2U3UUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

68, №1, 2015

Механика

УДК 539.3

ДИФРАКЦИЯ ПЛОСКОЙ СДВИГОВОЙ ВОЛНЫ В ПЬЕЗОЭЛЕКТРИЧЕСКОМ ПОЛУПРОСТРАНСТВЕ ПРИ ПОЛУБЕСКОНЕЧНОМ МЕТАЛЛИЧЕСКОМ СЛОЕ В ДИЭЛЕКТРИКЕ

Джилавян С.А., Казарян А.А.

Բանալի բառեր. դիֆրակցիա, ալիքային դաշտ, պիեզոէլեկտրիկ, մետաղական շերտ, դիէլեկտրիկ, կիսաանվերջ շերտ, մակերևութային ալիք։

Ключевые слова: дифракция, волновое поле, пьезоэлектрик, металлический слой, диэлектрик, полубесконечный слой, поверхностная волна.

Key words: diffraction, wave fild, piezoelectric, metallic layer, dielectric, semi-infinit layer, surface wave.

Ջիլավյան Ս.Հ., Ղազարյան Հ.Ա.

Պիեզոէլեկտրական կիսատարածությունում սահքի հարթ ալիքի դիֆրակցիան դիէլեկտրիկ կիսատարածությունում առկա կիսաանվերջ մետաղական շերտի վրա

Դիէլեկտրիկ կիսատարածությունում գտնվող կիսաանվերջ մետաղական շերտի վրա սահքի հարթ էլեկտրաառաձգական ալիքի դիֆրակցիայի խնդիրը բերվում է անալիտիկ ֆունկցիաների տեսության Ռիմանի տիպի խնդրի իրական առանցքի վրա։

Դիֆրակցիայի խնդիրը լուծվում է օգտագործելով Ֆուրյեի ինտեգրալ ձևափոխությունների մեթոդը։ Կիսաանվերջ մետաղական շերտի՝ էլեկտրոդի ,առկայությունը բերում է ալիքների դիֆրակցիայի՝ պիեզոէլեկտրական կիսատարածությունում տարածվում են ծավալային և երկու մակերևութային ալիքներ։ Բացահայտվել են ալիքային դաշտի մի քանի առանձնահատկություններ։

Jilavyan S.H., Ghazaryan H.A.

Diffraction of Plane Shear Wave in Piezoelectric Semi-Space at a Semi-Infinite Metallic Layer in the Dielectric Medium

The problem of diffraction of plane shear electro-elastic wave in a piezoelectric medium with a semi-infinite metallic layer in dielectric half-space is reduced to the solution to Riemann problem in analytic functions theory. The problem of diffraction is solved using Fourier transformation. The presence of the semi-infinite metallic layer leads to a diffraction of waves and some special features, a result of which two surface electro-elastic waves occur in a piezoelectric medium.

Задача дифракции плоской электроупругой волны сдвига в пьезоэлектрическом полупространстве при полубесконечном металлическом слое в диэлектрическом полупространстве сводится к решению задачи типа Римана на действительной оси в теории аналитических функций. Решается задача методом интегрального преобразования Фурье. Наличие полубесконечного металлического слоя (электрода) в диэлектрике приводит к распространению дифрагированных объёмных и двух поверхностных электроупругих волн в пьезоэлектрическом полупространстве. Выявлены некоторые особенности волнового поля.

Введение. При исследовании волновых процессов в деформируемых средах некоторые характерные свойства существенно влияют на волновое поле, но важным

из них является конструктивная неоднородность (слоистость, наличие включений), которая порождает новые эффекты – локализованные волны [1-4]. Изучения вопросов дифракции сдвиговых плоских волн и распространения локализованных (поверхностных) волн относятся к числу наиболее актуальных проблем динамических задач составных электроупругих сред. Задачи распространения сдвиговых поверхностных волн в сложных структурах при разных сочетаниях граничных условий исследованы во многих работах в этой области. Известно, что различные физико-механические свойства контактирующих сред приводят к существенным изменениям волнового поля, так, в пьезоэлектрическом полупространстве без акустического контакта с диэлектрической средой распространяются поверхностные сдвиговые волны [2, 3]. В данной работе рассмотрена задача дифракции плоской волны сдвига в электроупругой составной среде (пьезоэлектрик-диэлектрик) при наличии тонкого полубесконечного, металлического, заземлённого слоя (электрода) в диэлектрике. Этот слой является причиной дифракции электроупругой волны, при этом, в пьезоэлектрическом полупространстве возбуждаются поверхностные волны сдвига и проявляются некоторые особые явления. Задача решается методом интегрального преобразования Фурье, используя метод факторизации, аппарат обобщённых функций и методы теории функций комплексного переменного [5, 6]. Задача сводится к решению функционального уравнения типа Римана на действительной оси. Не только ярко выраженная анизотропия пьезоэлектрика усложняет исследование волнового процесса, но и ряд новых свойств, проявляющихся в результате взаимодействия физических полей разной природы.

1.Постановка задачи. Рассматривается задача дифракции сдвиговой плоской электроупругой волны в составном пространстве, отнесённом к декартовой системе координат *Oxyz*. Пьезоэлектрическая среда – пьезоэлектрик класса 6mm гексагональной симметрии с совпадающей с осью *Oz* главной осью кристалла, занимает полупространство y > 0, а диэлектрическая среда – полупространство y < 0. Диэлектрическая среда граничит с пьезоэлектрическим полупространством в плоскости *Oxz* без акустического контакта. В пьезоэлектрическом полупространствон в плоскости y = 0 распространяется электроупругая волна сдвига (фиг.1)

 $w_{\infty}(x, y) = e^{-ikx\cos\theta_0 - iky\sin\theta_0}$

$$\Phi_{\infty}(x,y) = \frac{e_{15}}{\varepsilon_{11}} e^{-ikx\cos\theta_0 - iky\sin\theta_0}$$
(1.1)

В диэлектрическом полупространстве заземлённый металлический слой (электрод) занимает полуплоскость y = -h, x < 0. Ставится задача определения электроупругого волнового поля в рассматриваемой среде, обусловленного наличием пьезоэффекта в полупространстве y > 0 и полубесконечного металлического слоя в диэлектрическом полупространстве y < 0.

В этих соотношениях ω -частота колебаний, t-параметр времени, $k = \omega/c$, $c = \sqrt{c_{44}(1+\chi)/\rho}$ – волновое число и скорость распространения сдвиговой электроупругой волны в пьезоэлектрической среде, соответственно, $e_{15}, \varepsilon_{11}, c_{44}$ - пьезоэлектрическая, диэлектрическая и упругая постоянные пьезоэлектрика, а ρ -плотность, ε_0 – диэлектрическая постоянная среды y < 0.

Пьезоэлектрическая среда (y > 0) находится в условиях антиплоской деформации. Отметим, что учитывается гармоническая зависимость от времени всех составляющих волнового поля (временной множитель $e^{-i\omega t}$) и задача решается в амплитудах. Для определения амплитуды перемещения w(x, y) точек в полупространстве y > 0 и амплитуд электрических потенциалов (в квазистатическом приближении) в двух полупространствах $\Phi(x, y)$, $\Phi_1(x, y)$ имеем следующие уравнения [1]:

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + k^2 w = 0$$

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + k^2 \frac{e_{15}}{\varepsilon_{11}} w = 0$$

$$\frac{\partial^2 \Phi_1}{\partial x^2} + \frac{\partial^2 \Phi_1}{\partial y^2} = 0 \qquad y < 0$$
(1.2)

Решения уравнений (1.2), (1.3) должны удовлетворять следующим условиям на плоскости *y* = 0 (непрерывность электрического поля) [1-4]:

$$σ_{yz}(x, +0) = 0$$

 $Φ(x, 0) = Φ_1(x, 0), \quad D_2(x, 0) = D_{12}(x, 0)$
(1.4)

Здесь $σ_{yz}(x, y) -$ амплитуда напряжения в пьезоэлектрике.

Здесь $\sigma_{yz}(x, y)$ – амплитуда напряжения в пьезоэлектрике, $D_2(x, y), D_{12}(x, y)$ – составляющие вектора электрической индукции в пьезоэлектрике и диэлектрике, соответственно:

$$\sigma_{yz} = c_{44} \frac{\partial w}{\partial y} + e_{15} \frac{\partial \Phi}{\partial y} , \quad D_2 = e_{15} \frac{\partial w}{\partial y} - \varepsilon_{11} \frac{\partial \Phi}{\partial y} \qquad y > 0$$

47

$$D_{12} = -\varepsilon_0 \frac{\partial \Phi_1}{\partial y} \qquad y < 0 \tag{1.5}$$

При наличии металлического слоя в полуплоскости y = -h, x < 0 имеют место следующие условия:

$$\Phi_{1}(x, -h+0) = \Phi_{1}(x, -h-0) = \Phi^{+}(x)$$

$$D_{12}(x, -h+0) - D_{12}(x, -h-0) = -\varepsilon_{0}\Psi^{-}(x)$$
В соотношениях (1.6) введены функции:
(1.6)

 $\Phi^+(x) = \Phi_1(x, -h)\theta(x), \quad \varepsilon_0\Psi^-(x) = d(x)\theta(-x),$

где d(x) представляет разницу значений $D_{12}(x, y)$ на y = -h + 0 и y = -h - 0при x < 0, $\theta(x)$ – известная функция Хевисайда.

2. Решение задачи. Введём функции 1 ... - 10/ 2 ..) (1

$$u(x, y) = w(x, y) - w_{\infty}(x, y) \varphi(x, y) = \Phi(x, y) - \Phi_{\infty}(x, y)$$
 (2.1)

Применяя интегральное преобразование Фурье по переменной х к уравнениям (1.2), (1.3), получим уравнения относительно трансформантов [2-4]:

$$\frac{d^{2}\overline{u}}{dy^{2}} - (\sigma^{2} - k^{2})\overline{u} = 0$$

$$\frac{d^{2}\overline{\phi}}{dy^{2}} - \sigma^{2}\overline{\phi} + k^{2}\frac{e_{15}}{\varepsilon_{11}}\overline{u} = 0$$

$$\frac{d^{2}\overline{\Phi_{1}}}{dy^{2}} - \sigma^{2}\overline{\Phi_{1}} - \sigma^{2}\overline{\Phi_{1}} = 0$$
(2.2)

$$\frac{d}{dy^2} - \sigma^2 \overline{\Phi_1} = 0 \qquad \qquad y < 0 \tag{2.3}$$

и следующие условия при y = 0:

$$c_{44}\frac{dw}{dy} + e_{15}\frac{d\Phi}{dy} = 0, e_{15}\frac{dw}{dy} - \varepsilon_{11}\frac{d\Phi}{dy} = -\varepsilon_0\frac{d\Phi_1}{dy}, \ \overline{\Phi} = \overline{\Phi_1}$$
(2.4)

и условия при y = -h:

$$\Phi^{+}(\sigma) = \Phi_{1}(\sigma, -h+0) = \Phi_{1}(\sigma, -h-0)$$

$$\overline{D_{12}}(\sigma, -h+0) - \overline{D_{12}}(\sigma, -h-0) = -\varepsilon_{0}\overline{\Psi^{-}}(\sigma)$$

$$\Pi_{13} \text{ transformation Dyple incomply dynking nonverse.}$$
(2.5)

Для трансформантов Фурье искомых функции получим:

$$\overline{w} = C_{1}(\sigma)e^{-\sqrt{\sigma^{2}-k^{2}y}} + 2\pi e^{-iky\sin\theta_{0}}\delta(\sigma - k\cos\theta_{0})$$

$$\overline{\Phi} = C_{2}(\sigma)e^{-|\sigma|y} + \frac{e_{15}}{\varepsilon_{11}}\overline{w}$$

$$\overline{\Phi_{1}} = C_{3}(\sigma)\operatorname{ch}|\sigma|y + C_{4}(\sigma)\operatorname{sh}|\sigma|y \qquad -h < y < 0$$

$$\overline{\Phi_{1}} = C_{5}(\sigma)e^{|\sigma|y} \qquad y < -h \qquad (2.6)$$

Здесь $\delta(\sigma) - \phi$ ункция Дирака, $\gamma(\sigma) = \sqrt{\sigma^2 - k^2} \rightarrow |\sigma|$ при $|\sigma| \rightarrow \infty$, $\sqrt{\sigma^2 - k^2} = -i\sqrt{k^2 - \sigma^2}$, т.е. действительная ось комплексной плоскости $\alpha = \sigma + i\tau$ обходит точку $\sigma = -k$ сверху, а точку $\sigma = k$ – снизу [4-5]. Для функций $C_m(\sigma) m = \overline{1,5}$ имеем:

$$C_{1}(\sigma) = \frac{\varepsilon_{11} + \varepsilon_{0}}{e_{15}} \overline{\Phi^{+}} e^{|\sigma|h} + \frac{\varepsilon_{11} \mathrm{sh} |\sigma| h + \varepsilon_{0} \mathrm{ch} |\sigma| h}{e_{15} |\sigma|} \overline{\Psi^{-}} - 2\pi \delta(\sigma - k \cos \theta_{0}),$$

$$C_{2}(\sigma) = -\frac{\varepsilon_{0}}{\varepsilon_{11}} \overline{\Phi^{+}} e^{|\sigma|h} - \frac{\varepsilon_{0}}{\varepsilon_{11}} \frac{\mathrm{ch} |\sigma| h}{|\sigma|} \overline{\Psi^{-}}, \qquad C_{5}(\sigma) = e^{|\sigma|h} \overline{\Phi^{+}}$$

$$C_{3}(\sigma) = \overline{\Phi^{+}} e^{|\sigma|h} + \frac{\mathrm{sh} |\sigma| h}{|\sigma|} \overline{\Psi^{-}}, \qquad (2.7)$$

$$C_{4}(\sigma) = \overline{\Phi^{+}} e^{|\sigma|h} + \frac{\mathrm{ch} |\sigma| h}{|\sigma|} \overline{\Psi^{-}}$$

Относительно трансформантов $\Phi^+(\sigma), \Psi^-(\sigma)$ получим следующее уравнение:

$$2|\sigma|K(\sigma)\overline{\Phi^{+}}(\sigma) + \overline{\Psi^{-}}(\sigma) = \frac{8\pi e_{15}k(1+\chi)\cos\theta_{0}e^{-kh\cos\theta_{0}}}{K_{2}(k\cos\theta_{0})}\delta(\sigma - k\cos\theta_{0}), \qquad (2.8)$$

где

$$K(\sigma) = \frac{K_{1}(\sigma)}{K_{2}(\sigma)}$$
(2.9)

$$K_{0}(\sigma) = 1 + \chi - \frac{\chi |\sigma|}{\sqrt{\sigma^{2} - k^{2}}}, \quad K_{1}(\sigma) = \varepsilon_{11}(1 + \chi) + \varepsilon_{0}K_{0}(\sigma)$$
(2.10)

$$K_{2}(\sigma) = \varepsilon_{0}(1 + e^{-2|\sigma|h})K_{0}(\sigma) + (1 + \chi)\varepsilon_{11}(1 - e^{-2|\sigma|h})$$
(2.10)

Прежде чем приступить к решению уравнения (2.8), рассмотрим частный случай, когда металлический слой занимает в диэлектрике всю плоскость y = -h. Тогда следует принять $\overline{\Phi^+}(\sigma) = 0$, т.е. $\Phi_1(x, y) = 0$ при y = -h, $-\infty < x < \infty$. Из (2.6), (2.7), применяя обратное преобразование Фурье, получим амплитуду перемещений пьезоэлектрической среды ($y \ge 0$):

$$w(x, y) = e^{-ikx\cos\theta_0 - iky\sin\theta_0} + (2A_0 - 1)e^{iky\sin\theta_0 - ikx\cos\theta_0},$$

$$A_0 = 2(1+\chi)e^{-kh\cos\theta_0} \frac{\varepsilon_{11}\mathrm{sh}(kh\cos\theta_0) + \varepsilon_0\mathrm{ch}(kh\cos\theta_0)}{K_2(k\cos\theta_0)}$$

при $\chi = 0$ (отсутствие пьезоэффекта) $A_0 = 1$. Как и следовало ожидать, волновое поле перемещения в пьезоэлектрическом полупространстве состоит только из падающей волны и отражённой от свободной границы волны.

Вернёмся к решению полученного функционального уравнения (2.8), которое можно рассматривать как краевую задачу типа Римана на действительной оси. Функция $K(\sigma)$ имеет нули только в точках $\pm \sigma_1$, т.к. σ_1 – единственный положительный корень уравнения $K_1(\sigma) = 0$ и полюса – только в точках $\pm \sigma_2$,

 σ_2 – единственный положительный корень уравнения $K_2(\sigma) = 0$. Показано, что при $\sigma > k$ функции $K_0(\sigma)$, $K_1(\sigma)$, $K_2(\sigma)$ возрастают и $\sigma_0 > \sigma_2 > \sigma_1 > k$ $K_0(\pm\sigma_0) = K_1(\pm\sigma_1) = K_2(\pm\sigma_2) = 0, \ K_2(\sigma) > 0$ при $\sigma > \sigma_0$ $(s + s) \sqrt{1 + 2\gamma}$ 1⊥v

$$\sigma_0 = k \frac{1+\chi}{\sqrt{1+2\chi}}, \qquad \sigma_1 = \sigma_0 \frac{(\varepsilon_0 + \varepsilon_{11})\sqrt{1+2\chi}}{\sqrt{(1+\chi)^2(\varepsilon_0 + \varepsilon_{11})^2 - \varepsilon_0^2\chi^2}}$$

Принимается, что в данной задаче типа Римана действительная ось обходит не только точки ветвления $\pm k$ функции $\gamma(\alpha) = \sqrt{\alpha^2 - k^2}$, но и точки $\sigma = -\sigma_1, \sigma = -\sigma_2$ сверху, а точки $\sigma = \sigma_1, \sigma = \sigma_2$ снизу, обеспечивая условия уходящей волны. Функциональное уравнение (2.8) решается, используя такую же методику, как в [2,4,6-8], решения строятся, факторизируя функцию $K(\sigma)$, т.к $K(\sigma) \rightarrow 1$ при $|\sigma| \rightarrow \infty$, $\sqrt{\sigma^2 - k^2} \rightarrow |\sigma|$, представляя $K(\sigma) = K^+(\sigma)K^-(\sigma),$ (2.11)

где функции $K^{\pm}(\alpha)$. $\alpha = \sigma + i\tau$ регулярны и не имеют нулей при $\operatorname{Im} \alpha > 0$ и Im α < 0, соответственно, а $K^+(\sigma)$, $K^-(\sigma)$ – граничные значения этих функций. $V^{\pm}(\alpha) \rightarrow 1$

При этом,
$$K^{\pm}(\alpha) \rightarrow 1$$
 при $|\alpha| \rightarrow \infty$ в своих областях регулярности [2,4]

$$K^{+}(\alpha) = \exp(F^{+}(\sigma)), \ K^{-}(\alpha) = \exp(F^{-}(\sigma))$$

$$F^{+}(\sigma) = \int_{0}^{\infty} F(x)e^{ix(\sigma+i0)}dx, F^{-}(\sigma) = F^{+}(-\sigma),$$

$$F(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \ln K(\sigma)e^{-i\sigma x}d\sigma, \ K^{-}(-\alpha) = K^{+}(\alpha)$$
Имея в виду (2.11) и представление

1 1

$$|\sigma| = (\sigma - i0)^{\frac{1}{2}} (\sigma + i0)^{\frac{1}{2}},$$
 (2.12)

уравнение (2.8) сводится к виду

$$2(\sigma + i0)^{\frac{1}{2}}K^{+}(\sigma)\overline{\Phi^{+}}(\sigma) + \frac{\Psi^{-}(\sigma)}{(\sigma - i0)^{\frac{1}{2}}K^{-}(\sigma)} = 8\pi e_{15}a_{0}\delta(\sigma - k\cos\theta_{0}), \qquad (2.13)$$

rge $a_{0} = \frac{(1+\chi)\sqrt{k\cos\theta_{0}}K^{+}(k\cos\theta_{0})e^{-kh\cos\theta_{0}}}{K_{1}(k\cos\theta_{0})}.$

Из уравнения (2.13), используя формулу

$$2\pi i\delta(\sigma - k\cos\theta_0) = \frac{1}{\sigma - k\cos\theta_0 - i0} - \frac{1}{\sigma - k\cos\theta_0 + i0},$$
(2.14)

получим следующие выражения для искомых функций:

$$\overline{\Psi^{-}}(\sigma) = -\frac{4ie_{15}a_{0}(\sigma - i0)^{1/2}K^{-}(\sigma)}{\sigma - k\cos\theta_{0} - i0}$$
(2.15)

$$\overline{\Phi^{+}}(\sigma) = \frac{2ie_{15}a_{0}}{(\sigma + i0)^{1/2} K^{+}(\sigma)(\sigma - k\cos\theta_{0} + i0)}.$$
(2.16)

Следовательно, имея из (2.7) функции $C_m(\sigma) m = \overline{1,5}$, получим выражения функций $\overline{w}(\sigma, y), \overline{\Phi}(\sigma, y), \overline{\Phi_1}(\sigma, y)$. После обратного преобразования Фурье

$$w(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{w} e^{-i\sigma x} d\sigma,$$

амплитуда перемещений в пьезоэлектрическом полупространстве представляется в виде

$$w(x, y) = \frac{\varepsilon_{11} + \varepsilon_0}{2\pi e_{15}} \int_{-\infty}^{\infty} e^{|\sigma|h} e^{-\sqrt{\sigma^2 - k^2}y} e^{-i\sigma x} (\overline{\Phi^+}(\sigma) + \frac{\varepsilon_0 + \varepsilon_{11} + (\varepsilon_0 - \varepsilon_{11})e^{-2|\sigma|h}}{2|\sigma|(\varepsilon_0 + \varepsilon_{11})} \overline{\Psi^-}(\sigma)) d\sigma - e^{-ikx\cos\theta_0 - iky\sin\theta_0} + e^{-ikx\cos\theta_0 - iky\sin\theta_0},$$

$$(2.17)$$

а амплитуда потенциала электрического поля при y > 0

$$\Phi(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C_2(\sigma) e^{-|\sigma|y} e^{-i\sigma x} dx + \frac{e_{15}}{\varepsilon_{11}} w(x, y)$$
(2.18)

Рассмотрим волновое поле в пьезоэлектрическом полупространстве (y > 0), когда x < 0. Тогда, с помощью формулы (2.14), имея в виду (2.15), выражение (2.17) представляется в виде:

$$w(x, y) = e^{-ikx\cos\theta_{0} - iky\sin\theta_{0}} + (A_{2} - 1)e^{-ikx\cos\theta_{0} + iky\sin\theta_{0}} + B\int_{-\infty}^{\infty} \frac{ie^{-|\sigma|h} |\sigma| e^{-\sqrt{\sigma^{2} - k^{2}}y} e^{-i\sigma x} d\sigma}{\sqrt{\sigma^{2} - k^{2}} (\sigma + i0)^{1/2} K^{+}(\sigma) K_{2}(\sigma) (\sigma - k\cos\theta_{0} + i0)},$$
(2.19)
The $A - 2A \pi B = -\varepsilon \varepsilon \gamma a$

где $A_2 = 2A_{0}, \pi B = -\varepsilon_0 \varepsilon_{11} \chi a_0.$

Таким образом, волновое поле состоит из падающей волны, отражённой волны и дифрагированной, обусловленной наличием полубесконечного металлического слоя в диэлектрическом полупространстве.

Следует сразу же отметить, что при x > 0 из формулы (2.17), имея в виду (2.14) и (2.15), получим амплитуду перемещения w(x, y) точек пьезоэлектрического полупространства при x > 0:

$$W(x, y) = e^{-ikx\cos\theta_{0} - iky\sin\theta_{0}} + (A_{1} - 1)e^{-ikx\cos\theta_{0} + iky\sin\theta_{0}} + B\int_{-\infty}^{\infty} \frac{i(\sigma - i0)^{1/2} K^{-}(\sigma)e^{-|\sigma|h}e^{-\sqrt{\sigma^{2} - k^{2}}y}e^{-i\sigma x}d\sigma}{\sqrt{\sigma^{2} - k^{2}} K_{1}(\sigma)(\sigma - k\cos\theta_{0} - i0)},$$

$$A_{1} = \frac{2(1 + \chi)(\varepsilon_{11} + \varepsilon_{0})}{K_{1}(k\cos\theta_{0})}, \qquad \text{при } \chi = 0 \text{ получим } A_{1} = 2.$$
(2.20)

Рассмотрим интеграл в формуле (2.19)

$$I_{2}(x, y) = B \int_{-\infty}^{\infty} \frac{(\sigma + i0)^{-1/2} i |\sigma| e^{-\sqrt{\sigma^{2} - k^{2} y}} e^{-i\sigma x} d\sigma}{K^{+}(\sigma) M_{2}(|\sigma|, \gamma)(\sigma - k\cos\theta_{0} + i0)} \qquad x < 0$$
(2.21)

51

где принято, что

$$\begin{split} M_{2}(|\sigma|,\gamma) &\equiv M_{2}(\sigma) = e^{|\sigma|h} \sqrt{\sigma^{2} - k^{2}} K_{2}(\sigma) , \text{ т.е.} \\ M_{2}(|\sigma|,\gamma) &= \varepsilon_{0}(e^{|\sigma|h} + e^{-|\sigma|h})(\gamma(1+\chi) - \chi |\sigma|) + \varepsilon_{11}(1+\chi)\gamma(e^{|\sigma|h} - e^{-|\sigma|h}), \\ \text{здесь } \gamma &= \gamma(\sigma) = \sqrt{\sigma^{2} - k^{2}} . \\ \text{Интеграл (2,21) можно представить в следующем виде:} \end{split}$$

$$I_{2}(x, y) = I_{2}^{(1)}(x, y) + I_{2}^{(2)}(x, y) \qquad x < 0$$
(2.22)

$$I_{2}^{(1)} = B \int_{-\infty}^{\infty} \frac{(\sigma + i0)^{-1/2} i\sigma e^{-\sqrt{\sigma^{2} - k^{2}}} e^{-i\sigma x} d\sigma}{K^{+}(\sigma) N_{2}(\sigma, \gamma)(\sigma - k\cos\theta_{0} + i0)}$$
(2.23)

$$I_{2}^{(2)} = B \int_{-\infty}^{\infty} \frac{i e^{-\sqrt{\sigma^{2} - k^{2} y}} e^{-i\sigma x}}{(\sigma + i0)^{1/2} K^{+}(\sigma)} (\frac{|\sigma|}{M_{2}(|\sigma|, \gamma)} - \frac{\sigma}{N_{2}(\sigma, \gamma)}) \frac{d\sigma}{(\sigma - k\cos\theta_{0} + i0)} , \quad (2.24)$$

де

$$\begin{split} N_2(\sigma,\gamma) &\equiv N_2(\sigma) = \varepsilon_0(e^{\sigma h} + e^{-\sigma h})(\gamma(1+\chi) - \chi\sigma) + \varepsilon_{11}(1+\chi)\gamma(e^{\sigma h} - e^{-\sigma h}) \\ N_2(\sigma,\gamma) &= M_2(\sigma,\gamma) \quad \text{при} \ \left|\sigma\right| = \sigma \,. \end{split}$$

Преобразуем интегралы (2.23), (2.24) методом контурного интегрирования в комплексной плоскости $\alpha = \sigma + i\tau$, рассматривая при этом комплексную плоскость с разрезами, показанными на (фиг.2). Путь интегрирования замыкается в верхней полуплоскости, а действительная ось обходит точку $-\sigma_2$ сверху, а точку σ_2 снизу, т.к. σ_2 – единственный положительный корень функции $K_2(\sigma)$. Аналитическое продолжение функции $N_2(\sigma)$, т.е. функция $N_2(\alpha)$ с такими разрезами в комплексной плоскости не имеет чисто мнимых корней, не имеет также комплексных корней, т.к. в противном случае получим составляющую приходящей волны, а это противоречит поставленной задаче (принцип уходящей волны) [2,7,8]. Аналитическое продолжение подынтегральной функции (2.23) внутри контура интегрирования имеет единственную особую точку $\sigma = \sigma_2$, где имеет простой полюс.

Аналитическое продолжение функции о в комплексной плоскости $\alpha = \sigma + i\tau$ представляется в виде

$$\left|\alpha\right| = \begin{cases} \alpha, \operatorname{Re}\alpha > 0\\ -\alpha, \operatorname{Re}\alpha < 0 \end{cases}$$
(2.25)

После контурного интегрирования, имея в виду вычет подынтегральной функции, получим:

$$I_{2}^{(1)}(x, y) = I_{20}^{(1)}(x, y) + w_{*}^{(2)}(x, y)$$

$$(2.26)$$

$$I_{20}^{(1)}(x, y) = I_{21}^{(1)}(x, y) + I_{22}^{(1)}(x, y) + I_{23}^{(1)}(x, y) + I_{24}^{(1)}(x, y)$$

$$I_{2}^{(2)}(x, y) = -B_{-\infty}^{\infty} \frac{(i\tau)^{1/2} e^{i\sqrt{k^{2} + \tau^{2}} y} e^{-t|k|}}{K^{+}(i\tau)} (\frac{1}{M_{2}(-i\tau, -i\sqrt{k^{2} + \tau^{2}})} + \frac{1}{N_{2}(i\tau, -i\sqrt{k^{2} + \tau^{2}})}) \frac{d\tau}{i\tau - k\cos\theta_{0}},$$

$$I_{21}^{(1)}(x, y) = -B_{0}^{\infty} \frac{(i\tau)^{1/2} e^{-i\sqrt{k^{2} + \tau^{2}} y} e^{-t|k|} d\tau}{K^{+}(i\tau)N_{2}(i\tau, i\sqrt{k^{2} + \tau^{2}})(i\tau - k\cos\theta_{0})},$$

$$I_{24}^{(1)}(x, y) = B_{0}^{\infty} \frac{(i\tau)^{1/2} e^{i\sqrt{k^{2} + \tau^{2}} y} e^{-t|k|} d\tau}{K^{+}(i\tau)N_{2}(i\tau, -i\sqrt{k^{2} + \tau^{2}})(i\tau - k\cos\theta_{0})}$$

$$I_{22}^{(1)}(x, y) = -B_{0}^{k} \frac{i\sigma e^{-i\sqrt{k^{2} - \sigma^{2}} e^{i\sigma|k|}} d\sigma}{(\sigma + i0)^{1/2} K^{+}(\sigma)N_{2}(\sigma, i\sqrt{k^{2} - \sigma^{2}})(\sigma - k\cos\theta_{0} + i0)}$$

$$I_{23}^{(1)}(x, y) = B_{0}^{k} \frac{i\sigma e^{i\sqrt{k^{2} - \sigma^{2}} e^{i\sigma|k|}} d\sigma}{(\sigma + i0)^{1/2} K^{+}(\sigma)N_{2}(\sigma, -i\sqrt{k^{2} - \sigma^{2}})(\sigma - k\cos\theta_{0} + i0)}$$

$$w_{*}(x, y) = A_{*}^{(2)} e^{-\sqrt{\sigma^{2} - k^{2}} y} e^{i\sigma|x|} dx$$

$$(2.28)$$

$$A_{*}^{(2)} = \frac{Bi\sqrt{\sigma_{2}e^{-\sigma_{2}h}}}{(\sigma_{2} - k\cos\theta_{0})K^{+}(\sigma_{2})\sqrt{\sigma_{2}^{2} - k^{2}}K_{2}'(\sigma_{2})}, \quad K_{2}'(\sigma_{2}) = \frac{dK_{2}}{d\sigma}\Big|_{\sigma=\sigma_{2}}$$

где (2.28) представляет амплитуду поверхностной волны

$$W_*(x, y, t) = w_*(x, y)e^{-i\omega t}$$

Таким образом, (2.11) получим в виде суммы регулярных интегралов, амплитуд падающей и отражённой волн, а также поверхностной волны.

 $w(x, y) = e^{-ikx\cos\theta_0 - iky\sin\theta_0} + (A_2 - 1)e^{-ikx\cos\theta_0 + iky\sin\theta_0} + I_{20}^{(1)}(x, y) + I_2^{(2)}(x, y) + A_*^{(2)}e^{-\sqrt{\sigma^2 - k^2}y}e^{i\sigma_2|x|}$ (2.29)

На граничной поверхности y = 0 амплитуда поверхностной волны принимает максимальное значение. Асимптотическое представление перемещений пьезоэлектрика на граничной поверхности (y = 0) при $x \rightarrow -\infty$ имеет вид:

$$w(x,0) = A_2 e^{-ikx\cos\theta_0} + A_*^{(2)} e^{i\sigma_2|x|} + B_2 e^{i(kx-\frac{\pi}{4})} (|kx|^{-\frac{3}{2}} + O(|kx|^{-\frac{5}{2}})) + b_2 (|kx|^{-\frac{3}{2}} + O(|kx|^{-\frac{5}{2}}))$$

$$B_2 = \frac{B}{\sqrt{2k}K^+(k)\varepsilon_0 (1+\chi) chkh \sin^2\theta_0/2}, \quad b_2 = \frac{B}{\sqrt{k\pi}\sqrt{(\varepsilon_{11} + \varepsilon_0)\varepsilon_0} \cos\theta_0}$$
(2.30)

Волновое поле состоит из падающей волны, отражённой волны, дифрагированной затухающей объёмной волны, волны, распространяющейся от граничной поверхности в пьезоэлектрическую среду (имеющей неволновой характер по x) и, наконец, поверхностной (локализированной y граничной поверхности) волны с волновым числом σ_2 . Поверхностная и другие дифрагированные волны обусловлены пьезоэффектом в полупространстве y > 0 и наличием полубесконечного металлического слоя (электрода) в диэлектрическом полупространстве y < 0.

При x > 0 интеграл из формулы (2.20) представляется в виде:

$$I_{1}(x, y) = B \int_{-\infty}^{\infty} \frac{i(\sigma - i0)K^{-}(\sigma)e^{-\sqrt{\sigma^{2} - k^{2}y}}e^{-i\sigma x}d\sigma}{M_{1}(|\sigma|, \gamma)(\sigma - k\cos\theta_{0} - i0)},$$
(2.31)
rge $M_{1}(|\sigma|, \gamma) \equiv M_{1}(\sigma) = e^{|\sigma|h}\sqrt{\sigma^{2} - k^{2}}K_{1}(\sigma),$
r.e. $M_{1}(|\sigma|, \gamma) = e^{|\sigma|h}((1 + \chi)\sqrt{\sigma^{2} - k^{2}}(\varepsilon_{0} + \varepsilon_{11}) - \varepsilon_{0}\chi|\sigma|).$
Интеграл (2.31) можно представить в виде $I_{1}(x, y) = I_{1}^{(1)}(x, y) + I_{1}^{(2)}(x, y)$
 $I_{2}^{(1)}(x, y) = B \int_{-\infty}^{\infty} \frac{i(\sigma - i0)^{1/2}K^{-}(\sigma)e^{-\sqrt{\sigma^{2} - k^{2}y}}e^{-i\sigma x}d\sigma}{N_{1}(\sigma, \gamma)(\sigma - k\cos\theta_{0} - i0)}$
(2.32)
 $I_{2}^{(2)}(x, y) = B \int_{-\infty}^{\infty} \frac{i(\sigma - i0)^{1/2}K^{-}(\sigma)e^{-\sqrt{\sigma^{2} - k^{2}y}}e^{-i\sigma x}}{(\sigma - k\cos\theta_{0} - i0)}(\frac{1}{M_{1}(|\sigma|, \gamma)} - \frac{1}{N_{1}(\sigma, \gamma)})d\sigma$ (2.33)

 $N_1(\sigma,\gamma) \equiv N_1(\sigma) = e^{-\sigma h} ((1+\chi)\gamma(\varepsilon_0 + \varepsilon_{11}) + \varepsilon_0\chi\sigma)$

Теперь рассмотрим интегралы (2.32), (2.33) методом контурного интегрирования в комплексной плоскости. Путь интегрирования замыкается в нижней полуплоскости, а действительная ось обходит точку $-\sigma_1$ сверху, а точку σ_1 снизу, т.к. σ_1 – единственный положительный корень функции $K_1(\sigma)$. Аналитическое

продолжение подынтегральной функции (2.32) имеет внутри контура интегрирования единственную особую точку $\sigma = -\sigma_1$, где она имеет простой полюс. Вычет подынтегральной функции в точке $-\sigma_1$

$$w_*(x, y) = A_*^{(1)} e^{-\sqrt{\sigma_1^2 - k^2} y} e^{i\sigma_1 x}$$
(2.34)

это и есть амплитуда поверхностной волны при x > 0

$$A_{*}^{(1)} = \frac{B\sqrt{\sigma_{1}}\sqrt{\sigma_{1}^{2} - k^{2}}K^{+}(\sigma_{1})e^{\sigma_{1}h}}{(\varepsilon_{0}\chi\sqrt{\sigma_{1}^{2} - k^{2}} - \sigma_{1}(1+\chi)(\varepsilon_{0} + \varepsilon_{11}))(\sigma_{1} + k\cos\theta_{0})}$$

Аналогично, как и при x < 0, решение представляется в виде суммы, регулярных интегралов, амплитуд падающей и отражённой волн, и поверхностной волны. Асимптотика перемещений на граничной поверхности при $x \to +\infty$ имеет вид:

$$w(x,0) = A_{1}e^{-ikx\cos\theta_{0}} + A_{*}^{(1)}e^{i\sigma_{1}x} + B_{1}e^{i(kx+\frac{\pi}{4})}((kx)^{-\frac{3}{2}} + O(kx)^{-\frac{5}{2}}) + b_{1}((kx)^{-\frac{5}{2}} + O((kx)^{-\frac{3}{2}}))$$

$$B_{1} = \frac{BK^{+}(k)}{\sqrt{k}(1+\chi)(\varepsilon_{0} + \varepsilon_{11})\cos^{2}\theta_{0}/2},$$

$$b_{1} = \sqrt{\frac{\varepsilon_{11} + \varepsilon_{0}}{2\varepsilon_{0}}} \frac{3\sqrt{\pi}\varepsilon_{0}\chi B}{2\sqrt{k}(1+\chi)^{2}(\varepsilon_{0} + \varepsilon_{11})^{2}\cos\theta_{0}}$$
(2.35)

Заключение. Исследование волнового процесса позволило выявить новые, обусловленные дифракцией и пьезоэффектом, свойства и особенности, присущие взаимосвязанным средам и полям. Наличие полубесконечного металлического слоя в диэлектрике приводит к существенному изменению волнового поля в пьезоэлектрическом полупространстве – возбуждаются две поверхностные – локализованные у граничной поверхности, волны с разными волновыми числами, а также появляются цилиндрическая волна и волна, распространяющаяся от граничной поверхности по направлению луча и имеющая неволновой характер по *X* на границе.

Исследование выполнено при финансовой поддержке ГКН МОН РА и РФФИ в рамках научного проекта 13RF-086.

ЛИТЕРАТУРА

- Балакирев М.К., Гилинский И.А. Волны в пьезокристаллах. Новосибирск: Наука, 1982. 240с.
- Агаян К.Л., Григорян Э.Х. Дифракция сдвиговой плоской электроупругой волны на полубесконечном электроде в пьезоэлектрическом пространстве с щелью. //Изв. НАН Армении. Механика. 2010. Т.63. №1. С.50-69.
- Аветисян А.С. Поверхностные сдвиговые волны в пьезоэлектрическом полупространстве с диэлектрическим слоем. // Материалы III симп. «Теоретические вопросы магнитоупругости». Ереван: 1984. С.7-10.

- Григорян Э.Х., Джилавян С.А., Казарян А.А. Дифракция сдвиговой плоской волны на полубесконечной трещине в пространстве пьезоэлектрик-диэлектрик. //Труды 7-ой межд.конф. «Проблемы динамики взаимодействия деформируемых сред». Ереван: 2011. С.137-143.
- 5. Нобль Б. Метод Винера-Хопфа. М.: Мир, 1962. 294с.
- Григорян Э.Х. Передача нагрузки от кусочно-однородной бесконечной накладки к упругой полуплоскости. //Уч. записки ЕГУ. 1979. №3. С.29-34.
- Агаян К.Л., Григорян Э.Х. О новом методе определения асимптотических формул в задачах дифракции волн. // Доклады НАН Армении. 2010. Т.110. №3. С.261-271.
- Григорян Э.Х., Синанян С.С. Дифракция сдвиговой плоской волны на полубесконечном металлическом слое в пьезоэлектрическом пространстве с бесконечным металлическим слоем. //Изв. НАН Армении. Механика. 2010. Т.63. №2. С.56-66.

Сведения об авторах:

Джилавян Самвел Акопович – к.ф.-м.н., доцент, кафедра механики, Ереванский госуниверситет. Тел.: (+374 91) 50 07 70. E-mail: samjilavyan@ysu.am

Казарян Айказ Арменович – аспирант Института механики НАН Армении. Тел.: (+374 96) 00 96 06. E-mail: <u>haykazghazaryan@gmail.com</u>

Поступила в редакцию 04.02.2015