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Iumunocsu JI.I'., Kazapsau P.A., Kazapsau K.b.
CaBHUTroOBbIE BOJIHBI B YIIPYTOM NEPHOINYECKOM BOJIHOBO/E € ATbTEPHATHBHBIMH I'PAHHYHBIMH YCJIOBUSIMHU

Hccnenosana 3agavya pacnpoCTpaHC€HUsA CABUI'OBBIX BOJIH B YIIPYTOM BOJIHOBOJE nepuounqecxoﬁ CTPYKTYPBI,
cocTosme u3 TpCX Pa3IAYHBIX MATCPHUAIIOB C OOHOPOIHBIMU WM AJIbTCPHATUBHO MCHAIOIIMMUCA T'PAHUYHBIMUA
YCIOBUSAMHU HA CTCHKAX BOJIHOBOA. B paMKax TECOpUHn (DJ'IOKG, UCHOJIb3Ys KOHLCTILNIO MaTPUILIbI IE€PEX0Ja, 3a1aqda
OIPEACIICHUA 3aBUCUMOCTHU BOJIHOBBIX YHCEI @di0oka OT YacTOTHl BOJIHBI CBEJCHA K 3ajaue OnpeaciCHus
COOCTBEHHBIX — YHCEI OpTOFOHaJILHOfI 6HOK-ManI/II_H:I. AHQJIIUTHYECKH W YHUCJIEHHO HpOBeZ[éH aHalu3
JAUCIEPCUOHHBIX COOTHOIICHU CTPYKTYPBI 3alIPETHBIX 30H YaCTOT CABUI'OBBIX BOJIH. B Cllydac aJIbTCpHATUBHBIX
TpaHUYHBIX yCJ'JOBI/If/'I 3a/a4a peuicHa 4YMUCICHHO. HoxasaHo, YTO B Cilyda€ aJbTCPHATUBHBIX I'PAHUYHBIX yCJ'IOBI/Iﬁ
BO3MOXHO CMEIICHUE 3aIIPETHBIX 30H YaCTOT K CEPEANHE 30HBI Bp}onneHa.

The propagation of shear waves in elastic waveguide of periodic structure consisting of three different
materials with alternating along the guide walls boundary conditions is investigated. Using the transfer matrix
approach the problem is reduced to the solution of a block transfer matrix eigenvalue problem. Bloth the
dispersion and the band gap structure analysis have been carried out numerically. It is shown that for alternating
boundary conditions along the waveguide walls, by modulating the ratio of the length of the unit cell to the width
of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone

The present paper is concerned with the study of Bloch waves in phononic
waveguides. Phononic crystals are periodic materials that have a potential to control the
propagation of elastic and acoustic waves [1]. In particular they have frequency ranges in
which waves cannot propagate, called acoustic band gaps [2, 3]. Interest in this class of
materials has been motivated by recent investigations of the electromagnetic analogues
called photonic crystals [4]. These materials exhibit band gaps for electromagnetic waves,
and are referred to in the popular scientific literature as «invisibility cloaks» [5].

The complete band gap phenomenon plays an important role in designing phononic
crystal applications such as elastic wave filters, couplers, and waveguides, especially. The
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phononic crystal waveguide is an important elementary component to build an acoustic
wave circuit. Different methods have been developed for investigating the properties of
Bloch waves in waveguides. Using asymptotic methods the influence of the periodically
varying thickness of a homogeneous waveguide on the trapped modes and cutoff
frequencies has been studied in [6,7]. A modal decomposition approach based on
eigenfunction expansion of elastic displacements and stresses, where the eigenfunctions are
orthogonal wavefield modes of an infinite homogeneous waveguide, the problem of wave
propagation in periodic waveguides has been investigated in [8,9]. This approach has been
further applied to study the band gap spectrum and associated Bloch eigenfunction for out
of plane and in-plane waves in acoustic waveguides with alternating boundary conditions
along the guide walls for [10,11]. In all these papers the unit cell in a periodic waveguide is
consist of two different materials. It is interesting to see the effect of an additional element
in the unit cell on the properties of the dispersion curves and the band structure.

The purpose of this paper is to investigate shear Bloch waves in a finite-width infinite
periodic elastic waveguide with the unit cell of a period d consisting of three different
perfectly bonded homogeneous materials (Figure 1). We will investigate the effect of both
non alternating and periodically alternating boundary conditions along the guide walls on
the structure and properties of band gaps.
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Fig.1. Periodic unit cell consisting of three different elastic materials under alternating boundary
conditions along the guide walls
The equation of motion of elastic SH wave propagation in a waveguide is the following
(s) (s) 2. (s)
0c,; 00, ou _0. s=12.3
+ + s 2 - Y §= 9“9~y (1)
ox,  Ox, Ot
ou™ (x,,x 1) ou™ (x,,x,,t
s 127729 s 127v29
G%;) = Gs ( s 6(2;) = Gs ( ) 2 (2)
ox, 0ox,

where P and G;s are the mass density and the rigidity respectively, superscripts s indicates

that the functions belong to media s. Harmonic time dependence, exp(i(x)t) for the all

physical variables with ® as wave angular frequency is assumed henceforth.
We will solve the problem of shear wave propagation in the periodic waveguide with the
following three types of boundary conditions along the waveguides walls

I Stress free boundary conditions in sub-domain (s)=1, x, €(0,a)
1 1
o (x,,t)=0, o3 (x,0,)=0,
II.  Clamped boundary conditions in sub-domain (s)=2, x, €(a,b).

u® (xl, O,t) =u? (xl, h,t) =0,
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1. Stress free on the upper wall and clamped on the lower wall (s) =3 in sub-domain
xe(bd) © o (xl,h l‘) 0, ¥ (x,0,¢)=0.
Introducing dimensionless coordinates x, =x#, x, =yh and parameters (0 = (7)/’!/ C

o, =c, / ¢ (¢, =4/p, / G, )the solutions of equation (1) can be written as follows

u'(x,y)= Z[C‘” exp(ig\"x) + D" exp(-ig\"x) [y (), (3)

where

qg” #0, CY, D" are constants and \VE}) (y) =cos (pf)y),

v (y)= 2S11’1( (z)y) \|/ff)(y)=\/gsin(p(3)y)
p=n(n-1), pP=mn, p=n2n-1)/2, (4)
g0 = % (r) (5)

To use the matrix based approach [8] the solution of (1)-(2) within each homogeneous
material of the guide can be rewritten in the following vector form

u (x,y)
’ N (S)(X)W(S)( )
UY (x,y)= (s) = 6
( y) QM ;[lqns) (s)b(s) (x)w(s)( ) ( )
G, ox

where
at” (x) = C" explig"x)+ D\ exp(~ig ), (7)
b“)(x) C" exp(ig"x) — D exp(~ig"’x), (8)

~G,/G,, ye(0,h).
Since the interface and Bloch conditions can be applied to each component of the vector
U (x, y) they can be rewritten as follows:

U (B.y)=U(B.»), ©
U(z)(Bz,y)=U(”(Bz,y), (10)
U(l)(O,y)=kU(3)(B3,y), (11)

where A = exp (ikd ), kis the Bloch number, B, = a/h, B, =b/h,and B, =d/h.
Multiplying both sides of condition (9) by a single mode anz) (¥)and (10) and (11) by
\IIS) (y) , integrating over the thickness of the waveguide, and introducing the vectors

AV (x) = (a1 (6,05 (x)..a (), 600 (), 58 (x)... b ()

conditions (9)-(11) can be written in the following block matrix form

MuAU)(Bl) :MzzA(Z)(BJa (12)
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MBA(Z) B,)= M33A(3>(B2), (13)
xMwA(I)(O) = M33A(3)(Bs)- (14)

In (12)-(14) M are the following block matrices

. (L, 0 ~ (L, 0 ) . (L, 0
M12: NESRE M13: A A 7M23: A A s
0 0L, 0 9L, 0 OL,

] I 0) . I 0
M, = A | My = ' E
0 9 0 0O

I is the identity matrix, and Lsx and Q. are N x N matrices with the following elements
1

Ly =[wOydy, s<k, Q" =iy"q"s,,, (15)
0

where O, is the Kronecker delta operator. We also need the transfer matrix within a

homogeneous material [7]

c® (x’,x) iS® (x’,x)

PG) ()
! (x,x)— z'ASA’(S)(x',x) (A?(S)(x',x)

(16)

where C© (x',x), R (x',x) are matrices with entries cos(qff) (x'- x)), sin(qf,‘” (x’—x)).

First by using the transfer matrix we compute A(3)(B3) in terms of A(3)(Bz) within

material 3

AV(B) =T (B,.8,) AV(B,). (17)

It follows from (13) that the interface transmission condition at X = B2 can be written in

the form
AV(B,)=(M,,) M, A7(B,). ()
where (MB)_l is the inverse matrix of M., . Further applying this procedure again
A(z)(Bz) —T® (BzaBl)A(Z)(BI)’

AY(B))= ( M, )’1 ,4"(B,),

A(l)( Bl) — 70 (131,0) AY (0),

and substituting these into (18) we will obtain the following relationship between

A(3)(B3) and A(l)(O)

A(3)(B3 ):f(3)([33,[32 )(Mzs )_IMzz.f(Z)(Bza& )(Mn )_lef(l)(BlaO)A(l)(O)(19)
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Finally after applying the Bloch-Floquet boundary conditions (14) we arrive at the
following matrix eigenvalue problem for A(l)(O)

(M -11) 4™ (0)=0, (20)
where

~ N EP N PN B AN A A
M:(MIS) M33T( )(B3>B2)(M33) M23T( )(BZ’BI)(MZZ) MIZT( )(BI’O) 2]
is the transfer matrix.

For homogeneous boundary conditions on the guide walls, Ly in (15) become identity
matrices, the propagating modes separate from each other [7] and, after writing

A= exp(sz), each gives rise to the following dispersion equation

cos (k,d) = 4,cos((B, ~B,)ql” )~ (R, +R,)sin((B, ~B. )4, 22)

(G“) g +G g @ ' . N
24 Vg OGIGD Sm(qun )sm(qun )(23)

4,=cos (P, Jeos(p,q,”)

G1Ig1) 4 GO ) 1)
R, = G(l’z)G(3)q(l’2) sm(B(l,z)q )cos(B(z,l)q ), (24)

where the first values in subscripts and superscripts in (24) correspond to R, and the

n

second values to R, .

Numerical results

The structure of wave propagation depends on the ratio of the length of the unit cell to the
height of the waveguide [3/ /%, the reduced wave number k3, the filling fraction, and
differences between the elastic properties of three materials. The Bloch parameter k is a
phase shift across the Brillouin zone, and hence the graphs are ZTE/ d periodic and even.

Therefore only values 0 <k < 1/d will be shown on graphs.

It follows from (5) that for non alternating boundary conditions when the lower and upper
walls are clamped there exist cut off frequencies in the acoustic region for each material
below which waves do not propagate. Below the lowest of these three frequencies no
propagation will be possible creating a total stop band. In the case of non alternating
boundary conditions when the waveguide walls are traction free, the propagating solutions
startat ®=0.

Figure 2 shows the band structure, calculated using the dispersion equation (22), of the first
and second modes for two periodic waveguides of the same geometry but consisting of
different materials. Both waveguides have homogeneous boundary conditions along the
guide walls. Dashed lines correspond to the first mode and the bold lines correspond to the
second mode for traction free boundaries (which is the same as the first mode for the
clamped boundaries). The two graphs clearly demonstrate that the band gaps are larger for a
waveguide with bigger differences between the impedances of the constituent materials.
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Fig.2. Band structure of phononic crystal with a) Go/G=6, G3/G,=7 and b)G,/G =3, G3/G=4, and for the traction
free waveguide, /h=0.8. Dashed lines solid lines and show the band structure for the first and second modes for
traction free boundary conditions on the guide wall (Solid lines describe the band structure of the first mode for
clamped boundaries as well).

It follows from (5) that for non alternating boundary conditions when the lower and upper
walls are clamped there exist cut off frequencies in the acoustic region for each material
below which waves do not propagate. Below the lowest of these three frequencies no
propagation will be possible creating a total stop band. In the case of non alternating
boundary conditions when the waveguide walls are traction free, the propagating solutions

startat @ =0.

For the waveguide with three different constituent materials and non alternating clamped
boundary conditions along the guide walls (the horizontal lines show the cut-off
frequencies in the three constituent materials) Figure 3 shows wave trapping for the lowest
mode. Wave trapping occurs when the waves exponentially decay in one material and
propagate in another. This happens when at least two of three materials in the waveguide
have different cut-off frequencies. The nature of the trapping is not different from a
waveguide described in detail in [11] and is affected by both the difference in acoustic
impedances and the wavelength in the sense [6].

In Figure 3a the wave exponentially decays in the first material and propagates in the two
others. In Figure 3b the wave exponentially decays in two materials and propagates only in
the last one. So by choosing the material properties and the height to length ratio of the
waveguide it is possible to control wave trapping in the waveguide with three constituent
materials in the unit cell.
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Fig.3. Band structure of phononic crystal with Go/G=1.5, G3/G\=1.4, and G,/G\=2, G5/G,=3 for the clamped
waveguide,/h=0.4. Solid lines and dashed lines show the band structure for n=1 and n=2 modes.
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For a homogeneous waveguide made from one constituent material but alternating clamped
boundary conditions along the guide walls, the eigenvalue problem (20) has to be solved
numerically. In this case the band structure shows that even in a homogeneous guide
alternating boundary conditions can created stop bands, i.e. frequency regions where waves
do not propagate [7]. Figure 4 shows the dispersion diagrams for different values of the cell
length to height ratio. For 3/ /h = 0.3 there is only a zero frequency cut off and no other
band gaps since here the ratio of acoustic impedances is unity and the effect of mixed
boundary conditions is not strong. As the cell length increases (B/ h= 1.3) the modes

start mixing (Fig.4b), the zero frequency cut offs become larger and stop band gaps appear
with a clear minima within the Brillouin zone, an unusual feature for one-dimensional
periodic structures. This feature is more prominent here compared to homogeneous

waveguides with only two constituent materials in the unit cell [7]. As the ratio B/

increases the lower mode bounding the band gap becomes nearly flat with no propagating
energy (Fig.4b) and this is associated with modes trapped in the layers with Dirichlet
boundary condition above and below.
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Fig.4. Band structure of homogenous phononic crystal waveguide, with (/4=0.3 and f/h=1.3), 6,,=0 on the lower
and upper walls in the first material, u=0on the lower and upper walls in the second material and with =0 on the
lower and ¢,,=0 on the upper wall in third material
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Fig5. Band structure of phononic crystal with G»/G,=2, G3/G=3, for the clamped waveguide, with (5/4=0.3 and
B/h=1.3),6,,=0 on the lower and upper walls in the first material, # = 0 on the lower and upper walls in the
second material and with =0 on the lower and ¢,,=0 on the upper wall in third material

The eigenvalue problem (20) has also been used to carry out calculations for band gap
structure for a phononic crystal waveguide consisting of three different materials and
having alternating boundary conditions along the guide walls (traction-free on the lower and

upper walls (G = O) , in the first material, displacement-clamped on the lower and upper
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walls (#=0), in the second material, and traction-free (Gyz = 0) on the upper wall, with

displacement-clamped on the lower wall in the third material). Here unlike the
homogeneous waveguide with alternating boundary conditions (Fig.4a) there are frequency

band gaps as well as a zero frequency cut-off for short cell lengths (3/7 =0.3). As the

cell length increases (B /h= 1.3) here again the zero frequency cut offs become larger

and stop band gaps appear with a clear minima within the Brillouin zone. This feature is
better defined in Figure 5b where the waveguide has three constituent materials in the unit
cell and alternating boundaries on the guide walls.

Conclusion

The propagation of elastic SH waves in a quasi one dimensional periodic waveguide has
been considered in this paper. Using the orthogonality relationship the transfer matrix
method is applied to solve the problem for homogeneous and mixed boundary conditions
along the waveguide walls.

The results show that for homogeneous clamped boundary conditions along the guide walls
by choosing the material properties and the height to length ratio of the waveguide it is
possible to control wave trapping in the waveguide with three constituent materials in the
unit cell. If the waveguide is homogeneous then only alternating boundary conditions
along the guide walls can create forbidden frequency regions. Moreover stop band gaps
appear with a clear minima within the Brillouin zone which is an unusual feature for one-
dimensional periodic structures. This feature is more prominent here compared to
homogeneous waveguides with only two constituent materials in the unit cell [11].

For alternating boundary conditions along the guide walls the spectrum depends very much
on the conditions on the waveguide walls and the parameter characterizing the ratio of the
unit cell length to the waveguide height. By modulating this parameter it is possible to
move the extrema of the band gaps well within the Brillouin zone. These gaps are
considerably larger than in the case of non homogeneous waveguide with alternating
boundary conditions. Trapped modes and zero frequency band gaps also have been
obtained and discussed.

For a periodic waveguide with homogeneous boundary conditions on the waveguide walls
the modal solutions decouple and the analytical expression for the dispersion equation is
obtained.
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