spaces.

4. Solution of the problem.

It is known that solutions of anti plane electroelastic problem attenuated along the depths
of adjacent semi-spaces in the case of shear electroelastic signal propagation

F(xy,t)= A(y)-exp {i(kx—wt)}

in adjacent semi-spaces can be presented as

W% Y51 = A, exp(=1)" o k) - expli (kx—ot)
0 (% Y,1) = {Bn exp((=1)"ky) +§—nA1 exp((—l)”anky)} -exp {i (kx—ot)} 4.1)
where ol =1- ((y)zpf1 )/(kzéj) are characteristic ~wave numbers N=1;2;

k= (27t) / A is wave number, A, = 27 /K is the length, () — the frequency of the wave

signal. Based on (4.1), from boundary conditions (3.11)-(3.14), we can obtain a
transcendence characteristic equation describing the wave process in the composite

fi f fs fof | f f
f, f, f, f
where coefficients fij(hn(X), K(®)) depend both on the relative physical and

f23 1:24 13 14

. =0, (4.2)

f43 f44 41 42 fzs f24

mechanical constants of materials: by /b, , where be {G, p,e, &}, i,j €{l, 2,3},
d;=(e/e,—&/e;), N=1L2 , and from functions of non-smooth interfaces of
adjacent semi-spaces dymwii, phase function K (®),
f,(h (X),k(®)) = G,a,e™ ™
iy (h, (0, k(w)) = ge™™, fLa(h, (0, k() = 6,
£y (N, (%), k(@) = €,6™"™, 4 (N, (%), k() = &,€™™
[ A, (x)+2ikAh, (%)~ Ko} A(x) |
5, (0,(X), k(@) = 4 =[ 2Ah, (X) + 2iKAR(X) |- oL khy (%) ¢-e 4
+AR(X)[ oK, (0 — o, ki L, (0) |
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[ Ah,, () +2ikah, (X) - K*o2AR(X) |
., (N, (), k(@) = { +[ 2Ah, () + 2iKAN(X) |- oL, kh, , (%) €40
ARO[ 2khE, () + ok, o (X) |
[ Ah,, (x)+2ikah, (x)—k*Ah(X) |
f, (h(X), k(w))=d,, —[ZAh,X(x)Jr2ikAh(x)].cxlkhLX(x) L@ k()
+AR(X) [ a7 k*h, () = o ki L (0]
[ Ah,, () +2ikah, (X) ~ k*Ah(X)]
£, (0,0, K(@)) = d; § +[ 2Ah, (%) + 2iKAR(X) |- o1, kh, , (x) - €7
+A(X)[ 03K*h; () + 01k, L, (%) |
[ A, (x)+2ikAh, (x) - K*Ah(X)]
0 (h, (X, k(®)) =1 ~[ 2Ah, (x) + 2ikAh(X) |- ki (x) -6
+ARC| K, () =K o ()]
[ A, (x)+2ikAh, (%)~ K*Ah(X)]
o (0, (0, k(@) =1 +[ 2Ah, (X) + 2iKAh(X) |- kh, , (X) €™ (4.3)
+ARGO[KHE, (%) + K, 1 ()]

It is obvious, that this transcendental dispersion equation can be investigated numerically
with the given functions of non-smooth semi-spaces. On the other hand it is clear that the
longitudinal heterogeneity conditioned by boundary roughness, leads to wave signal

scattering resulting for complex wave namber K = kl + ik2 . Then in the solutions (4.1),

as well as in expressions (3.1) and (3.2) the amplitude and velocity of propagation of the
signal prior electroelastic may also vary along the wave signal propagation direction OX.
5. Specific example.

Let us consider the propagation of an anti plane shear plane wave signal

W(X, y,t) = [Ae“"y + Ale_aky:' 2 i 2 non piezo  active  waveguide
{—oo <X<+mo,h (X)<y<h (X),-o<z< +oo} with  surface  roughness
y=h.(x),

Introducing virtual heterogeneous subsurface layers, with middle planes y=i|”b,

corresponding to rough surfaces and taking into account that waveguide surfaces are
adjacent with vacuum, we obtain

+
ol [N (x).t]=0m ¢, [xh (x),t]=¢,[xh (x),t]

Based on MELS hypotheses from (3.1) and (3.2) introducing virtual distribution functions
in surface layers from (3.1) u (3.2)
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W, (X, y,t) =%W(x +h,,t),

0. (X y.t) = w“—h(;))[ ()= (R (9.0) ]+ 0 (xR (0.). 5

we obtain generalized boundary conditions which are taking into account roughness
irregularities in the middle planes Y = £h,

2 2

ow(xy.t) (R (x)-h) G82W(x, y,t)_pazw(x, y,t)

oy ‘y—w +2h, X’ ot . (5.2)

—t yet

As seen, the roughness on the
surfaces of the waveguide leads
to the dynamic loads on the
surfaces, which may generate
waves of new harmonics or
internal resonance in subsurface
zone, as well as prohibit the
propagation of waves of a
certain frequency to form silent
bands in the waveguide.
In fact, the roughness of the
surface forms a longitudinal
inhomogeneity layer, where the
% ar heterogeneity transforms a pre-
wave signal to generalized shear
waves

WX Y.t =[ A€+
+A (o) e ]

R well . | N . where wave number
Fig.3. Modelling of homogeneous layer with interface
k(w) =2m/A

roughnesses

e By
=]
7
L)

or vibration

L (x)Fhy| < hy frequency ®(K) are complex

ones.
A characteristic formation

number P(®, X) = (27[ o, X) ) / A depending also on the frequency of the propagating
wave signal depends on the roughness zones X & [)q 3 X% +1] at the surface. The function

P(®, X) is determined from the transcendental dispersion equation

[1+;(df(x)—l)][u;(df(x)—l)}
IRCCR O]

where the following notations are used d (X ( =A h2 X / h0 Ah, (X) = |h X F h0|

=0 (5.3)

F(p.x)=e"" -
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Analytical analysis shows, that in the case of high-frequency signal propagation with speed

Vi, =G = G/p the availability of sagging irregularities (pits) on the surface of

waveguide di (X)—l < 0also leads to the appearance of new dispersion wave modes
. 2
propagating  with  the  speeds  Vj,(@,X)=C, \/ 1 —I: p (o, X):I / (kh)*,

Vi (@30 =Cpyf1-[ B0 | /iy

The formation functions pl* (o, X), p; ((0, X) 0< pl* (o,X) < Z/I:l - df(X)]

p; (0), X) > 2/ [1 — df(X)] indicate the existence of a short and localized shear waves

near the Y=-h, Yy=h surfaces, respectively .
In this case, for high-frequency signals there is a stopband region

2/[1 - d_Z(X)] < p((o, X) < 2/[1 -d’ (X):I , where the shear waves of certain
frequencies cannot propagate.

Similarly, if we have a layer with tightening borders, i.e. ‘hi(x)‘ >h and hence

di2 (X)—l >0 at both surfaces of the layer, then in this case the shear wave can

propagate with the speed V = C; =G/p only.
And finally, if at some interval on one surface of the waveguide there is a pit, we suppose

that d_Z(X)—lSO, if on at opposite surface there is a bulge we suppose that

d’ (X) —12>0, then in the case of propagation of high-frequency signal propagation with

+

a speed V, =C; = JG/p a new type of wave dispersion mode occurs, the nature of
which is determined by the ratio of the "pit" depth and the "bulge" height:
a) If 1’ (X) <h’(X)—4h (X)-Ah_(X)+2-Ah’(X), then the wave dispersion mode

occurs localized  at y=-h surface and  propogate  with  speed
V,, (@, %) = co\/1—[ ps (o, x)]z/(kh)z , where 0< pi(o,X) < 2/[1—d3(x)] :
6) if h?(X) > h*(X)—4h (X)-Ah_(X)+2-Ah’(X), then the wave dispersion mode of

other type occurs localized at Y =—h surface also and traveling with speed

V,,(@,X) = CO\/I—[ Py, )] /(kh) , where p;(0,%)>2/[1-d*(%)].
Let us as a rough surface layer take the same equidistant surface
h.(x) =th, (1 +7, Sin(kSX)) , where 21, is the estimated thickness of the layer, Y, is

the maximum height of the roughness profile, and Ois the average pitch of surface
irregularities profile. Then, according to (5.3) we have

Ah, (X) = hyy, sin(kéx), d; (X) =y;sin’(k8X) and therefore in this case the
dispersion equation (5.3) separates into two simplified ones

2+ p| y; sin’ (kdx) 1] B

F(p,x)=¢e’f- =
1(P-X) 2—p[y§sin2(k8x)—l}

(5.3.1)
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2+ 25in? (kdx) —1
F,(p,x)=€7"+ p[yo (k&) ]=0 (5.3.2)

2 p| y; sin (kdx) 1]
From (5.3.1) and (5.3.2) follows, that for a perfectly smooth surface layer 0 =0 or

7, =0, only the primary signal propagates with the phase velocity V,, = C, = JG/p.
As always 7y, sin®(k6X)—1<0, and for formative number we have

0< p(w,X)= (271: oo, X))/X < 00, then the equations (5.3.1) and (5.3.2) besides the
primary signal also allow new wave mode with the forming number close to

p= 2/|:1 —v¢sin® (kSX)] . At each change
(n/2)-(x/8) <Xx< ((n+ 1)/2)-(7»/5) the  formative number varies between

2< p(o,X) < 2/ (1 -v: ), making one complete cycle.

Depending on the ratio of the wavelength to the average spacing irregularities, the periodic
metric segment expands or narrows.

Conclusion.

The hypothesis of magneto-electro-mechanical field for rough border zone of magneto-
electro elastic layered composites is formulated (hypothesis MELS), which allows to
identify the nature of the dynamic effects of boundary roughness on the propagation of a
wave magneto-electric elastic signal.

The dispersion relation for a three-layer piezo dielectric composite is obtained when the
rough surfaces are in full contact.

On the illustrative task, the propagation of wave signals is considered in a single layer
waveguide with a rough surface free of electromechanical surfaces it is shown that the
roughness leads to the solution of the wave propagation problem in the waveguide with
perfectly smooth boundaries on which there are additional dynamic electromechanical
loads depending on the interaction of a propagating electroelastic signal with rough
boundaries. The possibility of the appearance of new modes of shear wave caused by the
surface roughness of the elastic waveguide is studied analytically.
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