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KaioueBble cjioBa: KyCOYHO-OAHOPOIHBIN NPSMOYTIOJNBHHUK, aHTHIUIOCKas nedopmariusi,
paspbIBHAsI MOJIA.

INaxaaBuanu Aan I'.
O HanpsIKEHHOM COCTOSIHMU KYCOYHO-0IHOPO/HOI0 YIIPYrOro NpsiMoyrojbHUKa C
JBYMSI CHMMETPUYHBLIMM TPEIIMHAMY NPH AHTUILIOCKOI nedopmanumn

B crarbe B SIBHOM BH/C ONPEACIITIOTCS KOIPPHUIIUEHTH HHTCHCUBHOCTH HANPSHKCHUH,
paspylaroIre KacaTelbHble HAMPSHKCHUS U PACKPBITHS TPCIIUH B KyCOYHO-OJHOPOTHOM
MPSIMOYTOJIBHUKE C IByMSI CAMMETPHYHBIMHU TPEUIMHAMU TPU aHTHILIOCKOH Nedopmanuu.
UuCneHHBIM aHAJM30M BBISICHEHBI 3aKOHOMEPHOCTH HM3MEHCHHS STHX BEIHYHMH, a TaKKe
3((eKThI B3aNMOBIUSHHAN OJMKHUX KOHIIOB TPCIIUH.

Ouhjujhwith Uph Q.
Zulywhwppe nhdnplmghwih dudwbwl pym hwdwywth Lwphpm] innp we unp hufwubn
nunuiljjub jupjuswihlt Jhwlh duuh

Znnudnid puguwhuyn wnkupny npnpynid kb jupnudubph nidqunipywt gnpswljhgkpn, puypuynn
onowthnn jwpnudbpp b Swpkph pugquspubph tpynt hwdwywth Lwpkpny, junp wne junp hwdwubn
nupnuljut Uky hwjwhwpp ndnpuughwh dudwiwly: @uyhtt Jpnsnipjudp wupqylp o wyy
Ubkdnmipynittbph  thnthnjudwin ophtiwsputhmipynititipp, hywhu  twb  Lupkph  Swypwlbwnbph
thnjuwqpbgnipjub EpEYnitpp:

Introduction
This paper presents a boundary value problem and formulation for the analysis of linear
elastic fracture mechanics problems involving piecewise homogeneous bimaterials.
Investigation and mathematical works in this paper is focused on the stress- strain state of
plates with two symmetric central cracks that are made of two bonded dissimilar materials
which behave as a piecewise homogeneous elastic plate. Two cracks are on the bondness
line of the two segments of plate that have two different shear modulus G1 and G2, and
equal length and height. The antiplane distributed shear loading act on the edges of plate.
Using sinusoidal Fourier transformation the equation governing this boundary value
problem converts to a singular integral equation (S.I.E) of the Cauchy form, which can be
solved with the aid of Gaussian numerical-analytical solution for singular integral
equations. Consequently the dislocation field around the cracks boundaries and the tearing
stresses of plate and the Stress Intensity Factor (S.I.F) equations at the tips of cracks are
derived.

1. Basic equations in bimaterials with two cracks

We consider the rectangular plate in the Cartesian coordinate system OX)z , has a upper
part D, = {0 <x<I[,0<y< h}with shear modulus G, , length /and height /4, and a
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lower part D, = {0 <x<ZIl, -hLy< 0} with shear modulus G, , length / and height

5. On the bondness line of the two segments in the interval 0 < x </ there are two

2
central cracks located symmetrically at L = U[akﬂbk]’ that have equal lengths
k=1

, / / [ l
(F1g.1)al:§—a, bI:E—b, a2=5+b, bzzz-i-a, (0<a<l/2; b<a)

The boundaries of cracks have not tractions, furthermore the vertical edges of
plate D, ( j= 1,2) at x=0 and x =/ are clamped and the upper and lower horizontal

edges y = th are loaded by antiplane distributed shear traction T’ (x), so that we have
(1) — .
=T .

T vz | y=h-0 yz

k0 = T(x) (0 <x< 1), in which T(yi)(j = 1,2) are the antiplane

shear stresses on the top and bottom boundaries of segments D Iz According to the above

2

assumptions, the rectangular plate D = U D, undergoes an antiplane strain situation and
k=1

the deformations of crack edges occur along the Oz axis on the basis of plane Ox) which

means a tearing mode of Fracture. In this problem we seek to determine the displacement of

edges around the cracks boundaries L , the stress intensity factors S.I.F, and the plate shear

stresses producing fracture at the bondness line L' = [0, / ] \ L out of cracks. Moreover it is

required to investigate the interactive influence of adjacent crack tips @, and b, .

Ay
) ;7\7/7/\77 T(x)
T/ )

Fig.1

For determination of governing equations of the problem as shown in [10], in which the
general form of the problem was discussed, the piecewise homogeneous elastic plate D in
interval 0 < x </ of axis Ox is investigated separately in upper rectangle (Dl) and

lower rectangle (Dz). By means of function w;, (x,y) ( i :1,2) we introduce the
deformation of cracks boundaries of D i ( j= 1,2) along the Oz direction and investigate

their elastic equilibrium separately. So for rectangle D, using the Hooke’s law to calculate

the displacement W), (x, y) we reach to the boundary value problem (1.1):
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2 2
om0y, (0<x<l, 0<y<h)

M Ty T
Wl(x’y) x=0=W (x’y)|x:l :0, (0<y<h)
ow, ow
Tg/lz) y=+0 zGla_yl y=+0 =1, (X), Tgflz) y=h-0 ZGla_yl‘y:h—O :T(X), (O<X<Z) (1.1)
0 (xeL+);

(1)

yz

=40 = Ty (x) =
’ {t(x) (xel');
L" is upper edge of the cracks L, and 7 (x ) is the antiplane shear stress in non-cracked

zone of the plate L' = [0, l]\ L.
After [11] to solve the boundary value problem (1.1) the Fourier sinusoidal transformation

is used, supposing that

!
w,(n,y)= J.w1 (x,y)sin(?jdx (n=12..) (1.2)

0
And Fourier inverse transformation as below

2 . [ mnx

wl(x,y)=72wl(n,y)sm(7) (0<x<i). (1.3)
n=1

By means of Fourier transformation (1.3) in the boundary value problem (1.1), the ordinary

differential equation is obtained:

2— 2 2
e RUNCER
(1.4)
aw, _ dw —
G, diyl y=t0 = T4 (”)s G, dlyl‘y_h = T(n)

I I
% ()= . (x)sin[$jdx, Tn)= jr(x)sm(“lﬂjdx (n=12.) (s
0
Solving the equation (1.4) leads to (n = 1,2,...) (0 <y< h)

nnG, sin

w, (n,y)=

Finally from which we obtain the deformations on the bondness line upper boundaries

1| T (n)-7, (n)ch(nnh/l
7 (n,0) = [ (n)-7, (n)c (ﬁ”/)} (n=12,..). (1.6)
nnGsh(nnh/1)
Completely through a similar approach for the rectangle D, , we obtain the deformation on
the bondness line
I| T (n)ch(mnh/I-T
w, (1,0) = [T‘(n) (m / (n))] (n=1,2,..), (1.7)
nnG,sh (mnh/l)

it is clear that
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/
0 (x € L‘)
- {T(x) (xelL)
In which the zone L~ is the lower boundaries of cracks L .

Now using W, (x,O), w, (x,O) quantities, we introduce the following functions:
i (5:0) w3 (x.0)

D(x)=—"+ ; : =w1(x,o)=3icpnsin[$j (0<x<I)
Q(ﬂ:MZT Zgnsm(n;zxj

(1.8)

Functions @, €2 are the Fourier Sinus coefficients that according to relations (1.2),
(1.3) and (1.5) presented as below:

@, = [7(10) -7, (10)]= 7 10k @, =J[F ()47 (=%} 1)

In those it is clear that due to symmetry of axis Ox
w(xy)=-w,(x,y) (0<x<l —h<y<h), t,(x)=1_(x).

Now regarding to (1.6)—(1.9) and using similar approach in [10] with using nondimensional
parameters 1, f we convert the function Q(x) from (1.8) to the following formula.

Qo(i)z—;—nj(ctg‘:;n +ctg§"2’n)%(n)dn+

+—J- JE-m)+ K. ( §+n)]¢( )dn+ (0<g<m) (1.10)

f (Je =)~ L. (&+m) iy (n)dn

So that the first term in the first integral for 77 = & is the main quantity of Cauchy
function, for this reason we use the below functions in (1.10).

K*(§)=g%; L(é)z%% (0<t<m) (11

Introducing nondimensional parameters converts the interval Lto L, so with the aid of

function CD(x) from (1.8), the cracks boundaries displacement field are derived as below:

h _
E= T =T g = T )= (), 1,0 ()
— 1> =k =—= (k=12
* 2G1G2 H a‘k l b Bk l ( 2 )’
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2
Ly={Jlow.B ], Ly =[0.7]\L,, 0<E m<m.
k=1

®'(x)= {(p’(x) (vel) = —Z(pn cos(ng),

0 xel =
( ) : (1.12)
b197) ,
0, =70, = [ (E)eos(nzkie: 0,()= (/)
Ly
The cracks L geometry parameters are (O <a< g, B< Otj.
T T T b na nh
_T_ _T_ L = 4o, 0=— B=—0. 1.13
oy 5 o, B 5 B, a, 5 B, B, > Ta, o ] p ; (1.13)

Investigation of key equation (1.10) in interval L leads us to below new variables
t=cos& u=cosn (-l<tu<l),

Regarding to the unknown displacement field @, (5;) from equation (1.12), we can

derive the singular integral equation governing the problem as follows

2 1

f(t):;IL(t )T, (u)du; T,(r)=T,(arccost);, A, U[Sk,yk (1.14)
o, (t) = ¢, (arccost); Ko(t,u)=(\/l—t2 +x/1—u2)

And according to (1.13) we can write:
d,cosf, =—sina; v, =cosa, =—sinf;

. . (1.15)
8, =cosP, =sinf; vy, =cosa, =sina.
Moreover, based on relations (1.11), we use the below functions:
—nh
z (u)U, (1) (-l<tu<l) (1.16)
«/ 1—42 ch

L(tu) =~ 3 Y 1<f>;

o ch nh)

That are the known Chebyshev polynomials of the first and the second kind.
The singular integral equation (1.14)—(1.16) may be investigated at the tips of the cracks to
find their mutual influences. The continuity condition is:

T(p’(s)ds =0 (kzl,_2)

Using the nondimensional parameters, the above condition relation differ to below form:

Jo

(kzl,_Z) (1.17)
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Through solution of the singular integral equation (1.14)—(1.16) with the condition (1.17),
and after investigation the key equation (1.10) in the zone out of the cracks,

Ly = [0, TC]\LO, we derive the nondimensional relation for shear stresses

©(&) (&= arccost) as follows

to(t)z?(arccost)z—l'[Q)O(u)du—lj. utt Ky (t,u)-
mioou- m;

t V1-u?

(1.18)
2K (tu)]o (u)du+3jL(t,u)f(u)du (te[-11]\A,)
0 ) 0 0
In which the functions K| (t,u), K (t,u), L(t,u) and ﬁ(t) are defined according to
formulas (1.14) and (1.16).

2. Reducing the S.L.E to a system of linear algebraic equations
To solve the S.I.LE (1.14)—(1.17) we use the numerical solutions and methods prescribed in
[7-9] that are based on Gaussian Quadratic formulas for ordinary and singular integrals. To

reach this main object, at the end points of each interval [8 Y k] (k = 1,2) of crack

systems A, we perform a change of variables according the below formulas

-9 +90 -9 +90
thk kr+Yk k;u_Yk kp+Yk k (k:l,Z)

2 2 2 2
which is valid in interval [-1,1] where —1<7,p <1. From that and taking advantage
relations (1.15) it is obtained

sina — sin sina + sin sing, — sin sina + sin
t= Br— B;u= P B(kZU
2 2 2 2

L oLt si L oLt si
;- sina sm[3r+51n(x smB; u:smoczsmB | sina s1n[3(
Consequently the S.ILE (1.14)—(1.16) is converted to the form as below

11(0(0)pdp 1! 1 &
EJLT[%(r,p)wﬁ’)dp*%ﬂKkn(rap)wi”(p)dp%(r);

_1 p—r (k#n) n=1 _1

@.1)

k=2)

ﬁ(ﬂ:f(hgsﬂwﬂ%;mJ;@=12—1<r<0

-1
Lkn(r,p){p—“:s’cr“”i&”—Y’CfSkJ : (22)
'Y"I 6}1 yn 8)1 ’Yn 8”

(’Yn _Sn)p+(Yk_6k)r+Yn+8n+Yk+6k x
\/4—[(vn—6n)p+vn+8n ’

-5 ) ) ) -5
XKO(’Ykz kr+Yk+ k Yn 11p+YI1+ nJ_zK[’Ykz kl"+

K, (r.p)=(y, —dn)

9

2 2 2

Ve+8 v,—6, v, *+9, (0) Vi =0 | Vitd
+ , + ; © =0, + , (k=12
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where the function f (t) and kernel function K 0 (t,u) and K (t,u) are introduced

according to formulas (1.14) and (1.16), and the end points of crack systems

2

A, = U[Sk,y k] defined by (1.15) quantities. On the other hand noting that k =1 and
k=1

k =2 the relations (2.1) are valid, and making use of (2.1) the condition equation (1.17) is

converted as below:

1 ol (p)dp

‘Il\/4—[(vk—5k)p+(vk+5k)]2

Now through the numerical approach according to [10] we can solve the SI.E (2.2)
considering the above continuity condition (2.3) to obtain a system of linear algebraic
equations as follows :

u 2
ZA14|: 1 +Lkn(rm’p[7)+%szn (rm’p[’)i|\VElO)(pp): ]A}"m)
(m=1,M=1

=0 (k=12). (2.3)

SM|p, -7, o
f v (p,) - 2.4)
HM\/I— Y, ;8k o, e ;6,0

o) = vl (p) (k=1,2), 2.5)

For this reason in equations (2.2) and (2.3) the below function is valid where ( p) isa
function of Holder-Lipschitz class in the [—1,1] range, and M is an arbitrary natural
numbers, also 7, and p,are the roots of Chebyshev polynomials of the second kind

U, (r) and the first kind 7, (p)

7, =cos(nﬁmj (m =1,M—1); P, =COS(2§A/_IIRJ(]) =1,_M)

3. Special case of antiplane loading
Now we suppose that the upper and lower edges of the plate stressed by antiplane shear

forces P so that T (x) =Po (x —1/ 2) ,in which & (x) is the known Dirac Delta function.

By this assumption the function f (t) is calculated as below:

f(t)ZQo\/ﬁg ch[((Z_li)—nl)ho:IUznz (t) (_1<t<1)
0,=P(G +G,)/GG,l.

To calculate the shear stress from relations (1.18) making use of the variables shown in
(2.1) we reach to a new variable p and finally taking into consideration the equation (2.5)
the follow formula for shear stress is concluded

3.1)

16



2 1
(0)
1}: v, (p)dp
TOO):_EE (Y”_&)j [ jS() v, +8 -
J l_p(kzkp+k k_tj

2
_LZZL j‘ (v, -8 )p+yk+8 +2t
2n — J \/4 p+yk+5]
Vi — 9, Vi +9, _ Vi — 9, Yk+8 ( )dp
XK{“ > P j 2K(t’ 2 PP j Ji-p /)
(te[—l,l]\Ao); AO:[—sinoc,—sinB]U[sinB,sina] (3.2)

in which the function f (t) is presented according to (3.1). Consequently we can obtain
the nondimensional fracture stresses through solving the linear algebraic system (2.4) that
is:

2 M (0)

T,(f)= —ﬁz‘,(vk =8,)2 _Sk\vk (pypk)+5

k=1 p=I1 ,Yk k —t
2 r 2

_ﬁi(y]{_?}k)i (ve—=8,)p, +v, +8, +2t .

=1 p:l\/4—[(yk—8k)pp+yk+8k]2

-9d +3 -9d +90
XKo(t, Ykz kpp_l_Ykz kj—ZK(l‘, Ykz kpp+Yk2 kj\lfgc())(pp)+

+£(t) (re[-LI\A,) (33)

Now we seek for a relation to represent the crack opening displacements ¥ (x) :

¥ (x)=20(x 2j<p ds_—zjq) (a, <x<b,; k=1,2)

3

From which after some calculations we have (—1 <r<l; k=1, 2)

1
PO () =~ Yot O sign (r—p)y’} (p)dp

2
2 /1_p2 \/1_(Y3k —93,, o+ Y-k +83kj

2 2

-0 0
\Pi") (r)= %‘P (l arccos Y3k Ok o Yok ¥ O3 j

o 2 2

Similar through solving the system (2.4), the nondimensional equation (3.4) for crack

opening displacements is obtained as below (—l <r<l; k=1, 2) :

17



\ngo) (r) __Yau~ S 4 \ Sign(r —Py )W3—k (pp)

2
M == Vi =054 " Vi +95
P
2 r 2

Finally we derive the formulas to determine the Stress Intensity Factors S.I.LF . Regarding

(3.4)

symmetry of the problem due to axis X = — we take into consideration only the right hand

crack with end points at x =@, and X = bz. The stress intensity factors are defined as
follows [1,2,5,12]
K, (a,)= lim [ 2n(a, —x)tyz} = hmo[ 2n(a, —x)t(x)};

x—>a,—0 X—>a,—

Ky (b,)= tim [\2r(x=b,)c, |= tim [ 2r(x=b,)c(x)]

—b,+0 x—b, +0

(3.5)

where 'C(x) are fracture shear stresses that determined according to (2.18) and or

(3.2). At first in formula (3.2) by using the first term of relations (2.1) we convert variable
t to variable 7. Then for calculation the S.I.F investigate the below stress function.

J "’1 (
Here according to [12] we suppose that

v (p)=vi (p)+ 4p+B; v, (p)=v'"" (p)- 4p— B

and select parameters A and B so that \|J’1F (il) =0, from which it is concluded that

1> 1).

1 1
A=E[W$O)(1)—\V§O)(—1)}; B=5[W§O)(l)+“’$0)(_l)] (3-6)
And consequently
j Wl (Ar+B)signr (|r|>1) . 3.7)

T p r «/1— Nt -1

With the aid of relations (3.6) and (3.7) using in (3.5) and after some simple transforms on
it we have

K (a) ZGGz\Vl (1) l(sinoc—sinB)_

m \ % G1+G2 2cosP 5 .
© (b):_ZG,GNEo)(_l) \/l(sinoc—sinB)_

e G +G, 2coso

On the other hand if we consider the dimensionless form of S.L.F in (3.8) obviously it is
clear that:

+ G1+G2 {K[[I(bz)}

" 2G1Gz\ﬁ K, (az) .

K=y (1 sinoc—sinB; K = (1 sina—sinB. 19
= \Vl( ) 20001 m =W () 2cosp (3.9)
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(0)

Quantities (il) in above formulas are found through solution of linear system of

equations (2.4) taking advantage Lagrange interpolation coefficients.

1 & + 2p-1
W)= 3w (o, ot 22t

po 4AM

W (1) =23 () (p, )1 22
! M = P AM
In this manner the calculation formulas to determine the problem main characteristics are
(3.3), (3.4), (3.9) and (3.10).

4. Numerical calculations

To solve the system of linear equations (2.4) we use M =10,15,20,30,... In order that

quantities of solutions converge and the different between two latest answers reach to the

(3.10)

order 107, For  calculation  the  parameters of  function (2.4),

1o (7). Ly, (r.p).K,, (7.p). 8,7, formulas (2.2), (1.15), (1.16), (3.1) are used.

4°8°16°32 64

order to determine the influence of distance between two adjacent cracks on their

s
The parameter o, and B are supposed equal to O :g and B=—;—;—;—;—in

fracture characteristics. The nondimensional shear stress 7, (l‘ ) is calculated according to
(3.3), in which the function f° (t ) is obtained from (3.1), supposing the quantity

0, =0,01. Using formulas (3.9) and (3.10) the stress intensity factors in the
nondimensional form can be easily calculated, as shown in Fig. 2 and table 1, for above
parameters. The variation of SI.F K, based on parameter § and p=0.3,0.5,1.0 is

shown in Fig. 3 to recognize the state of S.I.F under change of the lengths cracks.

5. Conclusions

The numerical schemes that are used to solve the singular integral equation governing the
piecewise homogeneous elastic plate problem subject to uniform remote antiplane shear
loading are accurate to determine the tearing shear stresses, cracks dislocation densities and
the mode III stress intensity factors. For the case of cracks approaching together it has been

shown that the stress intensity factors K, grow up based on the two parameters, that are

the total distance of their far tips and the closeness of their near tips, for example about 45
T T
percent in the case of o0 =—and [} = —4 . The technique presented in this paper can be

used to solve a class of problems associated with the cracking in bimaterials interface.

r=

p /4 /8 n/16 /32 /64

0.3 5.36 5.54 5.73 6.17 6.35

0.5 4.88 5.12 5.34 5.87 6.13

1.0 4.21 4.35 4.63 541 5.92

Tablel.Variation of K, foro =m/3 nbased of, p
19
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