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£.1L. Umpwhpnujui
Nhpnuulynit umip onowthnn phnh wnljuympejuh ghwypnud, kpp hwinhwwljwmg Ynndkpp
hnpuljwynpbh wdpuligjws ki
Upjiwwnwipnid ghunwuplué £ nipnublynitt uwyp onpwthnng  phrh wejunipjut nhypnid, tpp
hwinhwyuljmg Ynnubpp hnpujuwnpkt wdpuljgqus tu: Uunh jupjusunbdnplugyus h&wulh
uinhpp mSJws b puuwljut nbuipjul, wnweghtt Yupgh Logpinus nbkuipjub b pupdp Jupgh
&ogpujws nbutpjut hhdwt Ypu: Ywnwpdws | hudbdwnnipinit wknuihnpunipiniuttph dhel:

K.JI. MapTupocsiH
IIpsiMoyroabHasi NIACTHHKA MOJ AeliCTBHEM KacaTeJbHBIX HATPY30K, IPH HIAPHHPHOM 3aKpelJeHHH IBYX
NIPOTHBOINOJI0KHBIX CTOPOH

B pabore paccMmaTpuBaeTcsi HPsIMOYroibHAs IUIACTHHKA IO JCHCTBHEM KacaTeNbHBIX HArpy30K IIpHU
LIAPHUPHOM 3aKPEIUICHWH JBYX IPOTHBOIIOJIOXKHEIX CTOPOH. 3ajada HANpsHKEHHOTO Jeh(popMUPOBAHHOIO
COCTOSIHUSI IIIACTHHKH IIPY HAJIMYUH KacaTelbHBIX HArpy30K PaccMaTPHBAETCS HA OCHOBE KIACCUUECKOH TEOPHUU
— Kupxroga, Ha OCHOBE YTOYHEHHOW TEOpHM MEPBOro IMopsaka — Teopuu PeiicHepa-I'eHku-MUHIIMHA TIO
BapHaHTy BacuibeBa, Ha OCHOBE YTOUHEHHOH TEOPUH BBICOKOTO HOPSIIKA — TEOPHH AMOapIyMsHa.

In this work a plate under the action of tangential loads, when two opposite edges are hinged is considered. The
problem of stressed deformed state of plate under the action of the tangential loads is considered on the base of
classical theory of Kirchhoff , on the base of refined theory of first order Reissner-Genki-Mindlin by Vasilyev
variant, on the base of refined theory of high order of A. Ambartsumyan.

In 1957 Vlasov established the exact solution to a three -dimension problem of the bending
of rectangular plate under the action of the transversal loads [1]. It was considered that on
all edges of plate Navie conditions are given.

The solution is presented in the form of double series of the relative thickness.

It has been presented the comparison of this solution and solution by Kirchhoff theory. For
thin plates when the square of the relative thickness is neglected by comparing to one, is
coincides with the Kirchhoff solution.

In 1985 Levinson received the solution of the same problem on the base of semi inverse
method [2].

In 1999 on the base of Levinson’s solution V. Nicotra, P. Podio-Guidugli and A. Tiero
considered transversal isotropic cylinder on which for all edges Navier conditions are given
[3]. They obtained the exact solution to a three dimensional problem under the action as of
the transversal loads and as tangential loads on the face surfaces.

After that in 2003 on the base of [2] the exact solution to a three -dimensional problem for
transversely isotropic, linearly elastic body in the form of right cylinder under the action of
the transversal load, on edges of which are sliding contact are received by P.Nardinocchi
and P. Podio-Guidugli [4].

In 2007 on the base of [1], the problem of plate bending in the form of cylindrical surface
under the action of tangential loads on the face planes is considered [5].

It has been considered that sliding contact conditions on the edges of the plate are given and
on the face planes only tangential loads act. The problem is solved by using exact equations
of theory of elasticity. For comparison with results of approximate theories, the Kirchhoff’s
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theory for plates and the theory, where the transversal shears are taken into account, it is
necessary to produce the solution in the form of decomposition by the parameter of
thickness ratio. The problem is also solved by using the refined theory of A.
Ambartsumyan. In both cases the deflection decreases when the transversal shears are taken
into account. This differs from normal loads action, which increases the deflection.

In this work a plate under the action of tangential loads, when two opposite edges are
hinged is considered.

The problem of stressed deformed state of plate under the action of the tangential loads
is considered on the base of classical theory of Kirchhoff (K), on the base of refined theory
of first order Reissner-Genki-Mindlin by Vasilyev (V) variant [7], on the base of refined
theory of high order of A. Ambartsumyan (A) [6].

1. Let the plate-band occupiesarea 0 < x<a, 0<y<b,-h<z<h
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On the face surfaces of plate are given tangential loads:
z=h: o05;=0,0,,=X"(XY), 0,=0 0
z=-h: 0,=0, 0,, =—X"(X,Y), 65, =0 '
Admissions for displacements [8] by the theories (K), (V) and (A) correspondingly:
oW oW

Ul:U_ZE, U2=V—ZE, U3 =W (12)

Uu=U-z0, U,=V-26,, U, =W (1.3)
oW z z 1

U=U-72—+— X, +—X, [+=0(D)o,,

1 8X 26( 1 2h Zj Gg( )(pl

oW 1 (1.4)
u,=V _ZE+EQ(Z)(P23 U, =W

Here U,V are displacements of median surface, W is deflection of plate and functions

0,,9,,0,,0,, are independent of coordinate Z, G is the shear modulus,

2
_ _ z
X, =X"=X7, X,=X"+X", g(Z):ZI——2 (1.5)
3h
In general the problems of generalized plane deformation and of bending are not separated.
They are separated only in special cases when X, =0 or X, =0.
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If X, =0(X" =—X"), then the tangential loads don’t yield the bending and in this case
only the problem of generalized state is supposed to be observe.

If X, =0 (X" = X"), then only the problem of bending is supposed to be solved.

It should be noted, that tangential loads are given only on one face surface, then the loads

are require the solution of both problems.

We are received the following equations for planar displacement of middle surface of the

plate by the theories (K) and (V):

AU +ei @.}.a_v = — 2X2
ox\ ox oy C-v)
AV+6£ ﬂ_Fﬂ :(), :1+_V
oy\ oy oXx 1-v
by the theory (A):
2 2
AU+6£Q+Q _ 2X, 6hfo°X, 1-vO'X,
ox\ ox oy Cl-v) 3E| o&x? 2 oy
2
AV +6i(ﬂ+£j:—e—ha X
oy\ oy ox 12G oxoy
The equations for bending of plate are received by the theory (K):
cw X
D ox
by the theory (V):
_0 0, _,
oXx oy
ol a6, 4022, % +4Gh(8W_elJ= 2y
i ox\ ox oy I-v{ ox 1-v
D A62+6£ aez+ael +4(3h aW—62 =0
i oyl oy ox I-v{ oy
by the theory (A):
o9, +8(P2 __éﬁxl
ox oy 4 0Ox
3
DﬁAW_& A(p1+9£ %4_8& +ﬂq)l -
OX 15 ox\ ox oy 3
2h* (X, 1-vo*X,
= +
31-v) 2 2 oy
3[ 7 3n A2
DQAW_& A(P2+62 %4_8& +ﬂq)2:wa Xl
oy 15| oylox oy )| 3 3 oxoy
3 ] 30 A2
DEAW_& A(Pz_{_ei %4_6& +ﬂ(P2 :ma Xl
oy 15| oylox oy )| 3 3 oxoy

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)
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2. Let us consider the rectangular plate which occupies area:
0<x<a, 0<y<b, —h<z<h.
The tangential loads are given in the following form:

X, =1,sin\,y where A, =% 2.1

It has been assumed, that on the edges Y = 0, b of plate are given the hinge joined
conditions by the theories (K) u (V):

oV
—=0, U=0ony=0,b (2.2)
oy
by the theory (A):
Uz—sz, ﬂ=0 on y=0,b (2.3)
12G oy

and on the face surfaces of plate are given only tangential loads (1.1).
Let on the edges X = 0, @ are given the sliding contact by the theories (K) and (V):

U-=0, a—V=OonX=O,a (2.4)
OX
by the theory (A):
U s Y gomx=0a 2.5)
12G OX

For the thin plate B <<1 < a<<b

A

X
al ‘y
b
the statements for efforts by theories (K), (V) and (A), when x=0, are:
1-v . 28% ) .
T, = uBE)rO sinAy, T, = iro V- 25 sinA,y (2.6)
Al 22, 3
For long plate B >>1 <> a>>b
A
y
1 ‘X
a »
the statements for efforts by theories (K), (V) and (A), when x=0, are:
3+v)bt, . bt, .
T = wsm LY, T, =—"sink,y (2.7)
27 2n

We should note that problems, where tangential loads are acting were considered in the
references [9], [10], [11].

For thin B° << 1 and long plates B> >> 1 the statement for efforts by theories (K), (V)

when X =0 is:
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S= —bicoskly (2.8)
T

For thin Bz << 1 and long plates B2 >>1 the statement for efforts by theory (A) when
X=0is:

24 2
S = —bi( _h 21 ]coskly (2.9)

T

3. Here the problem of bending of rectangular plate is considered.
It is supposed that the tangential loads are given in the following form:

X, =1,sin\,y where A, :% (3.1)
We assume, that on the edges ¥ = 0, b of plate are given the hinge joined conditions
by the theories (K):
2
W =0, aay—V;/:Oony:O,b (3.2)
by the theory (V):
00,
W=0, 6,=0, —2=0ony=0,b (3.3)
oy
by the theory (A):
2
0
W =0, (plz—éxl, ow _ 4 (P2=00ny=0,b (3.4)

8 oy>  5G oy
and on the face surfaces of plate only tangential loads are given (1.1).
Let us consider, that on the edges X =0, @ are given the conditions of the sliding contact

by the theories (K):
a(;’)‘(’:o, a;’i’zgxl on X=0, 2 (35)
by the theory (V):
%—V)\(’:o, 0, =0, %:oonxﬂ,a (3.6)
by the theory (A):

TN T Tl T

B WL g 10X
ox 8 oy

a
For thin plate B << 1 the statements for bending by theories (K) and (A) when x=0 are:

=0 on X=0,a 3.7

b

When (al)® <<1
_ha‘(l-ai)r, .

KW = A 38
N = Darar)y Y G8)
3 _ 2~ 2 2
ow MO (| o0 Lean )
6D (2+ak,) 15 sa'(l-v) 1-ak,
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2h%A; N 8h>  1+ah,
15  5a*(1-v) 1-aj,
theories (K) and (A) are coincide. aA << 1

h 3 h 3 2h2 2 2
K)W = k) sin 4y, (AW = A% |14 M + 28h
24D 24D 15 sa’(1-v)

We should note that when <<1 the deflections by

Jsinlly(}m)

2h*A° . 8h?
15  5a°(1-v)

and when <<1 the deflections by theories (K) and (A) are
coincide.
For long plates /b >> 1 the deflections by theories (K) and (A) when X = 0 are:
ht, . ht 2h°A7 0
KW =—"=sind,, AW = —| 1 - !
2D 2D 15

1
We should note that when 2h27»12 0/15 << 1 the deflections by theories (K) and (A)

are coincide.

We received also the deflection by the theory (V), which has a significant difference
from the deflection by the theory (A) since by the theory (A) the tangential stresses satisfy
the conditions on the face planes, in contrast to theory (V) as the theory (A) has higher
order, then theory (V).

This contribution was partly provided within the INTAS grant 8886

jsinkly (3.11)

References

1. Biacos. b.®. O6 ogHOM ciy4ae u3ruda npssMoyrojbHON nThl. //Bect. Mock. YHUB.
Mexanuka. 1957. No2. C.25-34.

2. M. Levinson. The simply supported rectangular plate: An exact, three-dimensional,
linear elasticity solution. J. Elasticity 7., 283-291, 1985.

3. V. Nicotra, P. Podio-Guidugli and A. Tiero. Exact equilibrium solutions for linearly
elastic plate-like bodies. J. Elasticity 56., 231-245, 1999.

4. P.Nardinocchi and P. Podio-Guidugli. Levinson-type benchmarks for slide-clamped
and elastically supported plates. J. Elasticity 73., 211-220, 2003.

5. beny6eksin M.B., Maptupocsn K.JI. K 3amaue wn3ruba miactuHkd 1o  ¢dopme
LHUITUHIPUYECKON MMOBEPXHOCTU TMPH HAIMYMM KacaTeNbHbIX HArpy30K Ha JIMILIEBBIX
nosepxHocTsx.// 3B. HAH Apmenuu. Mexannka. 2007. T 60. Ne2. C.41-46.

6. AwmbGapiymsan C.A. Teopus arn3oTponHbIX mwiactuH. M.: Hayka, 1987. 360c.

7. BacunseB B.B. Kmaccuueckas teopusi MiacTHH — UCTOPUSI M COBPEMEHHBIN aHAIN3
// 13B. PAH. MTT. 1998. Ne3. C.45-58.

8. bemybexstH M.B. OO0 ypaBHEHMSX TEOpPHM IUIACTUH YYHUTHIBAIOIINX IIOTIEPEYHBIC
capuri. // IIpo6GieMbr MexaHUKH TOHKUX AedopmupyeMbix Temn. 2002. ¢.67-88.

9. AwmbGaprymsa C.A., beny6exsa M.B. Tonkas rutacTiHa IpH JEHCTBUN TTOBEPXHOCTHOM
kacatensHOU Harpy3kd. //W3B. HAH Apmenmn. Cep. TexH. Hayk. 1999. T. 52. Ne3.
C. 278-283.

10. KupakocssH P.M. BnusHue pacmnpeneneHus KacaTeIbHBIX HAIMPSHKCHUN 1O TOJITUHE
[UIACTUHKU TIPU HAJMYMU KacaTeNbHBIX I[TOBEPXHOCTHBIX Harpy3ok. //Jloxn. HAH
Apwmennu. 2006. T. 106. Ned. C.304-311.

11. KupakocsH P.M. K yrounHeHHO# Teopuu OpPTOTPOIHBIX IIIACTUH IIPU HATHYUU

KacaTeIbHbIX TOBEPXHOCTHBIX Harpy3ok. //[IM. 2008. T.44. Ne4. C.107-119.

HNHeTuTyT MEXaHUKU IlocTynumna B pegakuuio
HAH Apmennn 27.03.2009

64



