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Oppnuipny gpulwjhG L vinpnhnw punwGpGph hwdwp tnwsuh nhGwdhy fuGnhpGtnh
wuhdupnnnhy moniGtp

Uuhiyunwnhy tnuiuwyp wpynGuybtn b pupujuuyuwnm dwpdhGibph (htowGibp, vwibp, punuiplbp)
hwdwp hGywbtu vnwwnhy wjlwbu b nhGwdhy tnwswih fuGnhpGbpp okt hwdwp: UWhiwwnwlpnud
nhunwpyynd GG oppnuipny pwnuwplGtph hwdiwp hwpyunpuywi wnwwwinuiGeph fulGnhplGtpp, Gpp
nhdwjhG dwytplnypltph Jpw wnpjwo GG wmwpptp nuutph tqpughlG ywydwbbtp:  Unwguo Gl
plnhwlnip  wuhdwyumnunhy uonmdlGtpp L npubtu YhpwenipymG’  nuoniGip quuGwjhlG L wnpnhnug
punubpGtph hwdwnp:

JLLA. Aranossin, P.C.T'esopksn, JL.I. I'yarasapsx
ACHMIITOTHYECKHE PellieHHsI TPeXMePHbIX IHHAMHYEeCKHX 32124 ISl OPTOTPONHBIX
HUIHHAPHYECKHX H TOPOUJAIBHBIX 000/104eK

AcuMnToTHYeCKMid MeTon, pas3BuThlii B [1-3], ad(dexTuBeH mNpu pElmIeHMH KaK CTaTUYECKHX, TaK |
JUHAMHYECKUX TPEXMEpHBIX 3aJad A1 TOHKHX Tell (Oaikw, IIacTHHEL, 000nouku). B pabore paccmaTpuBaroTes
3a71auyl O BHIHYK/IEHHBIX KOJIE€OaHUAX OPTOTPOINHBIX 000JIOUEK NPU PAa3IUYHBIX BAPUAHTAX FPAHHYHBIX YCIOBUH,
3a/IlaHHBIX HA JIMIEBBIX MOBEPXHOCTSIX 06osouku. [TomydeHs! 00IIHe aCUMITOTHYECKHE PELICHUS U B KauyeCTBE
MIPUIOXKEHUH PaCCMOTPEHE! BHIHYXK/ICHHBIC KOTeOaHNUs IIMINHAPUIECKIX U TOPOUIATIBHBIX 000JI0UEK.

The asymptotic method of solution of singularly perturbed differential equations have been applied for solving
three-dimensional dynamic problems of forced vibrations of orthotropic cylindrical and toroidal shells. The
obtained generalized asymptotic solution is illustrated on solutions of particular problems.

Introduction
For the last decades for the solution of the problems of elasticity theory (static and

dynamic) the asymptotic method of the solution of singularly perturbed differential

equations have been successfully applied.

The asymptotic method developed in [1-3] is
effective for the solution of as static as well as
dynamic three-dimensional problems for thin
bodies (beams, plates, shells). Here we consider
the problem on forced vibrations of orthotropic
shells at various variants of boundary conditions
given on the facial surfaces of the shell. A general
asymptotic solution is obtained. As supplements,
forced vibrations of cylindrical and toroidal shells
are considered.

*) The work is reported on Final MEETING of INTAS Project «Some nonclassical problems for thin
Structures», Rome, Italy, 22-23 Jan. 2009.
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1. Setting of the problems and basic 3D equations and correlations of elasticity for shells
Consider forced vibrations of orthotropic shell of thickness 2h, occupying the area

D ={a,B,y;a.B € D,, —h <y < h}, where D, is the middle surface, o.,f3 are the
curvature lines of the shell middle surface, Y is the rectilinear axis, directed perpendicularly

to the middle surface (Fig. 1).
It is required to find the solutions of the three dimensional dynamic problem equations

of elasticity theory in DD area at the series of the boundary conditions on the facial surfaces
v = A and on the lateral surface. In order to diminish and simplify the computations we

shall use the components of the nonsymmetric tensor of the stresses Tyi» which are
connected with the components of the symmetric tensor G, by the formulae [1]

e = (IJFRLJG““’ Ty = (HRLJ% (o, B51,2)

2 2

2

_ Y Y
‘CY‘/ = (1+R—IJ(I+R—ZJGW

The equations of elasticity theory will be written in the form of:
the equations of the movement

1 0 9 &, 2,
ABaOL( wa) ~HyTp + 8[3< )+kr (14.%}?4_?:

:p(H%IHRJ??’ (4,B; o.f} R,R; UJ)

ot T ot 61
_n _ Tﬂ + ﬂ + li + 1 kﬁTa
oy R, R, A oo 68 !

=p 1+ |1+ L ow
R, R, ) of

(1 + lj Typ = [1 + Rl] T, (the condition of symmetry)

+k,Tp, =
(1.2)

1 2
the correlations of elasticity (Hook’s generalized law)

1+— 1oU kV+K =[1+-L a;, Ty, + 1+ a,Tgg + a7,
A do R, R, R,

(A,B; o.B; R,R,; UV a,,a,; a;,a,)

2
1+y| — 1 1 +L 8_W= 1+ ;T + 1+-L Ay Ty + 33T,
R, R RR, | oy R R,
1+_ LU v |+f1+L (la—V—kan: 1+ agr,  (13)
B 0P R, )\ 4 da R
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|:1+y[i+ij+ij|a_lj_(1+l]£+l(l+l]a—w:(l+l]a55'fm,
R R, ) RR, |0 R, )R A R, ) oo R

(4,B; o,B; R,R,; U)V; ag,a,)
where k, zia—A,kﬁ :LG_B
AB OB AB do.

coefficients of the first quadratic form, R, R, are the main radiuses of the middle surface

are the geodesic curvature, A,B are the

curvature, O is the density, @, are constants of elasticity.

A problem is set: to find the solutions of the system of the equations (1.2), (1.3),
satisfying the following boundary conditions on the facial surfaces Y = £/ of the shell:

U(-h)=u (o,p)exp(iQt), V(-h)=v (a,p)exp(i€dt)

(1.4)
W(=h) = w"(a,p)exp(i€r)
T, (N =0, 1, (h)=0, t (h)=0 (1.5)
or
Uh)y=0, V(h)=0, W(h)=0 (1.6)
are the boundary conditions of the first boundary problem
S, (0B, £h,1) =07 (o, B)exp(iQ);  j =B,y (1.7)

where € is the frequency of the outer forcing action.
2. The general integral of the inner problem

In order to find the solutions of the formulated problems in the equations (1.2), (1.3)
we pass to dimensionless coordinates and displacements

oa=RE, PB=Rn, y=eRC=hC, U=Ru, V =Rv, W=Rw
where R is the characteristic dimension of the shell (the smallest of the radiuses of the

curvature and linear dimensions of the middle surface), € = 4/ R is the small parameter.
The solutions of the transformed system will be sought in the form of

Oy = 0y (EM,Q)exp(iQ2) - (auB.y);  J,k=1,2.3 @1
QmB is any of the sought stresses and displacements.

As a result we get a singularly perturbed by small parametre € system

ot
LE(BIH )—kyRr,, +LE(A1:21 )+k R, + (8_1 + rIC)—13 +25T, =
AB ¢ AB on oC
=— " Qu—(r,+n)e (Qlu—nnl’Qu

(4,B; o,B; n,rs &M u,V; T Tys TisTos TizeTys)

g ot 1o, +laTZS + ks Rty + k, Rty =
oC A 05 B oOn (2.2)

= - Qiw— (1, +1,)e ' (W —1n*Qiw

_(’”1711 5Ty, ) +



1
(1+8r2§)(2%+kaRv+rle = (1+8r1Q)a”r11 +(1+8r2Q)a12122 +a,,Ts,
(A,B; a,B; n,r; &,m; U,V T,,Ty; 4,0y 05,0)
_ ow
[8 LG +r2)+8C2r1rz}a—C =(1+enC)a,t, +(1+ent)ayt, +a,T,

(1+£;’1C)[%2—z—kﬁRvj+(l+8rzg)(%%—kaRuJ = (1+enl)agt,

[s’l +C(n+n)+ 8@21"173]2—2—(1 +enl)ru +%(1 + srzq)g—vg =(1+enl)ast,

(4,B; 1,1y EMy U,V Ty5,Tys Gssrdy)

(I+enl)t, =(1+enl),
R R
=—,1=—, O =ph’Q’
R, R,
The solution of such systems is combined from the solution of the inner problem (/ int )
and the solution for the boundary layer /, [1,4,5]
I=1"+1, (2.3)

The solution of inner problem [ ™ has the form
TREN0) =T (EN,Q), j,k=123 s=0,N 24)
(" ENO.V" ENO W ENO) =8 (1 ENO.V END. W END)

Substituting (2.4) into (2.2) we get a recurrent system for determining the values

(s) ,,(s) ((s) (s)
Jj{,us,vs,ws .

From this system the stresses tensor components can be expressed through the
displacements by the formulae

) (s)
Ty = L{éu— o } , 1) = L[_@V _ Pv(s—l)i|
dss ac a, | oC

T

1 o™
ﬁ) =— A2 B A23])2(:_1) + A1])3(:_1) _AZIDW(,S_I)
A % (2.5)
(11,22,33; A,,ALAL Ay ALA ALAGLAY)
5 =P, 1) =PV -l + Ly
where
P./(rm) =0, B,(,'Z,)w =0 when m<0

(s-1) (s-2)
PU = djlou k, RV 4 1L Low" k, Ry |4
ae | B 0N B on

(s-2)
—kaRu(‘H) +1G l v
A 0§

1 ove
+_
A o€

(s-2) (s=1)
—k,Ru ]_’ﬁcasérlz }



1 au(s—l) 1 (s-2)
P == +k RV 4w | — +k RV +rwf |-
2T A a& o 1 2 A o 1
(s-1) (s=1)
—nCa, 1, —nia,Ts,

(2131 A,B; o.B; Kony &M w Vi TyLTy) a4y,ay)
(s-1) (s=1)
P(s—l) _ (sD n (s=1) _laTB _la,[%
41 - 711:11 1”2’[:22
4 8% B on
—(r +1, )CQ,%W(H) - ”ZCZQfW(H)
- 1 0 B . 1 o ) ) S
B =- _(AT(ZSZ 1))+kaRTﬁ ) _——(B‘cf; 1))_kBRT(2S1 DY - M.
AB on 4B o —=_
_2}"21(2;*1) _(’,i + ’E)CQfV(\*l) _rirzc2QfV(g,2)
(5t.61; 4,B; wu,v; P nns EM O TLTns TpsTyl Ty Tis)
8u(s—l) au(s—Z) ) 7 { aW(s—l)
_C2rr2 _H,lu(s 1) +C’”1V2U(S y L

oc e 4 g

—k Rt —k Rt —
iRk} otV 23 (2.6)

PV =—C(r +1y)

_nEow?
A4

(s-1) . . . . .
+’1Ca55ﬁcl3 (u’V’ A’B’ rl’rZ’ &’n’ 1:13’1:23’ a557a44)

(s—1) aw(sfz)
o —Czrlrz ac +rICa131:fi_l)

A =030, — A3y, Ay =005 —aya05, Ay =a,3a,, — a4y,

(s=1)

vas—l) =0 +1) +1,0a,7;,

_ 2 .. . _
Ay =a,a;—a;, 1,j=123; A=a; Ay +a,A, +a,A,

The displacement vector components are determined from the equations

2 ' o apu
;T aSSqu“) = asspe(: Dy
oC

oG
+— Q2w = FO7Y 2.7)

ow® A
aqz AIZ
oPS™  aP Pt
21 —A 3t + A12 w

, (u,v; as,a,; 61,57)

JaG L APC™ _ A
w Alz 41 2 ac 3 ac ac
The equations (2.7) have the solutions
u”(&m,60) = CV(En)sind"C+ GV (§m)cos 8" C +a (€,1,0) (2.8)
V&M, 60) = GV (Em)sind" C + G,V (§,M)cos 8 + V' (§,1,C)
w(€,n,0) = ;7 (§m)sin8"C + C” (§,m) c0s8"C + W' (§,m, C)

A
5 = Jan Q. 8" = JanQ., 8" = |20,
A
12
a9 W™ are the private solutions of the equations (2.7).

According to (2.3) the boundary conditions (1.4)-(1.6) have the form
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W (E=D=-75(C=1
) (G=1)=-T5(=1 (2.9)
T (C=D=-T5 (=1
u (=) =-5" (=1
v =D =-"( =1 (2.10)
W (=1 =-w (=1

u(C=-D=u"(En)

VG =-1)=v " (Em) 21D
w?(C=-D=w"En)

w =u /R, W = (=1, 520 (u,v,w).

Substituting the solution (2.8) into (2.5) and satisfying the conditions (2.9), (2.11) we
determine the value Ci(s) and the solution of the inner problem

o _ B (E=Dsing (140~ @G =D —u G =-)eos§ 1=) _,

cos 20"
(u,v,w) (2.12)
where
1 _ ou® (¢ =1) _
O(EC=D)=—| PV (=) -——2——a,T5 (=1
. (C=1) 8“{ (€= o ss T3 (G =1) 213
(u,v;13,23;a.,,a,,)
o0 == 2R C=D - MR E=D - ARG =D - AT E=1)
! 6wAlz
1 aw(E=D
8%’ aC
The solution (2.12) will be finite, if
cos28" #0 (u,v,w) (2.14)

The values of the frequency €2, at which c0s20" =0 (u,v,w), coincide with the

main values of the frequencies of the free vibrations [6] resonance takes place.
The conditions (1.4), (1.6) ((2.10), (2.11)) correspond to the solution

O _ @ V(C=-1)-u" C=-D)sind' (1-0)—@" C=D+a" €=D)sind"(1+]) L
sin20"
(u,v,w) (2.15)
which will be finite, if () is not the frequency of the free vibrations, i.e.
sin28" #0 (u,v,w).

3. Forced vibrations of shells in the boundary layer zone
The solution of the inner problem which is determined by the formulae (2.1), (2.4),
(2.5), (2.12), (2.15) in general case will not satisfy the boundary conditions on the lateral
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surfaces (end-walls) of the shell. For this it is necessary to have another solution as well.
Such solution is the solution for the boundary layer-solution, which satisfies trivial

conditions on the facial surfaces Y = */ and quickly decreases when removing from the
lateral (end-wall) surface into the inside the shell. In order to build this solution near the
lateral surface oL = O, , we pass to the dimensionless displacement vector components

u=U/R, v=V/R,w=W/R (3.1
and new independent variables
a—oy =hg, B=Rn, v=hQ (3.2)

Then expanding all the geometrical parameters entering the equations (1.2), (1.3) into
Taylor series by variable &, the solution of the transformed equations (1.2), (1.3) will be

sought in the form of (2.1), (2.4) having written index “b” (from the word boundary) to all
the sought values. The stresses tensor components succeed to be expressed through the
displacementS'

v [ o
(s) _ (s-1) (s) __ b (s-1)
T —RUV ) =—| 4 ———R" (3.3)
23p T |: ac, 4 i| 12b o AO 5&1 6
T —fé‘&, R . A4 = Alo=o)

oy ouy _Rgn}

a, A

,o1 ou” ow”

) =—|| 4= =R |A, +RUVA + ~RU7 A, (3.4)
A 0¢, E3

(115,220,33b; A,;, AL A, ALAGAL ALLALA)

The displacements vector components are determined from the equations:

2y 2y
LA; o°v L 1 O°v ;
a66 a&l ay OQ

82 (s) A 62 (s) 1 az (s)
P L =T

; 1
T = —{Ao

aSS

2_(s s—1
+ Qv =T (3.5)

A 6&1 A aglaC dss 6§2 '
ow (A, 1\ A W) o
55A0 ot 0 [_2 _J Y AL 2 +Q WI(JS) = Tu(,rl)
OF] A 060G A, G
where RU™V, TV are well-known values, Q" =0 at m<0. The antiplane

boundary layer (boundary torsion) is determined by the equations (3.5) and correction (3.3),
and the plane boundary layer is determined by (3.6), (3.4).

For the applications the approximation § =0 is of great importance. Then the right
parts of the equations (3.5), (3.6) are equal to null. It is necessary to find the damping
solutions of these equations, satisfying the conditions

i =0at {=1; v\" =0 at {=-1 (3.7)

=10 =0at {=1;u” =w" =0 at {=-1 (3.8)
The solution of the problem (3.5), (3.7) is

vy (€,1,6) = exp(=1,&,)C” ()vy, (C) (3.9)
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where A is the root of the equation

2

cosZ\/aM(Qf +i7\,i) =0 (3.10)
66

ie.

2 2

ag [ T (2n+1 T

Ay =1, | = T@n+l)y Q> |, vV (Q)=cos—=Q2n+1)(1-C) @(3.11)
A, 16a,, 4

The functions {Vg%)n} compose an orthogonal system on the interval [—1;1].

The plane boundary layer is the solution of the problem (3.6), (3.8). It has the form

uy” (&,,m,0) = K, () exp(-4, &, +kC)

© © (3.12)
Wy (§,M,0) = LK, " (n)exp(=A &, +kC)
where kl. are the roots of the characteristic equation
B,k* + (A2 By + By)k* + L, B +A2 B, + Q! =0 (3.13)
B:Azs Aé B = A12 B :(ABAIZ_A;_z Az JAg
1 > 2 ) 3
Aag Aag A’ Aag
A 1 A 1
B, =| =2 4+— |4}, B, =| 21— |
A ag A ag
Multiplier L, corresponds to each ki
1
(Ajsassh Ay + AK? + Aag, Q) (3.14)

L =
" (A+Aa Ak,

Using (3.4), (3.12) satisfying conditions (3.8), we obtain a system of homogeneous
algebraic equations, for the existence of the nonzero solution it is necessary the determinant

of the system to be equal to zero, which can be given by the equation for determining A s

Z (_1)151 [Qz(L3 _L4) +Q3(L4 _L2)+Q4(L2 _L3)] =0 (3~15)

(1,2,3,4)

S, =(ApkL = AL, 4, )exp(2k,)
0, =(k =%, 4,L )exp(2k,), i=1,2,34

The roots of the equation (3.15) are complex, we are interested in the roots with
Re, >0 . Some of the first values A and A, for the shells from glassplastics 2:1 are

brought in Table 1.
When removing from the lateral surface oL = o, into the inside the shell, the values

of the antiplane boundary layer damp as exp(—A, &), and the values of the plane
boundary layer damp as exp(—A &) . From Table 1 follows, that it is possible to be

restricted to five-six first boundary functions, as the functions with big numbers will
decrease very quickly.
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From the brought formulae, by the formal exchange &1 into

o, — 0, o, —a
g = PR §= P o €[a,,0,] the data for the boundary layer near
O =0, can be obtained.
Table 1
}\’an
0.709406 6.3865 10.6442 14.9019
3.54803 7.80573 12.0634 16.3211
4.96726 9.22496 13.4826 17.7403
A,
Q, =1200 | 0.262736 3.02606 6.53197 8.99958
+0.492501 1
1.00957 4.16682 6.8507 9.46818
+0.529569 1 +0.0707007 I
1.93879 4.63984 7.05556 10.6242
+0.488721 1
2.45353 5.03027 8.62144 11.1858
+0.4013 1 +0.392575 1
4. Conjugation of the inner problem and boundary layer solutions
The general solution of the formulated problems has the form
I=1"+1/+1I (4.1)

where 1™ is the solution of the inner problem, [/ [f is the solution of the boundary layer at
a=0o,,Il, atoa=aqa, .

When solving singularly perturbed problems it is considered that it is possible to
neglect [ : when the conditions at oL =0, are satisfied and vice versa. It puts

restrictions on the tangential dimension of the shell. It is necessary that

1+exp(_%%jzl, 1+exp(_%mpljz1 42

We shall consider the conditions (4.2) satisfied.
Consider the procedure of the conjugations of the inner problem and boundary layer
solutions, using the boundary conditions 3D of the problem on the lateral surface. Let at

a =0, the conditions of rigid fastening be given

u(E=0)=0, v(£=0)=0, wE=0)=0 43)
or the conditions of free edge
Tll(&20)=0, T12(§:0)=Oa T13(E_>=0)=O (4.4)

The general solution may be represented in the form of

VO = v texp(-2,E) G (M, (6 + 9, (€,.1,0)

) 4.5)
u® =u™ + 4D () Rewy) + AL () Imuly) +i0) (E,0,0) (u,w)
) =1 1) i,j=1,2,3; n=0,N

In case of the conditions (4.3) the satisfaction of the second condition brings to the
correlation

14



CYMvio, () =—v" —V(E=0,1,8) (4.6)

from where

Cl = [ (+v" -7 € = 0.0 )eos M IS g

The satisfaction of the rest two conditions (4.3) brings to an algebraic system

AL (M Reul) + A () Imul)) =

™ 0,m,0) -0 (E, =0) w,w) n =1,_N

From where 4"’ (1) and A’ (n) are determined by collocation method or by the
method of least squares.

By the analogous way the conditions (4.4) and other variants of conditions on the
lateral surface are satisfied.

(4.7)

5. Forced vibrations of an orthotropic cylindrical shell
For an orthotropic cylindrical shell

n=0,n=1A4=B=1, k,=k;=0 (5.1)

Fig.2

Under the boundary conditions (1.4), (1.5) the solution is determined by the formulae
(2.12), yet

(s=1) (s=2) (s=1) = (s)
O (C=1) =%[—c(a” + 2 j— o assi‘;z} 52
5 | o & N

(s=1) (s=1) (s)
cbs“(c:n:i[—c—av BT |
1Y) C =

o an P Ty Ty
aw(v 1) au(sfl) au(S*Z)
oY (C=1)= A —A -A —
E=D)= 8” [ e X T G 5
oVt : _Loaw(Eg=D

(s=1) —(s)
AY AW - AT, ]

c=l 6w 6C

In case u (§,m)=u =const, v (§,n)=v =const, w (§,n)=w =const, if
we are restricted by the first two approaches, we get the solution

w | u cos(1-C)d" h " ~ -
v :( RSy L(RCOSZS” _2“55“(31’)’@:1)]51{18 (e
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8" cosd (1-0) (%f(;) (= —1)}} exp(iCY)

m [V cos(1-8)d" h 3y ~ o

5" cosd" (1—@)[%—2V_“)(§:—I)Dexp(iQt) (5.3)

e w‘cos(l—§)8'+ | h o
c0s20" 28"A,, c0s 26"

X [(ﬁ(@z - 2A3 ) - ZA@(;Z €= l)j sin&" (1+ )~

5"A, cos8"(1-0) (%“;) oW (= —1))] exp(iCY)

The stresses will be determined by the formulae (2.5).
Under the boundary conditions (1.4), (1.6) we have

i _ | u_sin(1-C)8" h g oy A ) s ey
v _( sin 28" +sin28“ ((u (== 2R JsmS (-9

—u" (£ =1)sind" (1+ Q)D exp(iQt)  (U,V,W;u,v,w) (5.4)

The asymptotic solution for shells comparing with the one for plates has a number of
differences: if the functions entering the boundary conditions are polynomials, the iteration
process for the plates breaks on the definite approximation and mathematically exact
solution for a layer is obtained. And for the shells, as it follows from the formulae (5.3),
(5.4), the iteration process doesn’t break, therefore the solution will be asymptotic, i.e. the
exactness will be approximately of the first rejected member of the series. For the plates in
the dynamic problems the boundary layer doesn’t influence on the solution of the inner

problem, for the shells it influences (beginning from s >1).

From the formulae (2.12), (2.15), (5.3), (5.4) it follows that in the shells two types of
shear and longitudinal vibrations arise, they are independent for the initial approximation,
and taking into account the following approximations they inter influence.

6. Forced vibrations of the toroidal shell
Consider an orthotropic toroidal shell in a toroidal system of coordinates

{0,0,7:|0|I<n,0< 0L 2m,|y[€ h},h << r} (Fig.3).
Let on the inner surface Y = —/ normal, harmonical in time loading act:
G, (0,0,y=-h,t)=0(8,¢)sinot, G, (0,0,y=-h,0)=0, j=0,0  (6.1)
and the outer surface is free:

G,(0,0,y=h0)=0, j=6,0,y (6.2)
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or rigidly fastened:
l’_lj(eaq)’y:hat)zoa j:e,(P,'Y (6.3)

Consider a close toroidal shell, by virtue of which here the boundary layer doesn’t
exist. It is required to find stress-strain state of the shell.

For the considered shell o0 = 0, = @, and
A=r,B=R+rsin®,R =r,R, =(R+rsin0)/sin0,k, =0,
ky = cos6/(R +rsin6) (6.4)

For the solution of the set boundary value problem all the required values will be
sought in the form of

0(6,9,7,1) = (0,9, )sinwt, 0 ={5,,1,] (6.5)

and nonsymmetric tensor of stresses T; by formula (1.1) will be applied.

In the equations of motion (1.2) and correlations of elasticity (1.3) we pass to
dimensionless coordinates and displacements by formulae

£=0, =09, C=y/h=c"vy/r, uy=u/r

(6.6)
u, =v/r, u, = w/r, €= h/r, h<<r
As aresult we get a singularly perturbed by small parametre € system.
The solution of this system will be sought in the form of
—l+s ..
1;(0,0,7) =& "1, (EM,0), 1,/ =60,¢,7 6

(g up,u,) =€ @ VW), s=0,N

Substituting (6.7) into this system and equalizing in each equation the coefficients at
the same degrees €, all the stresses can be expressed through the displacements by
formulae

(s) _ (s) (s) (s)
Too = by 1€p +b126B[3 +bl3eyy >
(s) _ (s) (s) (s)
Tap = b, eq, +b22ew +l)23ew ,

(s) _ (s) (s) (s)
T, = by;€4 +b23ew +b33ew ,

(s)

T(PY

_ ()
=b,e

(s) _ (s) (s) _ (s)
oy Yoy T bsseq Top = bgs€s

y P
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ow™
(s) (s=1) (s) _ (s-D) (s) _ (s-1)
Coo = Coor s €o) =€ e =——+e

(070} oe* 2 vy 8C W* b (6 8)

()

() _ o DY, <s Do) = Ou PRGSO INO B E)
9 oy (3} s 0p ~ “0

oy ac Y 8@ y* 0} p*

The displacements are determined from the equations

6 (s)
by ———+po’ I°w® = RV
oc?

82 (s)
by —— o +po’h*u' = R¢ (6.9)

82 (s)
by, T+ po*h*V = ROV
oc?
where

(s=1) (s=1)
RO — 6D rsing 67 _ arev _Larw _ recosé 6D
: 00
” B % B on B 7

—p® h L(W(q 1)) C(bweee*l) +b e((p:p*l) +b e(? 1)
(s-1)

(D) _li(Brg;’” +—I’COS§TE;;1) 2w
B ok B B 0n

ot a o . )
¥ _ po’h’L(u" D)—bssa—(;eéy*l) 275"

(6.10)

ROV =2 (B (s=1) ’”COSé (se ny
Y o B on B To

(s 1)
rcos§ P 22 L(u (s 1)) b, 2 0 (S 2 27005%{@4)
B 6§ 8Q B o

o out™h _ rsin&( out? _ _ rsing
Chon :—6§ +w +C—B 5 —8§ +w = L(a, Ty +ay, - 3 éfiiul))

ov (s—1)
el b = +sinEw" ™" +cosEut Y |+
B on

Po*

(s—2) .
r{ov . _ _ 7sin _
+— +sin&Ew™ ™ +coséu ™ |=¢| a,t ) +a —E“ T
12 ¥ 66 o]
B\ on B

_ owt ™ _ rsin
ef,;*l) =L —— —C(%Tffe ) Ty —— : (S 1))
o B
(s=1) v rsing (s=2) (s=1)
o = - ( +Cv +a44Qt )+
ag B
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+
B\ oOn on
(s-1)
o _L(aua(; J e —Crsglg( “ o agp )+
(s-1) : (s-2)
N ow i rsin§ ow
on B on
(s-1) (5-2)
eéfp;” = L( ou” _ _ cos &y j + CL( Ou —cos &yt j +
B{ oOn B\ on
ovt rsing ov©? .
+ +G : - aoecr(eq) !
o0& B o0&

LO"") =0 +15)0" " +Crn 0", 1 =r/R =1, 1, =1/R,
The solutions of the equations (6.9) are
u® =M sin L, §+ N cosh G+ (8), A, =ohfasp
v =M sinh, G+ N cosh, G+ 10 (C), A, = ohya,p (6.11)

w® =M sinh,{+ N cosh,G+ 1 (C_;)a Ay = whyp/b,;

w

where [ (C), A (C), AR (C) are private solutions of the equations (6.9)

1) = 7% [fof (@sink, (G -Ddt  (wrwl2.3)
1

(s) aT(s) (s-1)
OIQ =15y b+ R Ofbss

@Y =RV /b, (u,v;5,4) (6.12)
b, =(a,a ~a))/A jk,1=12,3, b, =(a,ay, —ajka,,)/A, jEk#l
by =1/ass, by, =1/a,,

1
2 2 2
A= 2a12a13a23 T 04,,0y,033 = 0),0y; — Ay a3 — 33y, b44 = a_ (4>576)
44
For each s the solution (6.11) contains six unknown functions, which are uniquely
determined from six conditions (6.1), (6.2) or (6.1), (6.3).
Satisfying the conditions (6.1), (6.2) we have

M =[c" — 10 =-1)-IP (G =1)]|/(2h:by; cosi,)
NY = [c“) IV C=-)+IV( = 1)] /(2x3b33 sink;) ,sin2k, 0  (6.13)
(o, B,7;u,v,w;0,0,0;1,2,3;55,44,33)

rsing

rsin
6 =¢g0, o =g (1+ Yo, o ZSSTéG, o =0, s>2
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Q= [[ 0 (eosh, €= DT (@ prurnwil.23)
1

If the frequency value of the outer action ® coincides with the main value of the free

vibrations frequency, a resonance will take place, when even if one of the correlations is
fulfilled

sin27»j =0 j=12,3

K Tk b
K B myrez -

klk :E = Orez 55 13 (614)
WA / u _ Tk /ﬁ
2k 2 (prez h
P p

G,;,G,; are shear modules
The conditions (6.1), (6.3) correspond to the solution

MY = [(G(S) — 19§ =—1))cosh; +byhy IS (C =D)sini, ]/(b33k3 cos2),) 619
NG =[ (19 =1~ )sind, ~b A 1 (G = cosh, | (b cos )
cos2A, #0 0,0,y;u,v,w;0,0,0;1,2,3;55,44,33)

A resonance arise, when COSZKi =0 j=1,2,3, which correspond to the

frequencies
o k=D [b _n2k-D [G,
" 4h p 4h p
ol - M2k=D |Gy (6.16)

rez 4h p

& = n(2k—1) bﬁ
rez 4h p

7. The solutions of private problems on forced vibrations of the toroidal shell

Let o(0,p) = ¢ = const . After the first step of iteration in the problem (6.1), (6.2)

we have

b, sink,(1-C) by sink;(1-0)

g =0—————sinot, T, =c——————sinwt
by; sin 2, by; sin 2,
osini,(1-0) . _ o _
- =#sm O, T, =Ty =To = (7.1)
sin2A,
cosA,(1-C) . _
w=c¢smmt, u=v=0
by Ay sin 200,
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In the problem (6.1), (6.3) at G = const we have

-1 -1
?00 = GMs1n (Dt ?Lplp = Msuflwt
by, cos 2, by, cos 2\,
_ ccosA,(C—1) _ _ _
= Wsm of, T, =T, =T, =0 (7.2)
3
ink, (-1

T KA (6 )sincot, u=v=0

by cos2h,

The approximation § =1 corresponds to

(1)
Tge)—( VSIH& ]W""( rsma)bn%*‘buaw — (oo
aG aq

rs1n rsin ow ow”
E;(; ( §b22JW+C[ é)b23_+b23__§‘c(p(p
G G (7.3)
()
T;IV):( rsm jw [ rsmfgjb%@ij%&w
ac ac
M _ .0 _ u®
Tor = Top =0, = b, GC

T; =T, S o, W=wsinw?

w® =M sinh,(1-5)+ N cosh, (1- &) +

W}» Ccosh,(1-C)

337%3

u® =MV sin, (1-8)+ N cosh, (1- &) +Lsin7~3 1-0)

7‘5 (b33 - bss )

W =— .G (1+rsmgj, UzL.m&(bzs_bls)
sin 2A, B Bb,, sin 2\,

For boundary conditions (6.1), (6.2) we have
M =W (C=D/(b;,)

N, = {W* (C=-D-W"(C=Dcos2h, —(1+ ”gléjso} /(b337»3 sin 21, )

MO~ U NO — U cos2A, —Cos2A, Sin2h %0 (7.4)
! 7‘3 (bss _b33 ) ’ ’ }”3 (bss _b33) sin 27“3 ’ 1

W (€)= — " (cosx3(1 &)+, sink, (1-C)) + b, ( rsgl&jag

rsin&
o).
and for conditions (6.1), (6.3)
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MO = {Wsin 20, + 2[W* € =-1) —(1 +rsji;l§jecsﬂ/(b33k3 cos22)

U cos2A,
A, (bss —byy )cos24,

Hence, after the two step of iteration the components of nonsymmetrical tensor of stresses
and vector of displacement are

(7.5)

NO =-w/(2b,1,), M = N® =0, cos21, #0

Top =| Too + 5 Ton [SINOL - Ty =| Ty o Tgg [SINOL, - Ty, = Ty, SINO

T.=|7T +£r“) sinwt, T —ﬁr“)sincot T —ﬁra)sinmt
v | v R ’ W_R ’ 9V_R oy

oY
2 2 2
u, =—u" sin ot, u, =—vVsinot,  u, =hw+—w"sinot
R R R
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