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U. Q. Uupquyuii
Yngw hkiuputih pw wquun hkijws oppnnpny vuyh vwhdwhuyghh okpnh hudwp vnhynquijuth
nunubdwb knwswih jpughpp

QYhunwplyws t Ynon hkwpwih Jpuw wqun hkws oppnunpny uwh uwhdwbughls okpnh
futinhpp, Epp vwih Jipht thunh Jpu wqnnud £ pun dudwiwljh hwpdnhly thnthnjonn tnpdwy phn:
Uuhdyuinnhly dbipnnh Yhpwndwdp npnpdws b uwhdwbuwghtt okpnp  jupjusw-nidnpiughni
Jhdwlp: Munidbwuhpyws t vwhdwbwght obpnh dkdnipinitibph dwpnudp: Spyws b vwhdwbwgh
otipnnh b ukpphtt juinph nidnudutiph Jupdwi nubwl:

M. 3. Caprcsin
O morpaHuYHOM CI0€ B TPEXMEPHOIi 3a/ja4e 0 BbIHYK/IeHHBIX K0J1e0aHUAX OPTOTPONHOM IJIACTHHBI,
CBODO/IHO JIesKaIIIeil HA KeCTKOM 0CHOBAHHH

PaccMoTpena 3aada HOTPAaHHYHOTO CJIOS OPTOTPOITHOW IUIACTHHKH, JIeXKaIlel Ha )KeCTKOM OCHOBAaHHH, Ha
BEPXHIOIO JIMLEBYIO IUIOCKOCTh KOTOPOH NeHCTByeT rapMOHHYECKH H3MEHSIOMIasicss BO BPEMEHH HOpPMaJIbHAs
Harpyska. C IpUMEHEHHEeM aCHMITOTHYECKOT0 METO/[a ONPE/IENICHO HAPSKEHHO-1e(OPMHUPOBAHHOE COCTOSHIE B
MOTPaHUYHOM cioe. McciaenoBaHo 3aTyXaHHE BENMYMH B HOTrpaHuYHOM cioe. [loka3aH crmoco® compspkeHHs
PpeIICHNs BHYTPEHHEH! 3a/Ja4y M IOTPAHHYHOTO CIIOSL.

The problem of boundary layer of the orthotropic plate simply supported on the rigid foundation is considered,
when on the upper plane of plate the normal load affects. The stressedly-deformed state boundary layer of plate is
determined by using the asymptotic method. The damping of vlues for boundary layer are researched. The method
of conjugation of the solutions of inner problem and of boundary layer is showed.

Introduction

As we know, the equations of elasticity theory for thin bodies written in dimensionless
coordinates are singularly perturbed by small parameter differential equation. For this kind
of equation and systems the asymptotic method is usually applied [1]. Theory of isotropic
plates and shells [2], theory of anisotropic plates, shells and beams [3] are built by this
method. The asymptotic method effective for solution of dynamic problems of elasticity,
particularly, the problems on free and forced vibrations of plate[4].The asymptotic method
is also used to solving non-classical boundary layer’s problems , i.e. when the boundary
conditions are specified on the lateral surfaces of thin bodies. This kind of problems on
natural and forced vibrations was solved in References [5, 6]. The review of the papers on
the application of the asymptotic method for the solution of static and dynamic problems of
beams, plates and shells is included in [7]. Below the boundary layer’s problem of
orthotropic plate simply-supported on the rigid foundation is researched, when on the upper
plane of the plate the normal load acts.

" It has been reported in FINAL MEETING of INTAS Project “Some nonclassical
problems for thin Structures”, Rome, Italy, 22-23 Jan 2009.
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1. Consider the orthotropic plate D={(x,Y,z), 0<x<a, 0<y<bh,

7 <h, h<<l, I =min(a,b)}, on
which upper plane affects the normal load:

F(x,y,t)=P(x,y)exp(iQt)

which changes by time harmonically. Here €2 is the frequency of influencing force. On the
lower face of the plate are given the simply supported conditions subject to friction. The
conditions on the lateral surface may be arbitrary, whose corresponds the solution of
boundary layer. It’s supposed, that the friction is Coulomb friction, which means the shear
stresses are proportional to the normal stress. So we will have the following boundary
conditions:

z=h, o,=-P(xy)exp(it), o

z=-h, w=0, o,="fo

><z:(5yz:0

(1.1)

cSyz = fZGzz

729
where f, and f, are coefficients of friction along coordinate directions X and Y .
From these boundary conditions the complete solution of the inner problem is obtained [8],
which will not satisfy to conditions on lateral surface. For satisfying them it is necessary to
construct the solution of the boundary layer.
Now consider the boundary layer of plate near the lateral facex=0. The boundary
conditions for boundary layer have the following forms:
z=h 6,=06,=0,=0,

(1.2)
W=0

For constructing the solution, which corresponds to the boundary layer, we have to pass to
dimensionless coordinates and components of displacement vector:
X z u u u
'Y:—, n:l’ g:_, U :_X, V:_y’ W:_Z (13)
h I h I I I
Where h is the thickness of the plate, | = min(a,b) and h <<|. Consequently, we will get
singularly perturbed with small parameter &£ system:

_, 0c 0o _, 0o
81 ll_l_ 12 +81 13

g  on oG

z=-h o,="fo,, c,, = f,o

7z

+e7QU =0 (1,2,3; U,V,W)

,ou
€ IE =40y, +@,0,, + 3,505 (Y,C; U,W; 152)
oV
a_ =2a,,0); t 8,0, +8,;05;
Ul
(1.4)
o oV
—_t& — =80,
on
LOW  ,0U
g —+g' —=a,0,
oy oC
W N a,0,, Qi =ph’Q? e=h/l
on oC

The solution of this system will be sought in form of the following asymptotic expansion:
=1+

Gip =€ oy (n.0) exp(-2y), 0

U, =e U (m,O)exp(-hy), U V,W) i,j=123, =0,
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Notation s =0,S means that by dummy index S summation from O up to the number of
approximation S takes place. Substituting the forms (1.5) into the system (1.4) we get the
system for determining components of the stress tensor and the displacement vector:

063 o)
(s) 13b 21 1(8) _ p(s) (s) 23b 2 () _ (s)
—xcub+?+g*ub =R, —Ac,, +—— o + V) =R,
o)
(s) 33b 20 (5) _ p(s)
—AG 3 +—— o + QW) =R;;
(1.6)
8W (s)

oG

=0

3

©) ©) _ © _ R )

Za O FAULT =0, > a0 = Zajz"ub
= =

aU > (s) (s) ) avb(S) (s) (s)
b (s) _ s s) _ (s) (s s s
o =AW, = a0, — AV = 8,0, + Ry, 1400 T Ry
where
Folorse )
Ri(cf) == alf’]b 9 I = 17 273
oyt

RL(JS) = _#9 (U :VsW)

Using (1.6) it is possible to express all the required values in terms of components of
displacement vector by formulae:

S aW (S) S S S 1 S S
Giu)a =-A,; o Azzku( )+A|2R\5 ) izi) _a_(}\‘vb( )_RL(J))
66
s aW © s s s 1 aU ) s
(22)b = A13 C AIZXUé Y- A33R\5) G§3:a a —(— 5C kW( )) (1.7)
55
w“) o _ 1 av‘”

(5) (s) (s) _ (s)
Oy = A + AU+ AR, Gap = o -Ry")
a44 C
and from the system (1.6) for components of displacements vector the following equations
are obtained:
o°uL oW, ) N
—A1-2a5A;) o ——+a (A + QDU =T

oc (1.8)
aZWb(S) Y 1- aSS A23 U ) +— (}\’2 + QZ )W (s) _ T\/\(/S)

oc’ A, 8 A A
aZVb(S) ’ 2 (s) (s)

acz +a44(a—66+Q* )Vb :TV (1.9)

0 (s)
(S) = Alz SS}VR\gS) + a5 Rl(;), T(S) % }"RUS) + a44R§Z) T RW >
a ¢ (1.10)

TV\(/S) — —iKR&S) R(S)
A, A,
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Now we will consider only approximations =0, because the next approximations don’t
represent any practical interest.

So in approximation s = 0 the right-hand members (1.10) of equations (1.8) (1.9) is equal to
zZero:

0 _ 710 _70) _
T =T =T =0
and boundary conditions will get the following forms:
0 0 0
C=-1 oy =fol, W"=0

(=1 o%=09=0 (i
13b 33b
C=-1 o~ foly
_1 O o (1.12)
C= Op =
The solution of the system (1.8) will be sought in the following form:
U,” =G" (m)expks, W,” = LG (m)expk, (113)

where L is an indefinite multiplier for a present. Substituting the forms of components of
displacement vector (1.13) into the system of equations (1.8) we will get the following
system:

k?-1(1-a,A,)Lk+Aa A’ +a,Qf =0

— 2 1.14
I VLYV L L (19
All A11a55 All

from which multiplier L will have the following form:
L= k? +A,a A" +a,Ql

(1.15)
(1 —8s; A23 )kk
and for k the following characteristic equation is obtained.
k*+(BA* +B,Q)k* + BA' + BAQ +BQI =0 (1.16)
where
Blezzass_l_a55A23+ 1 2:a55+La

, B
A ashA, A
B3 :&, B4 :—1+a55A22
A A,

The equation (1.16) has four roots:

o _~BA QB+ JD

b2 2 (1.17)
D = (B> —4B,)\* + Q>(2B,B, —4B,)A> + O’B? — 4B Q)

Therefore, for any k; there will be a one multiplier L :

k> + A a " +a, 0l

a55
B, =%

Al

b

L=L(k) = L = (1.18)
(1 — ;s Az3 )kki
So the solution of system (1.8) will have the following form:
4 4
Uk()O) = Z Gi(bO) (m)expkC, Wb(O) = Z LiGi(bO) (n)expkC, (1.19)

i=l1 i=1
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in s=0 approximation. Satisfying the boundary conditions (1.11) and in consideration of
(1.7) we will get a system of homogeneous equations, for existence of which nonzero
solution it is necessary that the determinant of matrix of coefficients of the system to be
equal to zero.

e’ o, aed  ae©
Bie"  PBe° P Pt
Le™ Le™ Le™ Le™
we e pe™ pe®
o =k — L& B = ALk + Ak 1w =k(/a, - fAL)-ML /a,+ f,A,), i=14

The equation (1.20) is the characteristic equation for A . The roots of this equation we will
denote by 4, . Coefficient of system of homogeneous equations will be expressed in term

=0 (1.20)

of one of them, for example by Gy’ (7). Taking into account, that to eachZ,, with

ReA, >0 , corresponds its conjugatel_p, we will represent the G (77) in the following
form:

Gl (m) = (A —iAl)/2 (121)
Consequently, in the final forms of required quantities, we will have the real expression in
the following general form:

(s) (Y, n,c) = ReQé;)Afs) + ImQ,gf,) (Z) (1.22)
where we are used the following notations:
(5) (S) (s)
an GXp( A pnY) ’ anGlbn (1.23)

Now return to equation (1.9). In the approximation S =0 the solution of this equation will
be sought in form of

0 0
Vb( ) — Cé )(n) exp 0C (1.24)
After substituting this form into equation (1.9), we will obtain the following form of V,'”:
V,” =C\ sin 0 +CL) cos 0 (1.25)

where 8= \[(A\* /8, +Q)a,, .
In the plane problem when A = A n> satisfying the following boundary conditions:
C=-1 oy =fom, £=1 oy =0 (1.26)

it is possible to express the coefficients C{’ by G\’ :

f 4
cw=_Bub S aoqyk L -k,
b 2f1c0s9p; o (Wi~ p)exp( )
[ a (1.27)
Cy = > fa““ > G Mk — Lk, exp(—k,)

p i=I
So, the components of displacement vector U\” ,W,” corresponding to the plane problem,
give rise to component of displacement vector V., which corresponds to the out-of-plane

problem, because of Coulomb friction.
Now consider the out-of-plane problem. In this case we haved # X, from which follows
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that all coefficients G\’ equal to zero. Therefore, the components of displacement U\”
and W, are equal to zero too:
U =W, =0
So we will have the following boundary conditions:

0
c=21 o =0 28
satisfying to which we will get a system of homogeneous equations for existence of which
nonzero solution it is necessary the fulfillment of the following equality:

cosf, —sin0, _
=0 = sin20,=0 (1.29)

cosO, sin0,

We will denote the roots of this equation by A, , which will have the following form:

an ?

2,2 L
A, =+ a“(nn —ij, n=0,N (1.30)
4a,,

In this case V,” will have the following form:

) — H O ¢; (0)
Vy, =H, sin0,0+H,’ cos0,0 (1.31)
where from coefficients H{”,H{ only a one, for example H,;’, is independent because

of equation (1.29), and other is expressed by it. The roots of equation (1.29) are real.
Therefore, for stresses we will get the following real expressions:

A
0) _ 0 _ (0 _ (0 _ 0) _ 2 0) 3 (0)
Oiip = Oxp = Os3p = Oj3p =0, Oppy = "3 (Hlb sin6,0+ Hy, COS@ZC)

o (1.32)

0
0 _ 2 0) 0) 3
ol = ——(Hl(b c0s0,C — H{) sin ezg)
ay
So the out-of-plane problem is completely separated from the plane problem. As we know
the all required quantities of boundary layer are proportional to exp (—M) :

Q ~ eXp(_kY)
where the real positive part of A is attributed the rate of damping of boundary layer.
plastic SVAM 10:1 glass plastic STET
A, Ay 4, Ay

1 ]0.17174—0.2938191 | 0.896929 1 ]0.016-0.3448i 1.24176
2 | 0.17174+ 0.2938191 | 2.29646 2 | 0.016+0.34481 2.77092
31 0.2191—0.05281 3.56686 3 10.1817-0.33281 42314
4 |0.729788 + 0.0528 4.81152 4 10.1817+0.33281 5.67646
5 10.8789 6.04636 5 |10.5605 7.1155
6 | 0.9984 7.27639 6 | 12111 8.55155
7 1141 8.50368 7 | 1.32946 9.98592

In tables the first seven values of A, and A, are reduced for the plastic SVAM 10:1
(E, =3825910°xPa, E,=17.658x10°Pa, E,=9.6138x10°Pa, G,, =5.199310°Pa,
G, =3.835710°Pa,  G,, =3.1392 10’ Pa, v, =022, v,;=031, vy, =0.07,
h=0.5m, p =1900kg/m’, f, =0.2, Q=27/0.1) and glass plastic STET
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(E, =35.2179x10°Pa , E, = 28.7433x10°Pa , E, =17.9523x 10°Pa, G,, =7.4556x10°Pa,
G, =6.4746x10°Pa, G, =6.1803x10°Pa, v, =0.177, v, =0.157, h=0.5m,
p =1900kg/m’, f, =02, Q=27/0.1):

From the table it is obvious that the boundary layer damps in out-of-plane problem faster,

then in the plane problem.
2. Now we consider the first boundary condition on the lateral facey =0 :

GX)( =(p(nﬁc), ny :W(n’g)’ ze :x(n,g) (21)
The general solution of the formulated problem is the sum of the solution of the inner
problem and of boundary layer. It will be written in the following form:

I=1"+1, (2.2)

For determination of the 3 unknown coefficients of solution corresponding to boundary
layer, we will use the quadratic error on lateral face y = 0 , which will have following form:

1 ot 2 ot 2 ot 2
J= L[(d;; +G,5 ~0(n.0)) +(0h +0,—w(n.C)) +(Th +0—x(MC)) [dG @3)
It will be minimum on the lateral face y =0 if following derivatives are equal to zero:
a _a _a
() A T A

aAln a n aHlb

So, from this system of equation it is possible to find required coefficients and,
consequently, to find the complete solution corresponding to boundary layer.

(2.4)
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