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In the framework of the full set of Maxwell equations and dynamic equations of the elasticity theory an
orthogonality relationship is derived for interconnected electro-magneto-elastic shear wave modes in piezoelectric
waveguide.

To tackle the problems of electromagnetic and elastic wave propagation in waveguides
with complicated geometrical and physical properties a modal decompaosition approach is
used based on the eigen function expansion of the electromagnetic fields vectors, elastic
displacements and stresses, where the considered eigen functions are wave modes in an
infinite homogeneous waveguide. The eigen function orthogonality relation between modes
for the Rayleigh—Lamb waves at constant frequency but differing wavenumbers was first
derived in [1]. The completeness for Rayleigh—Lamb modes in homogeneous waveguides is
proved in [2], where orthogonality and biorthogonality relations are given also. Based on
the quasi-static approximation of Maxwell equations the orthogonality condition is derived
in [3] for piezoelectric crystal displacement vibration modes associated with different
eigen-frequencies.

Based on the modal decomposition method the Rayleigh—-Lamb wave propagation in
inhomogeneous, variable thickness waveguides are studied in [4,5]. This method was also
used for Rayleigh-Lamb waves in a waveguide with a periodic structure [6].

In the framework of the full set of Maxwell equations and dynamic equations of the
elasticity theory the propagation of SH waves in piezoelectric crystals is considered in [7-
11]. For waves in waveguides with electrically shorted (electroted) and open surfaces exact
solutions are obtained in [9]. Electro-magneto-elastic wave propagation oblique to the
periodic phononic/photonic structure is discussed in [10-11].

We are interested in the propagation of electro-magneto-elastic shear coupled waves in an

infinite piezoelectric waveguide. Waveguide bounded by plane surfaces y = + h/2 , SO that
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the plane X coincides with the middle surface of the waveguide, the axis Z direction
coincides with the direction of the hexagonal crystal crystallographic axis.

In the framework of the full set of Maxwell equations and dynamic equations of the
elasticity theory, the interconnected elastic and electric excitations in piezoelectric crystal
decouple into plane and anti-plane problems. The anti-plane problem is described by the
following equations and relations defining SH waves in a waveguide [8].
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Here U, is component of the displacement vector, G,,,G,, are the stress tensor
components, H, is the component of the magnetic field vector, E,.. Ey are components of
the electric field vector, C,, , is the elastic stiffness coefficient, D, ,D, are the components
of electrical displacement vector, €, is the electrical permittivity coefficient, €5 is the
piezoelectric stress coefficient , L1, is the magnetic permeability, p is the bulk density.
Harmonic time dependence, exp(icot) for all physical variables with @ as wave angular

frequency is assumed henceforth.

We take the following notations
&s=6&,=8, ;= H=ioH, c,=g E =E u,=U

In order to derive an orthogonality relation it will be convenient to work on a set of four
functions U (X, y), E(x,y), H(X ), o(x,y). Excluding functions D,.D, from
equations (1) after some transformations we come to the following simultaneous equations
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where G, =G +€”/e;

The functions &, (x, y), E, (x, y) via functions
U (X, y),c(x, y), H (X, y), E(X, y) can be expressed as

ouU G oH ec

6,, =G——¢k, Ei=—r———;

Gye oy Gye 3)
Introducing vectors Z= ( E.U )T ' R= ( H ,G)T ~ we can rewrite the set of equations (2)
in a matrix operator form

% _tR R _57
oX OX
or

| =[] ~ - (4)
&\ R) (Q 0J)\R

where F, Q are the operator matrices
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Let us define the inner product of two vectors as

()= 1) &))-T e oo

—hy2
Operators /F\, (AQ have the following properties (see Appendix A)
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&(h)=(6,0~o,0)

y=—h/2

Here vectors ( E,U )T ,(H ,G)T , (E,U)T , (ﬁ,&)T are linear independent solutions of

the matrix equation (4).

Thus, for all cases where the terms outside the integrals having vanished because of

boundary conditions we get that operators F,Q are formally self-adjoint operators.

When n(h) =0; &(h) =0, using the properties (5) we get

Ry

Now we expand all functions in the form

f(xy)=> f™(y)exp(-ik,x) @

n

where wavenumbers K are eigenvalues, f ™ (y)are eigen functions.

Introducing different modes of eigen functions
(Z,,R)",Zn=(E,,U,) ,R=(H,,5,)" . we come to the self-adjoint eigenvalue
problem

“[2Ha ol
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with boundary conditions

y=h/2
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Now our important point is to derive an othogonality relation between different modes of
the eigen functions.

From (8) it follows that vectors Z, R, associated with different modes satisfy the
equations

AN ——s —_— ~ [—

FQZ =-k’Z_.  QFR =—-k’R.

n n

Multiplying the first equation on RT , the second on Z and taking inner products of these
vectors, we come to the following relation

(ki -2 )(Z, R.)~(Z,|QFR,)

R)-(Faz;

When n(h) =0; &(h) = 0 taking into account (6) we get the following orthogonality

relationship for eigen-functions associated with wavenumber eigenvalues kn

h
[(U,0,+EH,)y=0 n=m
~h

)
This relationship is similar to the orthogonality relationship for the Rayleigh-Lamb wave
modes in traction free waveguide [2]
h
J' (U)En)cf:f) —oPum )dy =0 nzm (10)
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In [3] based on quasi-static approximation of Maxwell equations the other type of
orthogonality relation was derived for piezoelectric displacement vibration modes

associated with eigen-frequencies ®, .

This orthogonality relation for bounded piezoelectric body of volume V' with traction free
and electrically shorted surface has the following form [3],

jIIUnUmdv =0 m#n
\

where Um are elastic displacement vibration modes associates with piezoelectric body

eigen-frequencies ®,, .
Note the following sets of boundary conditions ensuring orthogonality relationship (9)

a) Traction free and electrically shorted wall b) clamped and magnetically closed wall, c)
clamped and electrically shorted wall, d) traction free and electrically open wall.
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Now we will bring the example of orthogonality relationship for waveguide with non-
symmetrical boundary conditions at waveguide walls (plane x coincides with the a wall of
the waveguide)

y=0; U=0; E =0

y=h G, =0; E, =0

Solutions of equations ( 4) can be derived as
¥)= 2 AME ) U (%)= 2 A0U,0)

= 2. By O)H () o(x¥)=2.B,(X)o, (3)

where E, (y),U, (y),H,(y).o,(Yy) are the following eigenfunctions

e (y)z_e(ann cos(q,y)-k2y, cos(rny)); 0. (y)=sin(a.)

re
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| €
A (x) = A, exp(ik,x)+ B, exp(—ik x) B.(x) = A, exp(ik,x)— B, exp(—ik,x);
h
r=.euw’ —k’; —(o -k oy, = _sin(Gph).
sin(r,h)’
The positive and negative eigen wavenumbers kn are determined as roots of the following
equation
2 2
cos(r h)sin(hg, )+sin(r,h)cos(qg,h)=0
Go0, 1,

The functions o,,, E, can be defined as

E,, =—iek, (vsin(r,y)+sin(q,y))

e’kyv
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The orthogonality relationship for eigenfunctions can be written as

h
[(U,0,+EH, )y =33,
0
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where 0, is the Kronecker symbol,

) 2
i 3 {hanns +%[(kf +2r7)cot(hr) +hk7r, esc? (hr, ) |
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xsin?(hg,)—r.’sin(hq, )cos(ha, ) }

Conclusion

For shear coupled wave the orthogonality relationship is derived in a waveguide between
different modes of the eigen functions (elastic displacement, stress, electrical and magnetic
field intensities), associated with the wavenumber eigenvalues. For waveguide with non-
symmetrical boundary conditions at waveguide walls the dispersion equation determining
Eigen wavenumbers  are obtained and the corresponding orthogonality relationship is
derived.
The derived relationships can be helpful to tackle a number problems of wave prorogation
in a photon-phonon periodic piezoelectric waveguide, in determination of solutions in
reflection, transmission problems in inhomogeneous, layered piezoelectric waveguides with
different boundary conditions at waveguide walls.

This work was supported by State Committee Science MES RA in frame of the research
project Ne SCS 13-2C005.

Appendix A

Properties of matrices F and Q

Let S = (s,,s,)" P = (p,, p,)" are arbitrary linear independent vectors.
From (4) it follows that
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