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Առաձգական կիսատարածությունում ճաքի նույնականացման հարթ հակադարձ խնդիրը 

Աշխատանքում դիտարկվում է հարթ խնդիր համասեռ և իզոտրոպ առաձգական 

կիսատարածության համար: Աշխատանքի նպատակն է կիսատարածության ներսում ճաքի 

վերականգնման հետ կապված հակադարձ խնդրի լուծման համար արդյունավետ մաթեմատիկական 

ապարատի մշակումը: Մասնավորապես, որոշվում է եզրային մակերևույթին զուգահեռ տեղակայված 

ուղղագիծ ճաքի դիրքը և չափսերը: Դիտարկվող հակադարձ խնդրի ձևակերպումը հիմնված է 

առաջին սեռի ինտեգրալ հավասարումների համակարգի վրա: 
 

Чарлетта М., Иоване Дж., Сумбатян М.А. 
Плоская обратная задача идентификации трещины в упругом полупространстве 

В работе рассматривается плоская задача для упругого однородного и изотропного 
полупространства. Целью работы является разработка эффективного математического аппарата для 
решения обратной задачи, которая связана с реконструкцией трещины внутри полупространства. В 
частности, определяется положение и размер прямолинейной трещины, параллельной её граничной 
поверхности. Формулировка рассматриваемой обратной задачи основана на системе интегральных 
уравнений первого рода. 
 
In this work we study a homogeneous and isotropic elastic half-space in the context of in-plane deformation. The 
aim of the paper is to propose a powerful mathematical tool to solve the inverse problem, which is connected to 
crack reconstruction inside the half-space. In particular, position and sizes of the linear crack, parallel to its 
boundary surface, are determined. The formulation of the considered inverse problem is based on a system of 
integral equations of the first kind. 
 

1. Introduction 
The theory of inverse problems is an intensively developing branch of applied 

mathematics and engineering science. The current state of the art and further references can 
be found, for example, in [1-3]. 

The recovery of a linear crack by boundary measurements is an extensively studied 
problem. It is known that in geomechanics and strength analysis one needs to reconstruct 
geometry (i.e. position, shape, and characteristic size) of linear cracks from results of the 
measurements of some physical fields over boundary surface of the considered elastic solid. 
This problem seems to be a typical inverse problem. 

Various methods were applied to study the inverse problem on reconstruction of 
crack's geometry. The concept of duality based on the reciprocity gap principle gives an 
efficient instrument to study such a type of problems in some cases. Among other important 
works published in this field we can mention here [4], where the authors establish 
uniqueness of the problem under some overdetermined boundary measurements, that is to 
know on the (total) boundary surface or line, in 2-d case, both the value of the basic 
potential function and the value of its normal derivative. These results were advanced in 
[5,6] where it is shown that to find the normal to the plane of the crack is a more easy task 
than to determine its true configuration. We would only stress that these results require the 
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input data measured over full boundary surface. Some interesting ideas for the case of 
incomplete data were proposed in [7]. 

In the problem under investigation it is quite natural to operate with the settlement of 
the boundary surface, which typically can be measured with a high precision. For this 
purpose, we may apply some outer loads to the boundary surface. Then its settlement 
depends on geometry and position of a system of discontinuities, located inside the 
medium. Hence, we can pose the inverse problem on reconstruction of these geometric 
parameters from the input data taken from results of the measurements. 

In the present paper we consider a homogeneous and isotropic elastic half-space in the 
context of in-plane deformation, whose formulation is more complex when compared with 
the case of scalar model. We study the problem connected with the reconstruction of the 
position and the size of a linear crack inside an elastic half-space and parallel to its 
boundary surface. This study, which defines a typical inverse problem, can be reduced to a 
system of integral equations of the first kind. It is known that such equations belong to a 
class of the so-called ‘‘ill-posed’’ problems [2]. This means that application of ordinary 
numerical approaches to such problems makes calculations unstable. In order to overcome 
this difficulty, one should apply some refined methods like Tikhonov's smoothing 
functional, regularizing operators, or similar. In the context of mathematical formulation of 
the problem we notice that it is simultaneously ill-posed and non linear problem, like many 
other inverse problems (see [2]). 

Another relevant aspect of the inverse problem concerned is a continuity of the 
solution upon the input data, as well as the smoothness and the stability of the proposed 
algorithms. A good survey on this subject is given in [8], where the reader can find also 
some results concerning Lipschitz stability. 

A motivation why it is important to reconstruct cracks parallel to the free surface of the 
elastic half-space can be justified as follows. First of all, before to study a general case of 
the crack location, it is quite natural to study the simpler case of parallel crack. In fact, with 
the use of the Fourier transform in this problem all kernels of respective integral equations 
are expressed in terms of elementary functions, as well as their right-hand sides. Besides, 
this geometry is very important for applications in the testing of some composite materials 
on epoxy basis. Really, in the layered composites produced sequentially from layers of 
reinforcing strings and layers of epoxy, the layerwise process, there may appear 
exfoliations between contacting layers, which are obviously parallel to the free surface. 

Similar problems in the less complex anti-plane case, both for horizontal and inclined 
cracks, have been studied by the authors in [9,10]. 

2. Mathematical Formulation and Reducing to Integral Equations 
Let us consider the in-plane problem concerning a linear horizontal crack located in the 

homogeneous and isotropic elastic half-plane parallel to its boundary surface (see Fig.1).  

 
Fig. 1 
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In the considered two-dimensional (2D) case of plane strain the formulation of the 
problem implies the components of the displacement vector u to be of the following form 

 0),,(),,(),,( yxuyxuzyxu yx   (2.1) 

where xu  and yu  – components of the displacement vector in the direction of x  and y  

axes, respectively. In the studied 2D problem these two functions satisfy the following 
equations of equilibrium: 
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where   and   are elastic moduli.  

If functions xu  and yu  are determined from Eq.(2.2) then the components of the 

stress tensor can be found from the constitutive equations 
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Let us assume that the crack is linear, horizontal, and h  designates the distance 

between the crack's line 0y  and the boundary surface hy  . Let us also assume that 

the left and the right tips of the crack have the Cartesian coordinates )0,(a  and )0,(b , 

respectively (see Fig.1). 

Let a (known) normal point load 0 0( ) ( )P x x x   be applied to the boundary surface 

of the half-space at  point 0x , which is assumed to be known. Then the full mathematical 

formulation of the direct problem is to solve equations (2.2) with the following boundary 
conditions 

 

0 0: ( , ) 0, ( , ) ( ), (| | )xy yyy h x h x h P x x x             (2.4a) 
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 (2.4b)  

( , 0) ( , 0) ( , 0) ( , 0) 0, ( )xy xy yy yyx x x x a x b                (2.4c) 
In order to give a solution to the boundary value problem (2.2) – (2.4), we consider 

separately the upper layer )0,|(| hyx  , where all physical quantities are marked 

by the subscript "+", and the lower half-space )0,|(|  yx , where all quantities are 

marked by "–".  
To the considered boundary problem, we construct the solution by applying the Fourier 

transform with respect to variable x , which for any given function ),( yxf  is defined by 

the pair of (direct and inverse) relations: 
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Note that all Fourier transforms are designated by corresponding capital letters. It is evident 
that the first-order derivative x /  of any function in the Fourier variables will be 

replaced by factor )( is , and the second-order derivative 22 / x  – by factor )( 2s . 

Then in Fourier images, system (2.2) becomes a system of ordinary differential equations, 
with a certain parameter s :  
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 (2.6) 

where all ordinary derivatives are applied with respect to variable y . 

Let us note that the Fourier images of the components of the stress tensor are expressed 

in terms of the Fourier transforms of functions xu  and yu  as follows: 
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The solution to system (2.6) can be constructed by using the method of characteristic 
polynomial that results in the following representations in the lower half-plane and in the 
upper strip, respectively: 
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where the six unknown constants FEDCBA ,,,,,  should be determined from boundary 
conditions (2.4).  

On the basis of Eqs. (2.7) – (2.9) one can easily write out all physical quantities present 
in boundary conditions (2.4). 

If we introduce the two new unknown functions )(),( xgxg yx , bxa  , as 

follows 
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Obviously, the physical meaning of functions )(xgx  and )(xg y  is the relative 

displacement of the upper and the lower faces of the crack, in horizontal and vertical 
direction respectively. 

Now, by using representations (2.10), (2.11), one can satisfy boundary conditions 
(2.4a), (2.4b) that results in a 66  linear algebraic system regarding coefficients 

FEDCBA ,,,,, whose solution can easily be constructed in the following form: 
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Now, the only remaining boundary condition is (2.4c). By applying the inverse Fourier 
transform, with the use of the convolution theorem, this allows us to mathematically reduce 

the problem to the system of integral equations with respect to unknown functions )(xgx  

and )(xg y , which is valid over the crack length: 
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where 
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3. General Properties of the Direct and the Inverse Problems 

The direct problem can be formulated as follows. If we know completely the geometry 

of the crack, i.e. quantities bah ,, , and the applied force, i.e. quantities 0P  and 0x , then 

we can solve the system of integral equations (2.13) and determine all physical 
characteristics of the problem. The most physically important one is the settlement of the 

upper boundary surface, i.e. function ),( hxuy
 . This can be directly extracted from 

Eq.(2.9) which in terms of functions )(xgx  and )(xg y  is 
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where we have written the final result for the function, which is the difference between the 
settlement in the problem under consideration and the one in the problem free of crack. 
Therefore, the represented function (3.1) corresponds to contribution of the crack to the 
value of the settlement. 



 29 

Now, some words about qualitative properties of system (2.13). It can easily be seen 

that the diagonal kernels, functions )(11 xK  and )(22 xK  have hyper-singular behavior at 

the origin. A stable method to solve hyper-singular integral equations was proposed in the 
work [11]. Let us rewrite system (2.13) as  
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in the form where we have explicitly extracted the characteristic hyper-singular part of the 
diagonal kernels, and the superscripts designate some regular functions. Then briefly 
speaking our numerical algorithm can be described as follows. 

First of all, we subdivide full interval ),( ba  to a set of n  small elementary 

subintervals of the same length ( ) /b a n   , by nodes 

0 1 2 1, , ,..., , ,n na b        , ( 0,1,..., ).j a j j n     The central point of each 

sub-interval 1( , )i i   is designated as ix , hence ( 1 / 2) , ( 1,..., ).ix a i i n      It 

can be proved (see [11]) that a correct approximation to a bounded solution of system (3.2) 
can be constructed as a solution to the following linear algebraic system ),...,1( ni  : 

0
11 12 1

1 11

0
21 22 2

1 1 1

1 1
( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( )

n n

i j x j i j y j i
j ji j i j

n n

i j x j i j y j i
j j i j i j

K x g K x g f x
x x

K x g K x g f x
x x

 

  

  
             

      


 
                  

 

 

(3.3) 

The inverse problem can be formulated as follows. Let a known outer force 

0 0( ) ( )P x x x   be applied to the boundary surface of the elastic half-space (2D 

problem). This implies that quantities )(0 xP  and 0x  are known. Let us assume that there 

is a horizontal crack in the half-space (see Fig.1), but its position and geometry are 

unknown. Let the shape of the boundary surface, function )(0 xf  in Eq.(3.1), be known 

over some finite-length set   of the boundary line hy   as a certain input data, which is 

obtained for example, from the results of the experimental measurement. Then our goal is 
to reconstruct crack’s geometry. In frames of such an approach, in Eqs. (2.13) – (2.15) and 

(3.1) quantities 2
0 0 0, , , , , ( ), ( )P x c f x x    are known, and quantities 

)(),(),(,,, bxaxgxgbah yx   are unknown. 

Speaking about a stable algorithm, in order to solve numerically the posed inverse 

problem, let us note that the input data, function )(0 xf , may be given only approximately, 

with a certain error. Hence, the algorithm to solve this inverse problem should be stable 

with respect to small perturbations of function )(0 xf . 

The algorithm, which is presented in this work, is based on the discrete analogue (3.3) 
of the basic system of hyper-singular integral equations (3.2). Let us write linear algebraic 
system (3.3) in the matrix form: 
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       
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2

1
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
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


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






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



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 (3.4) 
where the matrices and the right-hand sides are 

0
11 11 12 12 21 12

1

1 1
( ), ( ), ,i j i j i j i j

i j i j
i j i j

a K x a K x a a
x x 

           
   

 

0
22 22 1 1 2 2

1

1 1
( ), ( ), ( )i j i i

i j i i
i j i j

a K x f f x f f x
x x 

       
   

  (3.5) 

Obviously, matrix A  and right-hand side f  both depend on parameters bah ,, : 

),,( bahAA  ,  ),,( bahff  . 

If function )(0 xf  is known as the input data on the set   then one can choose a finite 

discrete array of nodes on this set: ),...,1(, mkxk  , to treat relation (3.1) expressing 

results of the measurements on a discrete grid. By replacing the integral there by an integral 
sum, one can approximate this relation by the system of algebraic equalities, which can be 
written in the symbolic form as follows 

        1 2 1 1 2 2, , , , , ( 1,..., ; 1,..., )k j k j
kBg d B B B B b B b d d k m j n         

2 3

1 2 02 2 2 2 2 2

2 ( ) 2
, , ( )

[ ( ) ] [ ( ) ]
k jkj kj

k k
k j k j

h x h
b b d f x

h x h x

   
  
       

 (3.6) 

The inversion of matrix equation (3.4): ),,)(( 1 bahfAg  , where we explicitly 

indicate that the inversion operator depends on geometrical parameters bah ,, , and the 
substitution of the obtained relation to Eq.(3.6) reduces this inverse problem in its discrete 
form to the algebraic relation 

dbahfBA  ),,)(( 1     (3.7) 

It should be noted that dimension of matrix A  is nn 22  , hence dimension of 

matrix 1BA  is nm 2 . Therefore, Eq.(3.7) is written correctly since both its sides are 
vectors of dimension m . Our approach to construct a stable solution to operator equation 
(3.7) is founded on the minimization of the discrepancy functional 

 
2

1

121 ),,()(),,)((),,,(min
2



 
m

k
kkl

dbahfBAdbahfBAbah  (3.8) 

which is again a functional of three parameters bah ,, .  
4. Numerical Treatment and Examples of the Reconstruction 

The minimization of functional (3.8) can be attained by any classical method of 
optimization (see, for example, [12]). The main restriction of regular iterative schemes is 
that they give only a local minimum of respective functionals. Another difficulty is 
connected with a non-uniqueness of the solution. It is not evident that a local minimum is 
its global minimum, which in the case of exact input data is zero. 

We tested application of the algorithm proposed in [13] to our inverse problem. We 
aimed at a search of global minimum by a global random search. This algorithm is 
developed to seek maxima, but it can be applied to minima too. Efficiency of the algorithm 



 31 

is explained by the two following specific features: 1) random sampling of values in the 
neighborhood of the points, for which the values of the functional are small, happens more 
frequently than that in the neighborhood of the points, where the values of the functional 
are large, and 2) domains, in which random values of variables are chosen, are gradually 
contracted to small neighborhoods of the points with small values of the functional. This 
technique demonstrates remarkable convergence for all considered examples. 

For all examples the input data is taken from the solution of respective direct problem. 
It should be noted that, in order to generate approximate (i.e. inexact) input data, we 
numerically solved the direct problem, and then perturbed the so obtained results by 
random quantities, in accordance with the assigned "error" of the input data. For all 
examples demonstrated below we used 100m  points of measurements, to form the 

array of the input data, so that mkkxk ,...,1),2/1(1.05  , )5,5(kx . It is 

clear that with such a choice of the trial points they form a uniform set around the applied 

force )()(0 xxP  ,  )0( 0 x . 

We have performed numerous calculations and a thorough numerical investigation for 
many examples. Some results on crack’s identification are presented in Table 1. For all 

examples below ab   and 2 / ( 2 ) 0.3c       .  
 Table 1 

input data error h  a    type of result 

 

0% 

1.000 

1.005 

-0.500 

-0.490 

1.000 

0.997 

exact 

restored 

 

0% 

2.000 

1.997 

1.500 

1.504 

1.000 

0.997 

exact 

restored 

 

0% 

0.500 

0.490 

3.500 

3.495 

1.500 

1.509 

exact 

restored 

 

0% 

3.000 

2.988 

 4.000 

 4.003 

0.500 

0.500 

exact 

restored 

 
The physical conclusions from Table 1 are quite evident. Then we studied the stability of 
the proposed algorithm if the input data is given with a certain error. 

 Table 2 

input data error h  a    type of result 

 

5% 

1.500 

1.496 

-0.500 

-0.500 

1.000 

1.000 

exact 

restored 

 

5% 

2.500 

2.502 

1.000 

0.982 

1.500 

1.495 

exact 

restored 

 

5% 

4.000 

4.014 

-3.000 

-3.009 

4.500 

4.501 

exact 

restored 

 

5% 

0.200 

0.208 

2.000 

2.003 

0.100 

0.096 

exact 

restored 

 
 
Some examples with more significant error in the input data are presented below. 
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 Table 3 

input data error h  a    type of result 

 

15% 

8.000 

8.031 

-0.500 

-0.532 

1.000 

1.001 

exact 

restored 

 

15% 

6.000 

6.220 

2.500 

2.620 

4.000 

4.116 

exact 

restored 

 

15% 

4.000 

4.032 

-3.500 

-3.521 

8.000 

7.996 

exact 

restored 

 

15% 

2.000 

1.938 

4.500 

4.497 

0.200 

0.198 

exact 

restored 

 
 Table 4 

input data error h  a    type of result 

 

25% 

1.000 

0.927 

-1.000 

-1.013 

2.000 

2.037 

exact 

restored 

 

25% 

7.000 

7.129 

-4.500 

-4.596 

9.000 

9.076 

exact 

restored 

 

25% 

0.300 

0.316 

1.500 

1.492 

0.100 

0.103 

exact 

restored 

 

25% 

1.500 

1.516 

3.000 

3.038 

0.500 

0.474 

exact 

restored 

 
It is very interesting to analyze the influence of the input data error for a chosen single 

crack. In Table 5 below we demonstrate such dependence for the last crack taken from 
Table 4. 

 Table 5 

input data error h  a    type of result 

 

0% 

 5% 

15% 

25% 

1.500 

1.515 

1.513 

1.490 

1.516 

3.000 

3.004 

2.981 

2.983 

3.038 

0.500 

0.498 

0.497 

0.514 

0.474 

exact 

restored 

restored 

restored 

Restored 

 
The following evident conclusions follow from the presented numerical results: 
1. The proposed algorithm demonstrates a wonderful efficiency. Even with very rough 

precision of the input data the reconstruction is very good. Moreover, for approximate input 
data precision of the reconstruction is higher than that of the input data. This clearly 
confirms the stability of the algorithm. 

2. Concerning the comparison between various examples presented, taking into 
account that all of them are of high precision, we can however analyze the cases when the 
reconstruction is highly precise or less precise. Regardless precision of the input data, long 
cracks are reconstructed more accurately than small ones. 
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3. We have also tried to vary the length of the intervals where the input data is 
collected. Under such numerical experiments we could conclude that precision of the 
reconstruction improves when the measure of the set   increases, that is quite natural from 
the physical point of view. 

4. A numerous number of numerical experiments performed by the authors indicate 
that in the cases when the object under reconstruction is situated closer to the boundary 
interval  , the precision of the reconstruction is higher. 

5. The present consideration is restricted by cracks parallel to the free boundary surface 
of the half-space only. The convenience of the present treatment consists of the fact that 
this is based on the classical Fourier transform. A different approach may be applied for 
arbitrary crack orientation in the half-space; this will be the subject of the authors' next 
work. 
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