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In this work we study a homogeneous and isotropic elastic half-space in the context of in-plane deformation. The
aim of the paper is to propose a powerful mathematical tool to solve the inverse problem, which is connected to
crack reconstruction inside the half-space. In particular, position and sizes of the linear crack, parallel to its
boundary surface, are determined. The formulation of the considered inverse problem is based on a system of
integral equations of the first kind.

1. Introduction

The theory of inverse problems is an intensively developing branch of applied
mathematics and engineering science. The current state of the art and further references can
be found, for example, in [1-3].

The recovery of a linear crack by boundary measurements is an extensively studied
problem. It is known that in geomechanics and strength analysis one needs to reconstruct
geometry (i.e. position, shape, and characteristic size) of linear cracks from results of the
measurements of some physical fields over boundary surface of the considered elastic solid.
This problem seems to be a typical inverse problem.

Various methods were applied to study the inverse problem on reconstruction of
crack's geometry. The concept of duality based on the reciprocity gap principle gives an
efficient instrument to study such a type of problems in some cases. Among other important
works published in this field we can mention here [4], where the authors establish
uniqueness of the problem under some overdetermined boundary measurements, that is to
know on the (total) boundary surface or line, in 2-d case, both the value of the basic
potential function and the value of its normal derivative. These results were advanced in
[5,6] where it is shown that to find the normal to the plane of the crack is a more easy task
than to determine its true configuration. We would only stress that these results require the
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input data measured over full boundary surface. Some interesting ideas for the case of
incomplete data were proposed in [7].

In the problem under investigation it is quite natural to operate with the settlement of
the boundary surface, which typically can be measured with a high precision. For this
purpose, we may apply some outer loads to the boundary surface. Then its settlement
depends on geometry and position of a system of discontinuities, located inside the
medium. Hence, we can pose the inverse problem on reconstruction of these geometric
parameters from the input data taken from results of the measurements.

In the present paper we consider a homogeneous and isotropic elastic half-space in the
context of in-plane deformation, whose formulation is more complex when compared with
the case of scalar model. We study the problem connected with the reconstruction of the
position and the size of a linear crack inside an elastic half-space and parallel to its
boundary surface. This study, which defines a typical inverse problem, can be reduced to a
system of integral equations of the first kind. It is known that such equations belong to a
class of the so-called ‘‘ill-posed’” problems [2]. This means that application of ordinary
numerical approaches to such problems makes calculations unstable. In order to overcome
this difficulty, one should apply some refined methods like Tikhonov's smoothing
functional, regularizing operators, or similar. In the context of mathematical formulation of
the problem we notice that it is simultaneously ill-posed and non linear problem, like many
other inverse problems (see [2]).

Another relevant aspect of the inverse problem concerned is a continuity of the
solution upon the input data, as well as the smoothness and the stability of the proposed
algorithms. A good survey on this subject is given in [8], where the reader can find also
some results concerning Lipschitz stability.

A motivation why it is important to reconstruct cracks parallel to the free surface of the
elastic half-space can be justified as follows. First of all, before to study a general case of
the crack location, it is quite natural to study the simpler case of parallel crack. In fact, with
the use of the Fourier transform in this problem all kernels of respective integral equations
are expressed in terms of elementary functions, as well as their right-hand sides. Besides,
this geometry is very important for applications in the testing of some composite materials
on epoxy basis. Really, in the layered composites produced sequentially from layers of
reinforcing strings and layers of epoxy, the layerwise process, there may appear
exfoliations between contacting layers, which are obviously parallel to the free surface.

Similar problems in the less complex anti-plane case, both for horizontal and inclined
cracks, have been studied by the authors in [9,10].

2. Mathematical Formulation and Reducing to Integral Equations

Let us consider the in-plane problem concerning a linear horizontal crack located in the

homogeneous and isotropic elastic half-plane parallel to its boundary surface (see Fig.1).

Vi
Ioga(x'xo)

Fig. 1
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In the considered two-dimensional (2D) case of plane strain the formulation of the
problem implies the components of the displacement vector U to be of the following form

(% y,2) = {u, (6 y),u, (X, y),0{ @1
where U, and U, — components of the displacement vector in the direction of X and Y

axes, respectively. In the studied 2D problem these two functions satisfy the following
equations of equilibrium:
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Lyt —2X+(1-¢)—L =0, 2=—H
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where A and L are elastic moduli.
If functions U, and U, are determined from Eq.(2.2) then the components of the

stress tensor can be found from the constitutive equations
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Let us assume that the crack is linear, horizontal, and h designates the distance
between the crack's line Y =0 and the boundary surface Y =h. Let us also assume that
the left and the right tips of the crack have the Cartesian coordinates (@,0) and (b,0),
respectively (see Fig.1).

Let a (known) normal point load P, (X)8(X — X, ) be applied to the boundary surface

of the half-space at point X, , which is assumed to be known. Then the full mathematical

formulation of the direct problem is to solve equations (2.2) with the following boundary
conditions

y=h: o,(x,h)=0, o, (xh)=Fd(X-X), (|X[<o) (2.4a)

y=0:

{ (X,40) =u, (x,=0), U, (X,+0) =u,(x,~0), (x<a)u(x>bh) o
,(X,+0) =0, (X,-0), o, (X,+0)=0c,(X-0), (X<a)u(x>bh)

o, (X,+0) =0, (X,—0) =0, (X,4+0) =c,,(X,-0) =0, (a<Xx<b) (2.4¢)

In order to give a solution to the boundary value problem (2.2) — (2.4), we consider
separately the upper layer (| X |[< o0, 0 <Yy < h), where all physical quantities are marked
by the subscript "+", and the lower half-space (| X |< o0, ¥ < 0), where all quantities are

marked by "-".
To the considered boundary problem, we construct the solution by applying the Fourier
transform with respect to variable X, which for any given function f(X,Y) is defined by

the pair of (direct and inverse) relations:
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isx 1 T —isx
F(s,y) = | f(xy)e™dx, foy)=-— [ Fis,y)e™ds 2.35)

Note that all Fourier transforms are designated by corresponding capital letters. It is evident
that the first-order derivative 0/0X of any function in the Fourier variables will be
replaced by factor (—iS), and the second-order derivative 0°/0X> — by factor (—S°).

Then in Fourier images, system (2.2) becomes a system of ordinary differential equations,
with a certain parameter S :

c’U;-s’U, +(1-c*)(-is)U; =0
(1-c*)(-is)Uy +U] —c’s’U, =0

where all ordinary derivatives are applied with respect to variable Y .

2.6)

Let us note that the Fourier images of the components of the stress tensor are expressed
in terms of the Fourier transforms of functions U, and U, as follows:

) H 2 ' ZXY l H
% — (-is)U, +(1-2¢*)U7, —U! +(-is)U,,
A+2u u

2.7)
ZW _ ' 2 -
YU+ (1-2¢7) (i),
A+2u

The solution to system (2.6) can be constructed by using the method of characteristic
polynomial that results in the following representations in the lower half-plane and in the
upper strip, respectively:

U- - Aisi a [ 1+¢> . } o
y sign(s)e B| —————+lysign(s) |e
(I-c*)(-Is) 2.8)
U, =—Ae*¥ +Bye®”,  (y<0)

and

U,  =Cich(sy)- D{i ch(sy)+iy sh(sy)}

" (1-c*)(-is)
+ Eish(sy)—F [L sh(sy)+1y ch(sy)} (2.9)
(1-c?)(-is)
U, =— Csh(sy)+ Dych(sy) — Ech(sy) + Fysh(sy), (0<y<h)

where the six unknown constants A,B,C, D, E,F should be determined from boundary
conditions (2.4).

On the basis of Egs. (2.7) — (2.9) one can easily write out all physical quantities present
in boundary conditions (2.4).

If we introduce the two new unknown functions @, (X), g,(X), a<Xx<b, as

follows
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0,(x), a<x<b
0, (x<a)u(x>h)’

ux*(x,O)—uX(x,O):{

(2.10)
_ g,(x), a<x<b
F(%,0)— U (x,0) =1 >
Hy (%,0) =y (x,0) {0, (x<a)u(x>bh)
Then
b
U;(5,0)-U, (5,0 =G, () = [ g, (&)™ dg;
2 (2.11)

U;(s,0)-U, (5,00 =G, (s) = [ g, (¢)e™dg

Obviously, the physical meaning of functions @,(X) and g,(X) is the relative

displacement of the upper and the lower faces of the crack, in horizontal and vertical
direction respectively.
Now, by using representations (2.10), (2.11), one can satisfy boundary conditions

(2.4a), (2.4b) that results in a 6x6 linear algebraic system regarding coefficients
A,B,C,D, E, F whose solution can easily be constructed in the following form:

A(s) = -iG e " { sign(s)[c’sh*(sh) + (1—c*)s*h* ]+ (c* / 2)[sh(2sh) + 2sh]} +

R L, (2120
2us(l—c?)

x{ sign(s)[ch(sh) + (1—c*)sh sh(sh)]+[sh(sh) + (1 -c*)sh ch(sh)]}

+G e { [sh?(sh)—(1-c?)s*h*]+[sign(s) / 2][sh(2sh) — 2sh]}

B(s) = —is(1-¢*)G e " { sh’(sh) +[sign(s) / 2][sh(2sh) + 2sh]} +
+s(1-c?)G,e " { sign(s)sh’ (sh) + (1/2)[sh(2sh) — 2sh]} - (2.12b)
- we—“‘h [ch(sh) + sign(s)sh(sh)]

C(s) = A(s) +isign(s)c’G,, D(s) = B(s) +(1-c?)isG,,
E(s)=A(s)-G,, F(s)= B(S)sign(s)—(l—cz)SGy

Now, the only remaining boundary condition is (2.4¢c). By applying the inverse Fourier
transform, with the use of the convolution theorem, this allows us to mathematically reduce

(2.12¢)

the problem to the system of integral equations with respect to unknown functions g, (X)

and g, (X) , which is valid over the crack length:

[Ki(x=8)g,(©)dE+[ K, (x-8)g, (E)dE = F,(%)

b b , as<x<b (213
[ Kz (x=8)g,(&)de +[ Ky, (x=8)g, ()dE = f,(%)

where
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K (x)= ZI{[S3h2 -s’h+ ﬂe‘”h —%} cos(xs)ds = % +
0

N 12h*(16h* —24h°x* +x*)  _ , 4h® 3%’ . 4h* — x?
(16h* +8h*x* + x*)(4h* + x*)? (4h* +x*)*  (4h* +x*)?
96h*x (4h* — x*)
(16h* +8h* x> + x*)(4h? + x*)* " (2.14b)

(2.14a)

K,,(X) = —2h? j s'e " sin(xs)ds = —
0
K, (X) ==K, (X)

Ky (X) = 2I {[S3h2 +s’h+ ﬂe‘m —%} cos(xs)ds = % +
0

(2.14c)
12h*(16h* - 24h*x* + x*) , 4h? =3x? 4h* - x*
+ + +
(16h* +8h*x* + x*)(4h* + x*)? (4h* + x*)’  (4h* + x?)?
© 2 _
1‘1(x)=h—P°2J.seSh sin[(X — X, )s]ds = 22h ()i %)y —  (2.153)
pl-c7)q pl=cHh™ +(x=x,)"]
f,(x)= —sz(sh +1)e™" cos[(X — X,)s]ds =
pd-c’)y
(2.15b)
2h*P,

T u(I=c)N + (x—x%, )’ T

3. General Properties of the Direct and the Inverse Problems
The direct problem can be formulated as follows. If we know completely the geometry

of the crack, i.e. quantities h,a,0, and the applied force, i.e. quantities P, and X, then

we can solve the system of integral equations (2.13) and determine all physical
characteristics of the problem. The most physically important one is the settlement of the

upper boundary surface, i.e. function U;(X,h). This can be directly extracted from

Eq.(2.9) which in terms of functions ¢, (X) and g, (X) is

f,(x) =u; (x,h)—u* (x,h) = EJ' g9,(&)d &T se~" sin[(x — &)s]ds +
T a 0

b ®©
L j g,(&)d gj (1+ sh)e ™" cos[(x — £)s]ds = 3.1
T a 0

_on’ i 9,()(x-§dg 2N’ i 9,(8)dg
- 2 212 2 212
: (N +X=87T  =m J[h" +(x=8)]
where we have written the final result for the function, which is the difference between the
settlement in the problem under consideration and the one in the problem free of crack.

Therefore, the represented function (3.1) corresponds to contribution of the crack to the
value of the settlement.

T
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Now, some words about qualitative properties of system (2.13). It can easily be seen
that the diagonal kernels, functions K, (X) and K,,(X) have hyper-singular behavior at
the origin. A stable method to solve hyper-singular integral equations was proposed in the

work [11]. Let us rewrite system (2.13) as
b

j{( g K- a)}g(é)dHKu(x £)9, ()dE = f,(x)
a<x<b 2

b

j K, (x-£)g,(£)dg j{ E

in the form where we have explicitly extracted the characteristic hyper-singular part of the
diagonal kernels, and the superscripts designate some regular functions. Then briefly
speaking our numerical algorithm can be described as follows.

First of all, we subdivide full interval (@,0) to a set of N small elementary

+ Ko (X - i)}g (&)de = f,(x)

subintervals of  the same length e=(b-a)/n, by  nodes
a= ?‘;O,ﬁl,};z,...,én%,{;n =h, ?;j =a-+ j8, (j =0,1,...,N).The central point of each
sub-interval (&; ;,&;) is designated as X;, hence X, =a+(i—1/2)e, (i=1,...,n). It

can be proved (see [11]) that a correct approximation to a bounded solution of system (3.2)
can be constructed as a solution to the following linear algebraic system (i =1,...,n):

Z”: 3 1
j=1 Xi_éj Xi_éj—l

+8K101(Xi _E_aj):|gx(E.>j)+8iK12(Xi _E)j)gy(gj): f1(xi)
=l (3.3)

=

DA (é)+2 L ek -89, = H(x)
i= i X_E.>j—1

The inverse problem can be formulated as follows. Let a known outer force
P,(X)3(X—X,) be applied to the boundary surface of the elastic half-space (2D

problem). This implies that quantities P)(X) and X, are known. Let us assume that there
is a horizontal crack in the half-space (see Fig.1), but its position and geometry are
unknown. Let the shape of the boundary surface, function fo(X) in Eq.(3.1), be known
over some finite-length set I" of the boundary line Y =h as a certain input data, which is

obtained for example, from the results of the experimental measurement. Then our goal is
to reconstruct crack’s geometry. In frames of such an approach, in Egs. (2.13) — (2.15) and

(3.1) quantities P, XO,},L,CZ,F, f,(X),(xeI) are known, and quantities
h,a,b,g,(x),g,(X), (@< x <b) are unknown.

Speaking about a stable algorithm, in order to solve numerically the posed inverse
problem, let us note that the input data, function f0 (X), may be given only approximately,
with a certain error. Hence, the algorithm to solve this inverse problem should be stable
with respect to small perturbations of function f(X).

The algorithm, which is presented in this work, is based on the discrete analogue (3.3)
of the basic system of hyper-singular integral equations (3.2). Let us write linear algebraic
system (3.3) in the matrix form:
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Ag— T, A{“l ”“j, A =(@l). A=) A =(a). A,=(al)

AT

g : : f ; N
92( 1]’ g1z(glj)o gz:(gzj); f :(fl} 1:(f1 )s fzz(fz)s L) =1..
9, 2
(3.4)
where the matrices and the right-hand sides are
ij 1 1 ij i ij
ay = X _éj - X _‘gjq +8K101(Xi _aj)’ ay =eKp, (X _aj)ﬂ ay) =—ay,
ij 1 1 [ i
ay, = - +8K22(Xi _&j)a fi =), f,="1(x) (-5

” X; _‘toj X; _Foj—l
Obviously, matrix A and right-hand side f both depend on parameters h,a,b:
A=A(h,a,b), f=f(hab).
If function f;(X) is known as the input data on the set I" then one can choose a finite

discrete array of nodes on this set: X, €I, (k =1,...,m), to treat relation (3.1) expressing

results of the measurements on a discrete grid. By replacing the integral there by an integral
sum, one can approximate this relation by the system of algebraic equalities, which can be
written in the symbolic form as follows

By=d, B=(B, B,), B =(b"), B,=(b’), d=(d,), (k=L...m; j=1..n)

. 2h*e(x, —&. _ 3
N = : &(X, éj)z _ 4 = : 2h’e =00 G
nh” + (% —&;)] nlh” + (% —&;)°]

The inversion of matrix equation (3.4): g = (A~ f)(h,a,b), where we explicitly

indicate that the inversion operator depends on geometrical parameters h,a,b, and the

substitution of the obtained relation to Eq.(3.6) reduces this inverse problem in its discrete
form to the algebraic relation

(BA™' f)(h,a,b)=d (3.7
It should be noted that dimension of matrix A is 2N x2N, hence dimension of

matrix BA™' is M x 2N . Therefore, Eq.(3.7) is written correctly since both its sides are
vectors of dimension M . Our approach to construct a stable solution to operator equation
(3.7) is founded on the minimization of the discrepancy functional

minQ(h,a,b), Q=[(BA"f)(h,a,b)-d| = i[(BAlf)k(h,a,b)—dk]z (3.8)
2 k=l

which is again a functional of three parameters h,a,b.
4. Numerical Treatment and Examples of the Reconstruction

The minimization of functional (3.8) can be attained by any classical method of
optimization (see, for example, [12]). The main restriction of regular iterative schemes is
that they give only a local minimum of respective functionals. Another difficulty is
connected with a non-uniqueness of the solution. It is not evident that a local minimum is
its global minimum, which in the case of exact input data is zero.

We tested application of the algorithm proposed in [13] to our inverse problem. We
aimed at a search of global minimum by a global random search. This algorithm is
developed to seek maxima, but it can be applied to minima too. Efficiency of the algorithm
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is explained by the two following specific features: 1) random sampling of values in the
neighborhood of the points, for which the values of the functional are small, happens more
frequently than that in the neighborhood of the points, where the values of the functional
are large, and 2) domains, in which random values of variables are chosen, are gradually
contracted to small neighborhoods of the points with small values of the functional. This
technique demonstrates remarkable convergence for all considered examples.

For all examples the input data is taken from the solution of respective direct problem.
It should be noted that, in order to generate approximate (i.e. inexact) input data, we
numerically solved the direct problem, and then perturbed the so obtained results by
random quantities, in accordance with the assigned "error" of the input data. For all

examples demonstrated below we used M =100 points of measurements, to form the
array of the input data, so that X, =—5+0.1(k—1/2),k =1,...m, x, €(=5,5). It is
clear that with such a choice of the trial points they form a uniform set around the applied
force P,(X)o(X), (X, =0).

We have performed numerous calculations and a thorough numerical investigation for
many examples. Some results on crack’s identification are presented in Table 1. For all

examples below £/ =b—a and ¢ =p /(A +2p)=0.3.

Table 1
input data error h a Vi type of result

1.000 -0.500 1.000 exact

0% 1.005 -0.490 0.997 restored
2.000 1.500 1.000 exact

0% 1.997 1.504 0.997 restored
0.500 3.500 1.500 exact

0% 0.490 3.495 1.509 restored
3.000 4.000 0.500 exact

0% 2.988 4.003 0.500 restored

The physical conclusions from Table 1 are quite evident. Then we studied the stability of
the proposed algorithm if the input data is given with a certain error.

Table 2
input data error h a /¢ type of result
1.500 -0.500 1.000 exact
5% 1.496 -0.500 1.000 restored
2.500 1.000 1.500 exact
5% 2.502 0.982 1.495 restored
4.000 -3.000 4.500 exact
5% 4.014 -3.009 4.501 restored
0.200 2.000 0.100 exact
5% 0.208 2.003 0.096 restored

Some examples with more significant error in the input data are presented below.
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Table 3

input data error h a / type of result
8.000 -0.500 1.000 exact
15% 8.031 -0.532 1.001 restored
6.000 2.500 4.000 exact
15% 6.220 2.620 4.116 restored
4.000 -3.500 8.000 exact
15% 4.032 -3.521 7.996 restored
2.000 4.500 0.200 exact
15% 1.938 4.497 0.198 restored
Table 4
input data error h a Vi type of result
1.000 -1.000 2.000 exact
25% 0.927 -1.013 2.037 restored
7.000 -4.500 9.000 exact
25% 7.129 -4.596 9.076 restored
0.300 1.500 0.100 exact
25% 0.316 1.492 0.103 restored
1.500 3.000 0.500 exact
25% 1.516 3.038 0.474 restored

It is very interesting to analyze the influence of the input data error for a chosen single
crack. In Table 5 below we demonstrate such dependence for the last crack taken from
Table 4.

Table 5
input data error h a Vi type of result
1.500 3.000 0.500 exact
0% 1.515 3.004 0.498 restored
5% 1.513 2.981 0.497 restored
15% 1.490 2.983 0.514 restored
25% 1.516 3.038 0.474 Restored

The following evident conclusions follow from the presented numerical results:

1. The proposed algorithm demonstrates a wonderful efficiency. Even with very rough
precision of the input data the reconstruction is very good. Moreover, for approximate input
data precision of the reconstruction is higher than that of the input data. This clearly
confirms the stability of the algorithm.

2. Concerning the comparison between various examples presented, taking into
account that all of them are of high precision, we can however analyze the cases when the
reconstruction is highly precise or less precise. Regardless precision of the input data, long
cracks are reconstructed more accurately than small ones.
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3. We have also tried to vary the length of the intervals where the input data is
collected. Under such numerical experiments we could conclude that precision of the
reconstruction improves when the measure of the set I" increases, that is quite natural from
the physical point of view.

4. A numerous number of numerical experiments performed by the authors indicate
that in the cases when the object under reconstruction is situated closer to the boundary
interval I, the precision of the reconstruction is higher.

5. The present consideration is restricted by cracks parallel to the free boundary surface
of the half-space only. The convenience of the present treatment consists of the fact that
this is based on the classical Fourier transform. A different approach may be applied for
arbitrary crack orientation in the half-space; this will be the subject of the authors' next
work.
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