2USUUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

62, №4, 2009

Механика

УДК 539.3

О ХАРАКТЕРЕ СОБСТВЕННЫХ КОЛЕБАНИЙ В ЗОНЕ ПОГРАНИЧНОГО СЛОЯ ОРТОТРОПНОЙ ПОЛОСЫ Закарян Т.В.

Ключевые слова: пограничный слой, собственные колебания, анизотропия, частота. Key words: boundary layer, free vibrations, anisotropic, frequencies.

Տ.Վ. Զաքարյան Օրթոտրոպ շերտի սեփական տատանումների բնույթը սահմանային շերտում

ՈՒսումնասիրված են օրթոտրոպ շերտի սեփական տատանումները ուղղաձիգ եզրերի շրջակայքում՝ առաձգականության տեսության առաջին եզրային խնդրի դեպքում։ Ցույց է տրված, որ սահմանային շերտում սեփական տատանումները ունեն մարող բնույթ՝ էքսպոնենցիալ օրենքով, արտածված է տրանսցենդենտ հավասարում որտեղից որոշվում են մարումը բնութագրող էքսպոնենցիալ ֆունկցիայի ցուցիչները։ Ցույց է տրված, որ յուրաքանչյուր սեփական հաձախությանը համապատասխանում է մարող ֆունկցիաների իր դասը։

T.V.Zakaryan

On the Character of Free Vibrations in the Boundary Layer Zone of Orthotropic Strip

The characteristic vibrations in the boundary layer zone of orthotropic strip for first boundary-value problem of the elasticity theory are considered. It is showed that vibrations in the boundary layer zone are damping exponentially. The transcendental equation for finding the value of damping-rate exponents is deduced.

Рассмотрены собственные колебания в зоне пограничного слоя ортотропной полосы в первой краевой задаче теории упругости. Показано, что колебания в зоне пограничного слоя затухают экспоненциально. Выведено трансцендентное уравнение, откуда определяются значения показателей экспонент, характеризующие скорость затухания.

Первая статическая краевая задача теории упругости для ортотропной полосы асимптотическим методом решена в [1]. Была установлена связь полученного решения с классической теорией балок и стержней, а также с принципом Сен-Венана [1,2]. Первая краевая динамическая задача для изотропной полосы асимптотическим методом рассмотрена в [3]. Первая динамическая краевая задача для ортотропной полосы решена в [4,5]. Первая краевая внутренняя задача для двухслойной полосы решена в [6]. В этих работах было показано, что асимптотика для компонентов тензора напряжений и вектора перемещения принципиально отличается от асимптотики в статической задаче. Была установлена новая асимптотика, позволившая найти общее асимптотическое решение динамической задачи. Собственные колебания ортотропной полосы во внутренней задаче рассмотрены в [7]. Показано, что возможны два типа собственных колебаний – сдвиговые и продольные, которым соответствуют различные группы собственных значений. Вторая и смешанная динамические краевые задачи асимптотическим методом для полос, пластин и оболочек рассмотрены в [8-11]. В настоящей работе рассмотрены собственные колебания в зоне пограничного слоя ортотропной полосы. Показано, что каждой собственной частоте соответствует свой класс пограничных функций.

1. Основные уравнения и соотношения задачи. Требуется найти такое решение динамических уравнений теории упругости для ортотропной полосы

 $D = \{(x, y): 0 \le x \le l, -h \le y \le h, h << l\}$, которое локализовано вблизи торца x = 0 и удовлетворяет нулевым условиям на продольных краях $y = \pm h$ для напряжений. Считается, что полоса находится в условиях плоской деформации. Решение динамических уравнений теории упругости: уравнения движения

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = \rho \frac{\partial^2 u}{\partial t^2}, \quad \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = \rho \frac{\partial^2 v}{\partial t^2}, \quad (1.1)$$

соотношения упругости

$$\frac{\partial u}{\partial x} = \beta_{11}\sigma_{xx} + \beta_{12}\sigma_{yy}, \quad \frac{\partial v}{\partial y} = \beta_{12}\sigma_{xx} + \beta_{22}\sigma_{yy}, \quad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = a_{66}\sigma_{xy}, \quad (1.2)$$
$$\beta_{ij} = \frac{1}{a_{33}} \left(a_{ij}a_{33} - a_{i3}a_{j3} \right), \quad i, j = 1, 2, \quad a_{66} = \frac{1}{G_{12}},$$

будем искать в виде

$$\sigma_{xx}(x, y, t) = \sigma_{11}(x, y) \exp(i\omega t), \quad \sigma_{xy}(x, y, t) = \sigma_{12}(x, y) \exp(i\omega t)$$

$$\sigma_{yy}(x, y, t) = \sigma_{22}(x, y) \exp(i\omega t), \quad u(x, y, t) = u_x(x, y) \exp(i\omega t) \quad (1.3)$$

$$v(x, y, t) = u_y(x, y) \exp(i\omega t),$$

где О-частота собственных колебаний.

2.Собственные колебания полосы в зоне пограничного слоя. Чтобы выявить характер собственных колебаний полосы в зоне пограничного слоя вблизи торца x = 0, в уравнениях (1.1), (1.2) перейдем к безразмерным координатам $\eta = x/h$, $\zeta = y/h$ и безразмерным перемещениям $U = u_x/l$, $V = u_y/l$, одновременно всем искомым величинам припишем индекс «*b* »(от слова boundary). В результате получим сингулярно возмущенную малым параметром $\varepsilon = h/l$ систему

$$\varepsilon^{-1} \frac{\partial \sigma_{11b}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{12b}}{\partial \zeta} + \varepsilon^{-2} \omega_*^2 U_b = 0, \quad \varepsilon^{-1} \frac{\partial \sigma_{12b}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{22b}}{\partial \zeta} + \varepsilon^{-2} \omega_*^2 V_b = 0,$$

$$\varepsilon^{-1} \frac{\partial U_b}{\partial \eta} = \beta_{11} \sigma_{11b} + \beta_{12} \sigma_{22b}, \quad \varepsilon^{-1} \frac{\partial V_b}{\partial \zeta} = \beta_{12} \sigma_{11b} + \beta_{22} \sigma_{22b},$$

$$\varepsilon^{-1} \frac{\partial U_b}{\partial \zeta} + \varepsilon^{-1} \frac{\partial V_b}{\partial \eta} = a_{66} \sigma_{12b}, \quad \omega_*^2 = \rho h^2 \omega^2.$$
(2.1)

Решение системы (2.1) будем искать в виде

 $\sigma_{jkb} = \varepsilon^{-1+s} \overline{\sigma}_{jkb}^{(s)}(\eta, \zeta)$, $(U_b, V_b) = \varepsilon^s (\overline{U}_b^{(s)}, \overline{V}_b^{(s)})$, $\omega_*^2 = \varepsilon^s \omega_{*s}^2$, $s = \overline{0, N}$. (2.2) Подставив (2.2) в (2.1), для определения коэффициентов представления (2.2) получим систему

$$\frac{\partial \overline{\sigma}_{11b}^{(s)}}{\partial \eta} + \frac{\partial \overline{\sigma}_{12b}^{(s)}}{\partial \zeta} + \omega_{*k}^2 \overline{U}_{b}^{(s-k)} = 0, \quad \frac{\partial \overline{\sigma}_{12b}^{(s)}}{\partial \eta} + \frac{\partial \overline{\sigma}_{22b}^{(s)}}{\partial \zeta} + \omega_{*k}^2 \overline{V}_{b}^{(s-k)} = 0, \quad k = \overline{0, s} \quad (2.3)$$

$$\frac{\partial \overline{U}_{b}^{(s)}}{\partial \eta} = \beta_{11} \overline{\sigma}_{11b}^{(s)} + \beta_{12} \overline{\sigma}_{22b}^{(s)}, \quad \frac{\partial \overline{V}_{b}^{(s)}}{\partial \zeta} = \beta_{12} \overline{\sigma}_{11b}^{(s)} + \beta_{22} \overline{\sigma}_{22b}^{(s)}, \quad \frac{\partial \overline{U}_{b}^{(s)}}{\partial \zeta} + \frac{\partial \overline{V}_{b}^{(s)}}{\partial \eta} = a_{66} \overline{\sigma}_{12b}^{(s)}$$

Решение системы (2.3) будем искать в виде

$$\overline{Q}_{b}^{(s)} = Q_{b}^{(s)}(\zeta) \exp(-\lambda\eta)$$
(2.4)

где $\overline{Q}_{b}^{(s)}$ – любое из напряжений и перемещений, λ – пока неизвестное число. Поскольку мы ищем затухающее при удалении от торца x = 0 решение, необходимо, чтобы $\operatorname{Re} \lambda > 0$. Подставив (2.4) в (2.3), получим систему

$$-\lambda\sigma_{11b}^{(s)} + \frac{d\sigma_{12b}^{(s)}}{d\zeta} + \omega_{*k}^{2}U_{b}^{(s-k)} = 0, -\lambda\sigma_{12b}^{(s)} + \frac{d\sigma_{22b}^{(s)}}{d\zeta} + \omega_{*k}^{2}V_{b}^{(s-k)} = 0, \ k = \overline{0,s} \quad (2.5)$$
$$-\lambda U_{b}^{(s)} = \beta_{11}\sigma_{11b}^{(s)} + \beta_{12}\sigma_{22b}^{(s)}, \quad \frac{dV_{b}^{(s)}}{d\zeta} = \beta_{12}\sigma_{11b}^{(s)} + \beta_{22}\sigma_{22b}^{(s)}, \quad \frac{dU_{b}^{(s)}}{d\zeta} - \lambda V_{b}^{(s)} = a_{66}\sigma_{12b}^{(s)}$$

Из этой системы напряжения можно выразить через перемещения

$$\sigma_{_{11b}}^{(s)} = -\frac{1}{\Delta_{1}} \left(\lambda \beta_{22} U_{b}^{(s)} + \beta_{12} \frac{dV_{b}^{(s)}}{d\zeta} \right), \quad \sigma_{_{22b}}^{(s)} = \frac{1}{\Delta_{1}} \left(\lambda \beta_{12} U_{b}^{(s)} + \beta_{11} \frac{dV_{b}^{(s)}}{d\zeta} \right),$$

$$\sigma_{_{12b}}^{(s)} = \frac{1}{a_{66}} \left(\frac{dU_{b}^{(s)}}{d\zeta} - \lambda V_{b}^{(s)} \right)$$
(2.6)

Для определения перемещений получается система

$$\frac{d^{2}U_{b}^{(s)}}{d\zeta^{2}} + \lambda \Delta_{2} \frac{dV_{b}^{(s)}}{d\zeta} + \Delta_{3}U_{b}^{(s)} = -a_{66}\omega_{*m}^{2}U_{b}^{(s-m)} , \quad m = \overline{1,s}$$

$$\beta_{11} \frac{d^{2}V_{b}^{(s)}}{d\zeta^{2}} + \lambda \Delta_{4} \frac{dU_{b}^{(s)}}{d\zeta} + \Delta_{5}V_{b}^{(s)} = -\Delta_{1}\omega_{*m}^{2}V_{b}^{(s-m)}$$
(2.7)

где $\Delta_1 = \beta_{11}\beta_{22} - \beta_{12}^2$, $\Delta_2 = \frac{a_{66}}{\Delta_1}\beta_{12} - 1$, $\Delta_3 = \frac{a_{66}}{\Delta_1} \left(\lambda^2 \beta_{22} + \Delta_1 \omega_{*0}^2\right)$,

$$\Delta_4 = \beta_{12} - \frac{\Delta_1}{a_{66}}, \ \Delta_5 = \frac{\Delta_1}{a_{66}} \left(\lambda^2 + a_{66} \omega_{*0}^2 \right)$$
(2.8)

Из системы (2.7) $V_b^{(s)}$ можно выразить через $U_b^{(s)}$ по формуле –

$$V_{b}^{(s)} = \frac{\beta_{11}a_{66}}{\lambda(\beta_{12}a_{66} - \Delta_{1})(\lambda^{2} + a_{66}\omega_{*0}^{2})} \left[\frac{d^{3}U_{b}^{(s)}}{d\zeta^{3}} + \frac{(a_{66}^{2} + 2a_{66}\beta_{12} - \Delta_{1})\lambda^{2} + a_{66}^{2}\beta_{11}\omega_{*0}^{2}}{\beta_{11}a_{66}} \frac{dU_{b}^{(s)}}{d\zeta} + a_{66}\omega_{*m}^{2} \frac{dU_{b}^{(s-m)}}{d\zeta} - \frac{\lambda}{\beta_{11}}(a_{66}\beta_{12} - \Delta_{1})\omega_{*m}^{2}V_{b}^{(s-m)} \right], \quad m = \overline{1, s}$$

$$(2.9)$$

А для определения $U_b^{(s)}$ получим уравнение

$$\frac{d^{4}U_{b}^{(s)}}{d\zeta^{4}} + \frac{1}{\beta_{11}} \Big[\Big(2\beta_{12} + a_{66} \Big) \lambda^{2} + \Big(\beta_{11}a_{66} + \Delta_{1} \Big) \omega_{*0}^{2} \Big] \frac{d^{2}U_{b}^{(s)}}{d\zeta^{2}} + \frac{1}{\beta_{11}} \Big[\beta_{22}\lambda^{4} + \Big(a_{66}\beta_{22} + \Delta_{1} \Big) \omega_{*0}^{2}\lambda^{2} + \Delta_{1}a_{66}\omega_{*0}^{4} \Big] U_{b}^{(s)} = R_{Ub}^{(s)}$$

$$(2.10)$$

$$R_{Ub}^{(s)} = -a_{66}\omega_{*m}^{2}\frac{d^{2}U_{b}^{(s-m)}}{d\zeta^{2}} - \frac{\Delta_{5}a_{66}\omega_{*m}^{2}}{\beta_{11}}U_{b}^{(s-m)} + \frac{\lambda\Delta_{1}\Delta_{2}\omega_{*m}^{2}}{\beta_{11}}\frac{dV_{b}^{(s-m)}}{d\zeta}, \ m = \overline{1,s}$$

Одновременно для напряжений имеем

$$\sigma_{11b}^{(s)} = \frac{\beta_{12}}{\lambda(\beta_{12}a_{66} - \Delta_1)} \left[\frac{d^2 U_b^{(s)}}{d\zeta^2} + \frac{1}{\beta_{12}} \left(a_{66}\beta_{12}\omega_{*0}^2 + \lambda^2\beta_{22} \right) U_b^{(s)} + a_{66}\omega_{*m}^2 U_b^{(s-m)} \right]$$

$$\sigma_{12b}^{(s)} = -\frac{1}{\left(\beta_{12}a_{66} - \Delta_1\right)\left(\lambda^2 + a_{66}\omega_{*0}^2\right)} \left[\beta_{11}\frac{d^3 U_b^{(s)}}{d\zeta^3} + \left(\left(a_{66} + \beta_{12}\right)\lambda^2 - (2.11)\right) \right]$$

$$-\left(a_{66}\beta_{12} - \Delta_{1} - a_{66}\beta_{11}\right)\omega_{*0}^{2}\right)\frac{dU_{b}^{(s)}}{d\zeta} + a_{66}\beta_{11}\omega_{*m}^{2}\frac{dU_{b}^{(s-m)}}{d\zeta} - \lambda\left(\beta_{12}a_{66} - \Delta_{1}\right)\omega_{*m}^{2}V_{b}^{(s-m)}\right]$$

$$\sigma_{22b}^{(s)} = -\frac{\beta_{11}}{\lambda\left(\beta_{12}a_{66} - \Delta_{1}\right)}\left[\frac{d^{2}U_{b}^{(s)}}{d\zeta^{2}} + \left(\frac{\left(a_{66} + \beta_{12}\right)\lambda^{2}}{\beta_{11}} + a_{66}\omega_{*0}^{2}\right)U_{b}^{(s)} + a_{66}\omega_{*m}^{2}U_{b}^{(s-m)}\right], \quad m = \overline{1, s}$$

Решение уравнения (2.10) имеет вид $U_b^{(s)} = U_{b0}^{(s)} + U_{b au}^{(s)}$

где $U_{b0}^{(s)}$ – решение однородного, а $U_{b\tau}^{(s)}$ – частное решение неоднородного уравнения (2.10).

$$U_{b0}^{(s)} = A_1^{(s)} e^{k_1 \zeta} + A_2^{(s)} e^{-k_1 \zeta} + A_3^{(s)} e^{k_3 \zeta} + A_4^{(s)} e^{-k_3 \zeta}$$
(2.13)

где
$$k_{1,3}^2 = \frac{\omega_{*0}^2}{2\beta_{11}} \Big[\Big(-2(a_{66} + \beta_{12})\gamma^2 - (a_{66}\beta_{11} + \Delta_1) \Big) \pm \sqrt{D} \Big], \gamma = \frac{\lambda}{\omega_{*0}}$$
 (2.14)
 $D = \Big(4\beta_{12}a_{66} - 4\Delta_1 + a_{66}^2 \Big)\gamma^4 + 2\Big[2(\beta_{11} - \beta_{12})(a_{66}\beta_{12} - \Delta_1) + 2\beta_{12} \Big]$

$$+a_{66}(a_{66}\beta_{11}-\Delta_1)]\gamma^2+(a_{66}\beta_{11}-\Delta_1)^2$$

 ω_{*0} – значение частоты для исходного приближения.

Это значение ω_{*0} определяется из решения внутренней задачи о собственных колебаниях полосы [7].

Решение пограничного слоя должно удовлетворять граничным условиям

$$\sigma_{12b}(\zeta = \pm 1) = 0 , \ \sigma_{22b}(\zeta = \pm 1) = 0$$
(2.15)

По формулам (2.11), определив напряжения $\sigma_{12b}^{(s)}$, $\sigma_{22b}^{(s)}$ и удовлетворив условиям (2.15) при s = 0, получим систему

$$A_{1}^{(0)}b_{1}e^{k_{1}} - A_{2}^{(0)}b_{1}e^{-k_{1}} + A_{3}^{(0)}b_{2}e^{k_{3}} - A_{4}^{(0)}b_{2}e^{-k_{3}} = 0$$

$$A_{1}^{(0)}b_{1}e^{-k_{1}} - A_{2}^{(0)}b_{1}e^{k_{1}} + A_{3}^{(0)}b_{2}e^{-k_{3}} - A_{4}^{(0)}b_{2}e^{k_{3}} = 0$$

$$A_{1}^{(0)}d_{1}e^{k_{1}} + A_{2}^{(0)}d_{1}e^{-k_{1}} + A_{3}^{(0)}d_{2}e^{k_{3}} + A_{4}^{(0)}d_{2}e^{-k_{3}} = 0$$

$$A_{1}^{(0)}d_{1}e^{-k_{1}} + A_{2}^{(0)}d_{1}e^{k_{1}} + A_{3}^{(0)}d_{2}e^{-k_{3}} + A_{4}^{(0)}d_{2}e^{k_{3}} = 0$$
(2.16)

где

(2.12)

$$b_{1} = k_{1}(\beta_{11}k_{1}^{2} + \omega_{*0}^{2}c_{1}), b_{2} = k_{3}(\beta_{11}k_{3}^{2} + \omega_{*0}^{2}c_{1}), d_{1} = k_{1}^{2} + c_{2}\omega_{*0}^{2}, d_{2} = k_{3}^{2} + c_{2}\omega_{*0}^{2}$$

$$c_{1} = (a_{66} + \beta_{12})\gamma^{2} - (a_{66}\beta_{12} - \Delta_{1} - a_{66}\beta_{11}), c_{2} = \frac{1}{\beta_{11}}(a_{66} + \beta_{12})\gamma^{2} + a_{66}$$
(2.17)

Для существования ненулевого решения системы (2.16) необходимо, чтобы ее определитель равнялся нулю. В результате получим следующее трансцендентное уравнение для определения значений λ

$$(b_1d_2 + b_2d_1)^2$$
 ch $2(k_1 - k_3) - (b_2d_1 - b_1d_2)^2$ ch $2(k_1 + k_3) - 4b_1b_2d_1d_2 = 0$ (2.18)
В работе [7] было доказано, что во внутренней задаче о собственных кодебаниях

В работе [7] было доказано, что во внутренней задаче о собственных колебаниях возможны следующие четыре группы собственных значений ω_{*0n} :

a)
$$\omega_{*0n}^{I} = \frac{\pi n}{\sqrt{a_{66}}}, \quad 6) \, \omega_{*0n}^{II} = \frac{\pi}{2\sqrt{a_{66}}} (2n+1), \quad (2.19)$$

в)
$$\omega_{*0n}^{III} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \pi n$$
, г) $\omega_{*0n}^{IV} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \frac{\pi}{2} (2n+1)$, $n \in N$ (2.20)

Частотам (2.19) соответствуют собственные сдвиговые колебания с формами собственных колебаний, соответственно,

$$U_n^I = \cos \pi n \zeta , \ U_n^{II} = \sin \frac{\pi}{2} (2n+1) \zeta$$
 (2.21)

Частотам же (2.20) соответствуют собственные продольные колебания с формами собственных колебаний

$$V_n^{III} = \cos \pi n \zeta , \quad V_n^{IV} = \sin \frac{\pi}{2} (2n+1) \zeta , \quad n \in N$$
 (2.22)

Для каждого случая формы собственных колебаний ортогональны на интервале $-1 \leq \zeta \leq 1$.

Из формул (2.14), (2.18) следует, что если λ – корень уравнения (2.18), то ($-\lambda$) тоже является корнем этого уравнения. Корнями будут также $\pm \overline{\lambda}$. Нас будут интересовать корни с $\operatorname{Re} \lambda > 0$. В силу (2.18) в системе (2.16) независимым будет одна постоянная, остальные из этой системы можно выразить через эту постоянную, например, через $A_{1n}^{(0)}$. Представив $A_{1n}^{(0)} = \frac{1}{2} (B_{1n}^{(0)} - iB_{2n}^{(0)})$ и учитывая, что $A_{1n}^{(0)}$

соответствует $\overline{A_{1n}^{(0)}}$, решение (2.4) запишется в виде

$$\overline{Q_{b}^{(0)}} = \left(\operatorname{Re} Q_{bn}^{(0)}(\zeta) \exp(-\lambda \eta) \right) B_{1n}^{(0)} + \left(\operatorname{Im} Q_{bn}^{(0)}(\zeta) \exp(-\lambda \eta) \right) B_{2n}^{(0)}$$
(2.23)

И решение (2.23) будет вещественным.

Для пластинки из однонаправленного намоточного стеклопластика с характеристиками:

$$\begin{split} E_1 &= 55.917 \cdot 10^9 \,\Pi a \,, \quad E_2 &= 13.734 \cdot 10^9 \,\Pi a \,, \quad E_3 &= 13.734 \cdot 10^9 \,\Pi a \,, \\ G_{12} &= 5.592 \cdot 10^9 \,\Pi a \,, \quad G_{23} &= 4.905 \cdot 10^9 \,\Pi a \,, \quad G_{13} &= 5.592 \cdot 10^9 \,\Pi a \,, \\ \nu_{12} &= 0.277 \,, \quad \nu_{23} &= 0.4 \,, \quad \nu_{31} &= 0.068 \,, \quad \rho &= 1925 \,\, \mathrm{kg/m^3} \end{split}$$

определены первые несколько корней λ уравнения (2.18), соответствующие собственным значениям (2.19) и (2.20). Они приведены в виде табл. 1-4.

$$\omega_{*0n}^{I} = \frac{\pi n}{\sqrt{a_{66}}}$$

Таблица 1

	v 00			
	<i>n</i> =1	n =2	n =3	<i>n</i> =4
λ_1	0.184008	0.504935+1.68106i	0.052042+1.98127i	0.0589251+2.22152i
λ_2	0.730153	1.25751	1.18919	0.0723835+1.52505i
λ_3	1.19814	1.27142	1.72384	1.33862
λ_4	1.5751+0.137981i	1.98089	2.02301	1.72129
λ_5	1.99497	2.0115	2.62852	2.51505
λ_6	2.15272	2.48217	2.66858	2.54282

$$\begin{split} \omega_{*0n}^{H} &= \frac{\pi}{2\sqrt{a_{66}}} \Big(2n+1\Big) & \text{Таблица 2} \\ \hline & n=1 & n=2 & n=3 & n=4 \\ \hline \lambda_1 & 0.0549626+0.944907i & 0.565988 & 0.0878633+2.13463i & 0.0144117+2.98964i \\ \hline \lambda_2 & 0.793118 & 1.4833 & 0.143385+1.59992i & 1.87099 \\ \hline \lambda_3 & 1.02982 & 1.67037 & 0.402594 & 1.95453 \\ \hline \lambda_4 & 1.64323 & 2.32138 & 1.52784 & 2.75972 \\ \hline \lambda_5 & 1.67219 & 2.32641 & 2.08073 & 2.93586 \\ \hline \lambda_6 & 2.15952 & 2.8757 & 2.30789 & 3.56046 \\ \hline \end{split}$$

$$\begin{split} & \omega_{*0n}^{III} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \pi n \end{split} \begin{tabular}{|c|c|c|c|c|c|} \hline $n=1$ & $n=2$ & $n=3$ & $n=4$ \\ \hline λ_1 & $0.441707 + 1.47056i$ & $0.0879806 + 2.13371i$ & $0.0537048 + 3.4307i$ & 0.134602 \\ \hline λ_2 & 0.780703 & $0.143327 + 1.5987i$ & 1.46275 & 2.32559 \\ \hline λ_3 & 1.48291 & 0.412292 & 2.15349 & 2.59006 \\ \hline λ_4 & 1.49301 & 1.52899 & 2.66487 & 3.37605 \\ \hline λ_5 & 2.08793 & 2.08182 & 3.06789 & 3.71224 \\ \hline λ_6 & 2.25984 & 2.30868 & 3.62414 & 4.27902 \\ \hline \end{tabular}$$

$$\omega_{*0n}^{IV} = \sqrt{\frac{\beta_{11}}{\Delta_1}} \frac{\pi}{2} (2n+1)$$

Таблица 4

	<i>n</i> =1	<i>n</i> =2	n =3	<i>n</i> =4
λ_1	0.662561+2.20584i	0.897133	0.0801603+3.57418i	0.00947789+5.36227i
λ_2	1.30324	2.0731	0.135341+3.04782i	0.0730633+4.91575i
λ_3	1.57064	2.11065	0.164921+2.28407i	0.0830888+4.50496i
λ_4	2.18899	2.90476	1.81136	1.28307
λ_5	2.26419	3.041	2.53568	2.54046
λ_6	2.83946	3.6822	2.85175	2.99405

Поскольку каждому собственному значению ω_{*0} соответствует своя группа собственных функций пограничного слоя, в окрестности торца x = 0 будет создана довольно пестрая картина [12].

Приближения $s \ge 1$ могут быть рассмотрены тем же способом, что мы имели во внутренней задаче [7], однако вряд ли это будет представлять практический интерес.

ЛИТЕРАТУРА

- 1. Агаловян Л.А. О характере взаимодействия погранслоя с внутренним напряженно-деформированным состоянием полосы // Изв. АН Арм. ССР. Механика. 1977. Т.30. №5. С. 48-62.
- 2. Агаловян Л.А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука, 1997. 414с.
- Агаловян Л.А., Геворкян Р. С. Асимптотическое решение первой краевой задачи теории упругости о вынужденных колебаниях изотропной полосы. //Прикл. мат. и мех. (ПММ). 2008. Т.72. Вып.4. С.633-634: Journal of Applied Mathematics and Mechanics. 72 (2008), pp 452-460. Elsevier 2008.
- 4. Агаловян Л.А., Закарян Т.В. Об асимптотике вынужденных колебаний ортотропной полосы. //Докл. НАН Армении. 2007. Т.107. №2. С. 173-178.
- Агаловян Л.А., Закарян Т.В. Асимптотическое решение динамической первой краевой задачи теории упругости для ортотропной полосы. //В сб.: Актуальные проблемы механики сплошной среды. Ереван. 2007. С.21-27.
- Закарян Т.В. О динамической первой краевой задаче теории упругости для двухслойной ортотропной полосы. //Изв.НАН Армении. Механика. 2008. Т.61. №3. С.41-50.
- Агаловян Л.А., Закарян Т. В. О частотах и формах собственных колебаний ортотропной полосы со свободными продольными краями. // В сб.: Проблемы динамики взаимодействия деформируемых сред. Ереван. 2008. С. 36-42.
- Агаловян Л.А. К асимптотическому методу решения динамических смешанных задач анизотропных полос и пластин. // Изв. ВУЗов РФ. Северо-Кавказский регион. Естеств. науки. 2000. №3. С.8-11.
- Агаловян Л.А., Агаловян М.Л. К определению частот и форм собственных колебаний ортотропной полосы. // Докл. НАН Армении. 2003. Т.103. №4. С. 296-301.
- Агаловян Л.А. Асимптотика решений классических и неклассических краевых задач статики и динамики тонких тел. // Междунар. научн. журнал. Прикл. Механика. 2002. Т.38. №7. С.3-24.
- Агаловян Л.А., Гулгазарян Л.Г. Асимптотические решения неклассических краевых задач о собственных колебаниях ортотропных оболочек. // Прикл. мат. и мех. (ПММ). 2006. Т.70. Вып.1. С.111-125.
- Агаловян М.Л. О решении пограничного слоя в задаче на собственные колебания полосы. //В сб. конф.: Современные вопросы оптимального управления и устойчивости систем. Ереван: Изд.ЕГУ, 1997. С.132-135.

Институт механики НАН Армении Поступила в редакцию 24.03.2009