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CnBurossbie BoIHbI Dii0Ke B MaArHuTOYIEKTPOYNIPYIruX cpeiax ¢ NePpUuOAHIECCKHUHMH MOBEPXHOCTAMHU
HEIOJHOI0 KOHTaAKTa

B pabote uccnegyercs pacpocTpaHeHHE CABUTOBBIX BOJIH B MATHUTO-3MIEKTPO-YIPYTHX CpelaX ¢ OJHOMEPHOI
MEPUOANYECKON CTPYKTypOH IIOBEPXHOCTEH HEMOIHOro KOHTakTa. B pamkax Tteopun Droke MOIydeHb
JIMCTIEPCUOHHBIE YPaBHEHUs], ONIPe/IEIIOIINe YaCTOTHBIE 30HBI MPOIYCKAaHUs M 3a[€PKKH CABUTOBBIX BOJIH. J{is
TPEX pa3IUYHbIX YCIOBUM HEMOJIHOTO KOHTAKTa MPOBEAEH aHaIU3 JUCIIEPCUOHHBIX COOTHOIICHHUH.

Guuyupuib Y., Twqupuh Y.L,

Binljkh vwhph wihpukpp dwquhuw-Ljupu-wepwdqujul, ny 1phy hntnwlnn] yguppbpuljuih
Uwlbphnyphbp niikgnn dhoujuypbpoid

Uojuwnnwipmyd  nunidbwuhpynud £ uwhph  wijhpubph  wwpwdndp  dwquhuw-EEjnpw-
wnwdquljub, Thwswth wuppbpulwb jurnigyuspny ny 1phy ntnwljinn dulbpinygpubp niikgnng
dhpwuyptipnud: d1nljkh nkunipjui opowiwlnid uinwgyt) ku nhuybpuhnt hwjuwuwpnidubpp, npnup
npnonid ki uwhph wihpulph pug pnpudwi b juubkgdwt hwdwhwlwinipyut whpnypubpp:
Yuunwpyuws i nhuybpuhntt wpbsnipinitubkph Jipnisnipiniubp ny 1phy Yntnnwlnh Epkp wwppkp
wuydwuttph hwdwp:

This paper aims at investigating the shear waves propagation in magneto-electro-elastic piezo active
homogeneous solid of the one-dimensional periodic structure of imperfect contact interfaces. In the framework of
the Floquet theory the dispersion equations are obtained defining shear wave frequency pass and gap band structure.
For three kinds of imperfect contact conditions the analysis of dispersion relations is presented.

1. Introduction
The advent of new magneto-electro-elastic crystals (MEE) has enlarged the application fields
of wave propagation in periodic media. Magneto-electro-elastic MEE crystals are one class
of new composites that consist of piezoelectric and piezomagnetic phases. The
magnetoelectric effect of piezoelectric—piezomagnetic composites was first reported in [1].
In the MEE crystal magnetoelectric effect is a coupled two field effect, in which the
application of either a magnetic field or an electrical field induces an electrical polarization
as well as a magnetization [1-4]. Investigations related to surface and bulk wave propagation
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in homogeneous , , multilayered structures made of MEE materials are presented in [5-11],
where the quasi-static approximation of Maxwell equations was used [12]. The dispersion
relations of SH waves in a heteroestructure with magneto-electro-elastic properties of 6mm
symmetry is studied in [5 ]. The propagation of Bleustein-Gulyaev surface wave is studied
in [6] for transversely isotropic functionally graded MEE half-space. An analytical approach
was used to investigate Love wave propagation in a layered MEE structure [7], where a
solution of dispersion relations was obtained for magnetoelectrically open and short
boundary conditions. In [8] the Rayleigh waves are investigated in MEE half plane. In [9] it
is shown that shear surface waves with twelve different velocities in cases of different
magnetoelectrical boundary conditions can be guided by the interface of two identical MEE
half-spaces. The existence of shear surface wave travelling along the interface of two half
spaces of different MEE materials is studied in [10]. The localized shear wave propagation
is studied in [11] for MEE layer with quadratic and inverse quadratic inhomogeneity profiles
of material parameters varying continuously along the layer thickness direction. A review of
the most widely-used methods and approaches defining the Floquet waves in periodic
multilayered structures are given in [12-13]. Dispersive behavior and band structure of SH
waves in piezoelectric- piezomagnetic periodically layered structure are investigated in [14]
.Within the full system of Maxwell’s equations the effects of three kinds of imperfect contact
transmission conditions on Floquet wave band gap structure are discussed in [15 ] for
piezoelectric periodic structure.

The main goal of this work is related to the study of the behavior of shear Floquet waves in
a magneto-electro-elastic homogeneous solid with periodically arranged 1D structure of
imperfect interfaces structure . The following kinds of contacts are considered: electrically
shorted, electromagnetically closed, sliding mechanical (lubricated) contacts. For all three
kinds of contacts dispersion relations are derived. Typical numerical analyses of dispersion

equations are presented and discussed for MEE solid made from BaTiO,-CoFe,O, .

This paper is organized as follows: In Section 2 we present the basic equations and relations
for MEE solid. In Section 3 we derive the dispersion relations . While numerical analysis and
discussion are given in Section 4, conclusions are drawn in Section 5.

2. Governing equations and constitutive relations of MEE solid

For a transversely isotropic piezo active magneto-electro-elastic (MEE) solid, polarized
along X, direction, the stiffness, piezo-electromagnetic, magnetic, dielectric properties and

bulk  density can be represented by 15  independent  coefficients
(C119012»C13>C44»C66 = (Cn -G, )/2) >

(BB’ Bis>63,€5,0,0, ) a(“na Hs3 ) ,(g” »€33 ) »P correspondingly.
Consequently, the constitutive relations can be written in terms of the following expanded
matrix form [ 5 ]:
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Oy G, G Gy 0 0 0 0 0 —€; 0 0 _BB S
Oxn G, G G 0 0 0 0 0 —&; 0 0 _BB Sy
O3 G G5 Gy 0 0 0 0 0 —€; 0 0 _BB S
Oy o 0 0c, O O O -e O O B, 0 [2s,
o 0o 0 0 0 c, 0O - O O B, 0 0 |[2s,
6,| |0 0 0 0 0 ¢, O O O O 0 0 |2s,
D|lo o0 0 0 0 0 ¢ 0 0 g 0 o0I|E
D, |0 0 0 0 0 0 0 ¢ O 0 g O/ E
D, & & €& 0 0 0 0 0 €33 0 0 9, E
B, o0 0 0 0 0 g O 0 w, 0 0| H,
B, o 0 0 0 0 0 0 g 0O 0 p, O0|H,
B, Bis By By 0O 0 0 0 9; 0 0 Hs; H,

Here G;; are components of the stress tensor, §; = (aiu ]- —l—ﬁj-ui ) / 2 are components of the
elastic strain tensor , E| are components of the electrical field vector E ,, Hi are
components of the magnetic field vector H, Di are components of the electrical
displacement vector D, B, are components of the magnetic induction vector

(i , j =1,2, 3) , U are components of elastic displacement vector, the indices preceded by a

comma denote space-coordinate differentiation.

The interconnected elastic and electro-magnetic excitations in a MEE solid will be considered
on the base of quasi-static approximation of Maxwell electrodynamics equations and linear
equations of motion [16 ]

VxE=0, VxH=0, V-D=0, V-B=0 (1)

0;S; = POuY, @)
here ? 2(5')(],5)(2,8)(3).

In the case of a two dimensional problem (when 5/ 5X3 = () equations and relations separate

into plane and anti-plane problems, analogous to the case of pure piezoelectric 6mm
symmetry crystal discussed in[17].
The anti-plane problem is described by the following equations and relations

(X =%%=Y)
6,=Gou-eE —BH,;  o©,=Gou-eE —pH,;

D,=ed,u+¢E +gH,; Dy :eﬁxuz+sEy+gHy; 3)

B, =Bou+gE, +pH,; B, =Bo,u, +gE, +uH;
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Here B,; =P,6,=6C,=G,u,=U,g, =¢,u, =p

From (1) follows that

E =-00 B=-V¢ )
where (p( X, y) , (I)(X, y) are potential functions.

Taking into account (4 ) we can write relations (1 ) in the form

=V, (GU +ep+pé),
B, =V, (BU —no—go), 5)
D, :ﬁo (eU _S(P_g(l));

(o)

Here the following notations are used
6= (sz,cszy) .B, =(BX, By); D,=(D,,D,); 60 = (8x,8y) 6)

Defining the new auxiliary potentials [5,15 ]

F=BU-po—gp; S=eU-ep-go Q)
and expressing potentials @, via new potentials F,S
¢=(-Fe+Sg+U0)y; o=(-Su+Un+F)y" (8)

Yy=¢eu—g, G:BS—eg, n:ell—f’g

we come to separate equations with respect to functions U, F, S.

a’Au—-o;u =0; AS=0; AF =0 )
where the dot denotes time differentiation,
A= (5i + 55,); a’=G,/p;G, =G+ (en + Be)yfl , a@is the velocity of shear bulk
magneto-electro-elastic wave in the MEE solid.

Let us note that for transversely isotropic MEE crystal y > 0 12].

The other functions G,,,G BX,By,DX,Dy via sought functions U, F,Scan be

yz°>

expressed as
0, =G,0,u—y '0,(nF +6S), 6, =G,0,u-y"'d,(nF +6S);
B, =0,F; B,=0,F; D, =0,S D,=0,S

2. Bloch-Floquet quasi-periodicity conditions, dispersion equations

(10)

We consider the plane Bloch -Floquet wave propagation along arbitrary direction in (X, y)

plane of infinite homogenous MEE structure consisting of imperfect contact interfaces
periodically arranged at points X = nd,n=0,+1,%£2..... along X direction. The effect of
the interface periodicity on the dynamic behavior will be investigated, considering only the

elementary cell X €& (O,d) and applying the Floquet-Bloch quasi-periodicity conditions
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connecting the ends of the elementary cell at X =0, X =d [12,13 ].Solutions of equations

(10)in Xe (0, d) in the form of plane waves can be written as

U(xyt)= [A exp(igx)+ A, exp(—iqx)]exp[i ( py—(ot)]

F (% y.t)=[ A exp(px)+ A exp(—px) Jexp[i( py—ot)] an
S(x, y.t)= [AS exp( px)+ A exp(— px)] exp[i (py— mt)]
Here, where the coefficients Aj are unknown amplitudes of the waves, = o’ / a’— p2 R

® is the angular frequency, P is the wave number in Y direction, i is the imaginary unit.

We consider several types of partial imperfect contact transmission conditions at the
interfaces within the periodically repeated unit cell of d width (period): electrically shorted,
electromagnetically closed, sliding mechanical (lubricated) contacts.

Note that electrically shorted conditions can be realized using a perfectly conducting film of
negligible thickness; electromagnetically closed conditions can be realized using a perfectly
conducting film of negligible thickness at the interfaces [15]. Smooth mechanical contacts
correspond to lubricated interface conditions. The smooth mechanical contacts conditions
were used in [15,18] for piezoelectric layered structures.

2.1 Electrically shorted interfaces with continuous elastic displacements , tractions,
magnetic potential and magnetic induction

Suppose that at each point X=nd,n=0,=1,+2..... there are electrically shorted

interfaces where the tangential component of electrical field vector have vanished and normal
component of electric displacement undergoes a discontinuity. Consequently the boundary
conditions can be written as

@(0,y,t)=0; o(d,y,t)=0

o,(0,y,t)=Ao,(d,y.t), u(0,y,t)=2u(d,y,t) (12)
0(0,y,t)=1d(d, y,t), B (0,y.,t)=AB,(d,y.t)

Here and hereafter A = eXp(ikd) , k is the Floquet wave number.

Substituting solutions (11) into the Bloch—Floquet quasi-periodicity conditions and
imperfect interface contact conditions(12 ) we come to the homogenous set of six

simultaneous equations with respect to the unknown amplitudes AJ- .The dispersion equation

can be obtained by equating the determinants of the simultaneous sets of equations to zero,

yielding

cos(dk) = F, (o, p);

(K =K, ) peosh(dp)sin(da) - (1+ K ) g cos(dq) sinh(dp) (13)

(K =K;) psin(da) —(1+ K ) gsinh(dp)

Here and hereafter the following notations are valid

B2 e Ke + Kﬁ - 2’Y01 / KeKB g
Ke===K= > Vo ="T—

I=74 Jeu

F (o p)=

K <1

L)':G_u’ ° Ge
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where Keis the electro-mechanical coupling coefficient, KB is the magneto-mechanical

coupling coefficient.

2.2 Electromagnetically closed interfaces with continuous elastic displacements and
tractions

Let suppose now that at each point X=Nd, N=0,%1,+2..... there are electromagnetically

shorted interfaces where the tangential component of electric field vector, tangent component
of magnetic field vector have vanished , while normal components of electric displacement
and magnetic induction vectors undergo a discontinuity.

In this case the boundary conditions can be written as

@(0,y,t)=1p(d,y,t);0(0,y,t) =Ao(d, y,t)
D, (0,y,t)=AD,(0,y,t); B (0,y,t) =AB, (0, y,t)

(14)
GX(O,y,t)zo, Gx(d,y,t)zo
¢(0,y,t)=0 o(d,y,t)=0
The following dispersion equation corresponds to these conditions:
cos(dk) = F, (o, p);
_ Kpcosh(dp)sin(daq) - (1 +K ) gcos(dq)sinh(dp) (15)

F, (o, p)= Kpsin(dq) - (1+ K ) gsinh(dp)

2.3 Mechanically sliding interface where normal elastic displacement undergo a
discontinuity.

Let us suppose now that at each point X= nd,n=0,+£1,%2..... periodically arranged

mechanically sliding interfaces where the component of electric field vector, tangent
component of magnetic field vector have vanished , while normal components of electric
displacement and magnetic induction vectors undergo a discontinuity.

In this case the boundary conditions can be written as

(P(Oa yat)_x(p(dayat)=05 (I)(anot)_}\‘(l)(da yat)z()a

D, (0,y,t)-AD,(0,y,t)=0; B,(0,y,t)-AB(0,y,t)=0 (16)
GX(O, y,t):O; Gx(d,y,t)zo

The dispersion equation corresponding to these boundary conditions is the following
cos(dk) =F, (0), p)

F (o, p) (1+ K)qcosh(dp)sin(dg)+ Kpcos(dq)sinh (dp) (17)
() =
P (1+ K)qsin(dq) + Kpsinh (dp)

4. Discussions and numerical results

The dispersion equations (13,15,17 ) defining ranges of frequencies associated with waves
that can propagate in MEE solid (pass bands), alternated with ranges of frequencies
corresponding

to waves that cannot be transmitted (stop or band gaps).
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For one dimension wave travelling along periodicity direction ( P= 0) or when there are

no piezo effects ( Ke =0, Kb = 0) , under electrically shorted or electromagnetically closed

imperfect contact conditions from dispersion equations ( 13,15) follows the simple dispersion
relation ® = ak ; Under mechanically sliding condition instead of dispersion equation (17 )

we have COS(dk) = cosh(dp), which means that the periodic structure does not allow
propagation of elastic wave as was expected.

Let us now examine the behavior of the functions Fl ((D) , F2 (O)) , F3 (O)) the right parts of
equations (13,15,17). For given values of oblique incidence wave number p and frequency
® the dispersion equations have not real solution for K , when the right part of dispersion
equations ‘F ((0, p)‘ > 1. The range of @ in which there are no propagating solutions of

dispersions equations corresponds to complete photonic frequency band gap. Frequency
regions of (® outside of gaps correspond to frequency passes .

Numerical calculation will be carried out for MEE crystal BaTiO,—CoFe,O, for which
dimensionless coupling coefficients are K, =0.24,K; =0.36,v,=0,09 [2].

The Fig.1, Fig2 illustrate dependence of right parts of dispersion equations (15,17 ) with
respect to dimensionless phase speed & = (D( pa)_l , for sliding and shorted interfaces,
correspondingly, when pd =2 . Points of intersection of function F (0), p) with straight

lines £1 determine the frequency band and pass ranges.
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Figl. Theright part of Eq.(17 ) as function Fig 2. Theright part of Eg.(13) as function
of dimensionless phase velocity & of dimensionless phase velocity &

For sliding contact case from the Fig.1 follows that there are narrow ranges of frequency pass
which means that periodically arranged interfaces of sliding contact may admit of shear wave
transmission due to piezo effect. These passes are absent when the piezo effects are neglected.

The layout of these pass ranges is &e€(0.—0.86),Ee(1.33>1.64),

£ €(2.59 — 2.76). The outside ranges correspond to the band gaps, the width of the band

gaps significantly widens for higher frequencies.

Contrary to sliding contact case, for electromagnetically closed case from Fig.2 it follows
that there are narrow ranges of gap zones caused by piezo effect. These gaps are absent when
the piezo effects are neglected. The layout of these ranges are

£ (0.90 > 0.98),& (1.72 —1.86), £ €(3.22 = 3.29), £ e (4.72 — 4.79).

Outward of the gap ranges are the pass ranges, the width of which significantly widens for
higher frequencies.
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For electrically shorted case Fig.3 shows the dispersions curves kd = f ((Ddaf1 ) and pass

and stop bands structures in first Brillouin zone of dimensionless wave number

kd E(O,ﬂ:), where ®0a'is the normalized dimensionless frequency. Dashed lines

correspond to oblique wave number pd =2, solid lines to pd =1. The first and rest band

gaps occur only at T = kd . The width of the band gaps for MEE solids narrows for higher
frequencies and gaps are absent when the piezo effects are neglected. The cut-off frequency

are 0.89, 1.86 for pd =1, for pd =2, correspondingly.

0.0 0.5 1.0 1.5 2.0 25 3.0
wda™!
Fig 3. Dispersion curves for electrically shorted case

5. Conclusions

Based on quasi static approximation of Maxwell electrodynamics equations shear wave
propagation in MEE homogeneous solid is studied . The well known Floquet quasi-
periodicity boundary conditions are taken into consideration. Dispersion relations are derived
for three kinds of imperfect contacts: electrically shorted, electromagnetically closed, sliding

mechanical (lubricated) contacts. For MEE crystal BaTiO,—CoFe,O, the numerical analysis

of dispersion equations determining the Floquet waves is carried out. The Floquet wave
frequency pass and gap band structures are studied in conformity with contact conditions.
The numerical results estimating effects of transmission conditions and piezo effects are
presented. The results show that for periodically arranged electrically shorted or
electromagnetically closed interfaces the possibility of frequency band gap is conditioned by
piezo effect. It is also shown that periodically arranged mechanically sliding interfaces may
admit shear wave transmission/ pass, which simply do not exist without a piezo effect.
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