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noipu b phipjws njujhqugdud wujuyniimpjut gnnipjut wuydwutbpp: Yphnpjulwb phnh
hwdwp vinwugdus ki pluyght wpdbpubp juhdws vwh b hkwpwth wowdquiljuit gnpsuiljhgutinhg.

Pe3a Illapuduan
Jloka1n30BaHHAS NOTEPs YCTOHYMBOCTH NMOJTY0ECKOHEYHOIi H30TPONHOI IVIACTHHKH B OKPECTHOCTH
YHpPYro-onepToro Kpas

PaccmoTpeHa 3ajada O JIOKQIM30BAaHHOH IIOTepe YCTOHYMBOCTH MOJIyOSCKOHEYHOH IUIACTHHKU-IIOJIOCHI,
Harpy>XCHHOI 110 TONYOECIOHEYHbIM IIAPHUPHO ONEPTHIM KpasM M YIPYro ONEPTOil 10 KOHEYHOMY Kparo.
BriBeneHO XapaKTepHCTHYECKOE ypaBHEHHE 3aJaud M AHAIMTHYECKH YCTAHOBICHBI YCIOBHS CYIIECTBOBAHMS
JIOKAJIN30BaHHON HeycToiunBocTH. IlosrydeHbl TakKe UYUCIECHHbIE DPELICHMs JUll KPUTHYECKOH Harpy3ku B
3aBHCHMOCTH OT YNIPYTUX XapaKTePUCTUK IJIACTHHKH H OIOPBI.

Localized buckling of a semi-infinite isotropic plate near elastically fastened edge has been investigated.
Mathematical model is of structure is provided and characteristic equation of the problem is derived. The existence
conditions of localized buckling are derived analytically. For the cases when localized buckling exists numerical
solutions and plots for the critical loads are provided.

Introduction

The existence of edge waves along the free edge of a homogeneous and isotropic semi-
infinite thin plate, modeled using Kirchhoff theory, was first noted by Konenkov [1] in
1960. Konenkov established that, for isotropic plates, precisely one edge wave solution
exists for all values of the two free parameters, namely the bending stiffness and Poisson’s
ratio. The edge wave speed is found to be proportional to and slightly less than the speed of
flexural (one-dimensional) waves on a plate of infinite extent.

Ambartsumyan and Belubekyan [2] in (1994) considered localized bending waves along
the edge of a plate using several non-classical plate theories, concluding that Timoshenko—
Mindlin plates do not admit localized edge waves. One of the latest developments in the
field has been the localized bending waves in an elastic orthotropic plate; by Mkrtchyan [3]
in (2003).The analogy between localized vibrations of plates and plate localized non-
stability was established in [4]. Further investigations on the late localized non-stability
problems were done, for example [5]-[7]. In the present paper the mathematical model and
differential equations is presented. The results and conclusions are then reported.
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Mathematical Modeling

A semi-infinite plate with two simply supported edges as sketched in Fig.1 is considered.
The width of the plate is b and the thickness is 2h. The Cartesian coordinate system (X, Y, 2)
is chosen so that the plane (x0y) is coincident with the plate middle surface, while z is the
coordinate along the thickness; the X axes and y are aligned the edges. The plate in
Cartesian coordinates to be defined by a domain:

0<x<w 0<y<b ~h<z<h

Yi
P

ERERERREEERER

Elastic Supported

b Simply Supported

—

ottt titdly x

P

Fig.1 uniformly compressed semi-infinite plate simply supported along the edges y=0 and y=b

The plate is uniformly compressed along the edges Y =0 and Y = b with a constant load
P. The stability equation of a rectangular isotropic plate compressed along the edges Y = 0
and Y= b by a load P can be written as [8]:
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where W, D, E and V define the deflection, the flexural stiffness, the Young’s modulus and
the Poisson's ratio of the plate, respectively.
The boundary conditions on the simply supported edges at y=0, y=b are:

2

w=0 andaW—O aty=0,b )
oy

=

We consider the edge x=0 with elastic support and it can be expressed as [9]

M,=0, N,—Cw=0 at x=0 3)

where M, is the bending moment and N, is the generalized cutting force. Taking into

account expressions for moments and forces, boundary conditions of elastic support take
the form:
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where ¥ = ClDf1 (5)

Schematically these boundary condition are represented in Fig. 2.

2

7.

Fig. 2 Schematically elastic supported boundary condition at Xx=0

One additional boundary condition is needed. If the plate is semi-infinite, the localization
condition prescribes attenuation as X — 00, hence an additional constraint is

limw=0

(6)
X—>
If the suggested problem has a solution, then a localized buckling exists near the edge of
plate x=0.

The solution of equation (1), satisfying to boundary conditions (2) can be represented as
follows:

W=z g,(X)sinA,y, where A, =nmn/Db )
n=1

Eq.(7) and Eq.(1) yield to the following linear ordinary differential equation and the

function gn( X ) can be determined by solving the ordinary differential equation

g’ —2Aa0y +2a(1-m3)9, =0 ®)
where n2 = P ©)
" DA

According to Eq.(4) the functions gn( X) should satisfy to following boundary conditions:
I 2
gn - }\’n gn =0
il 241
On _(Z_V)kngn —Y0On =0

and the attenuation condition (6) is reduced to

lim g,(X)=0

X=0 (10)

(11)
X—> ©

The solution (8) can be represented as
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g, = Ag ™ (12)
Substation of Eq.(12) into Eq.(5) yields to characteristic equation

p'-2p°+1-1’ =0 (13)
From Eq.(13) follows that solution (12), satisfying to condition (11), will be:
g, =Age M +Be ™ (14)

where pl:\/1+nn’ pzz\ll_nn (15)

and it is necessary that the following condition would be satisfied:

0<n, <1 (16)
The requirement that solution (14) must satisfy to conditions (10) yields to following
system of homogeneous algebraic equations with respect to unknown constants A, and B,

(P2 =V)A +(p,> —v)B, =0 }

(17)
[P(P” —2+V)+¥A 1A, +[ (P =2+ V) +YA,; 1B, =0

Equating the determinant of system (17) to zero yields to an equation for critical buckling
load of the plate:

KMy = (P =VP,(P," =2+ V) + 72 1= (0, — )PP =2+ V) +72,.’]=0 (18)
When the equation (18) has roots satisfying to condition (16), then localized buckling takes
place.

The equation (18), after some transforms can be reduced to

K(nn)E(pz_ pl)Kl(ﬂ)=0 (19)
where
K,(n,)=pip; +2(1-v)pp, =V’ =72 (P, + P,) (20)

Equation (19) has a rootn, =0, if p, — P, =0. It is obvious that the root M, =0

corresponds to the trivial solution W= 0. Consequently, the critical value of load is defined
by equation

K,(n,)=0 Q1)
In particular casey =0, equations (21) coincides with equation of critical load for the

problem for plate with free edges [6].
When the equation (21) has a root satisfying to condition (16), then the plate buckles. The

shape of buckling is such, that buckling is localized near edge X =0 .

For the function K, (1,,) =0 following evaluations are valid:

K,(0)=B+Vv)(1-v)=2y1°,
K,()=-v’=yA V2 <0 (22)
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In the case Y = 0 (free edge) K,(0) > 0and the equation (21) has a single root satisfying

to (16) [6]. When ¥ grows, 7 > 0 and reaching the value K,(0) <0 the equation will not

possess such root.
That is, under

y>0.53+v)(1-v)A} (23)

-3
Table 1. Change of the critical load parameter T]; with change of Y7\. | for V= 0.3

A n,
0.00 0.9981
0.05 0.9940
0.1 0.9878
0.15 0.9795
0.20 0.9691
0.22 0.9644
0.225 0.9632
0.230 0.9620
0.231 0.9617

Also some plots of K,(1,) are provided according to Equation (21) for values of
Y}wf =0.00, 0.05, 0.10, 0.15, 0.20, 0.22, 0.225, 0.230, 0.231.

08—
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i
Fig. 3. Plotsof K (1) for YA, =0.00,0.05,0.10,0.15,020,022,0.225,0.230, 0.231
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No localized buckling exists. Note, that if under N =1 the inequality (23) is valid, then it is
valid also for arbitrary N . Particularly if

0.5B+Vv)(I-Vv)A, <y<0.5B+v)(1-V)A, (24)

Then buckling with shape N=1 is impossible, but other shapes of buckling N> 2 are
possible. (Buckling is non-localized).
Taking into account expression for Yy, from (23) follows the condition of absence of

localized buckling:

G T 3+v)h’

2> (25)
E  3(1+v)b’
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