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Դ.Ի. Բարձոկաս, Պ. Լալոու 

Կոմպլեքս անալիզի մեթոդներով ջերմահաղորդականության և ջերմաառաձգականության 
տեսության հարթ խնդիրների լուծումը բազմակապ մարմինների համար 

Կոմպլեքս փոփոխականի ֆունկցիաների տեսության և սինգուլյար ինտեգրալ հավասա¬րումների 
մեթոդների կիրառմամբ զարգացվում է ճաքեր, ինչպես նաև ուղղագիծ և կորագիծ ստրինգերներ 
պարունակող բազմակապ իզոտրոպ մարմինների համար ջերմահաղորդականության և 
ջերմաառաձգականության տեսության հարթ խնդիրների լուծման մեթոդ: Դիտարկված են կոնկրետ 
օրինակներ: 

Д.И. Бардзокас, П. Лалоу 
Решение плоских задач теории теплопроводности и термоупругости для многосвязных  

тел методами комплексного анализа 
 

Применением методов теории функций комплексного переменного и сингулярных интегральных 
уравнений развивается метод решения плоских задач теории теплопроводности и термоупргости для 
многосвязных изотропных тел, содержащих трещины, а также прямолинейные и криволинейные стрин-
геры. Рассматриваются конкретные примеры. 

 
1. INTRODUCTION  

During their service life, engineering structures are subjected not only to static and 
dynamic loads, but usually they are also affected by the presence of thermal fields. Thermal 
influences may sometimes alter the physic-mechanical properties of the materials and 
consequently, they may affect their strength properties and the resistance of the structure to 
loads. In the general case, the resulting expansions (contractions) are not occurring freely in 
the continuous medium. Instead, they produce thermal stresses which, in combination with 
the mechanical ones (due to external loading), can contribute to the initiation and 
propagation of cracks.  

Even if the failure mechanism cannot, in many cases, be completely described only by 
the propagation of cracks in materials, the investigations of the conditions which trigger the 
initiation of a crack or a crack system from the pre-existing defects in the material (cracks, 
inclusions, cavities, welded joints etc.) is of great theoretical and practical importance. For 
this reason, the present investigation is concerned with the study of the stress-deformation 
state of a body under the influence of mechanical and thermal fields of forces, in the 
regions where singularities or stress concentrators exist, by using the complex functions 
method and the theory of singular integral equations [1, 2, 3]. The methodology applied is 
based on the theory of linear elasticity and thermoelasticity of the anisotropic medium and 
is an extension of a previous work [4], since it includes the effects of curvilinear (in the 
form of circular arcs) thin strip inclusions and holes. 
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The present development of this general method permits one to use it effectively for 
studying the interaction between various types of defects in an isotropic or anisotropic 
material and reinforcements, in the presence of mechanical and thermal fields of forces, and 
furthermore to extend it for solving many important problems of engineering practice. 

 
2. FUNDAMENTAL EQUATIONS OF PLANE PROBLEMS IN 

THERMOCONDUCTIVITY AND THERMOELASTICITY 
For the formulation of the mathematical theory of the strength of isotropic or 

anisotropic bodies characterized by defects in the form of cracks, holes, inclusions etc., 
under the influence of mechanical and thermal fields of forces, the model of the linear 
thermo elastic  body is used [4]. A general theory of this model assumes that: 

a) the strain components are infinitesimal; 
b) the relationships between various components of stresses and strains are given by 

the generalized linear Hooke’s law, and 
c) the elastic and thermal properties of the body are, in general, different in different 

directions, but they are independent of the temperature and stress. 
Furthermore, it is assumed that at any point of an anisotropic body, a plane of elastic 

and thermal symmetry exists. Also, it is assumed that the temperature ( )tzyxT ,,,  in an 
anisotropic body is a continuous function of spatial coordinates zyx ,,  and time t ; and 
that this holds also for the first differential coefficient with respect to t  and for the first and 
second differential coefficients with respect to yx,  and z . The  body is referred to a 

Cartesian or curvilinear coordinate system with unit vectors ji,  and k .Accordingly, an 

elementary surface characterized by a normal vector n   which contains a random point of 
the body is considered.  At the point under consideration, the thermo conductivity vector 

nK  which refers to the elementary surface with normal vector    is defined by  

kkajkaikaKn 333222111 ++=  (1) 

Where iik  ( )3,1=i   are the coefficients of thermal conductivity, and ia  are the 

direction cosines between the vector n  and the unit vectors ji,  and k . The surfaces 

where the thermal conductivity vector nK  coincides with the normal vector n  are called 
principal surfaces of thermal conductivity, whereas the directions normal to them are called 
principal directions of thermal conductivity.  Accordingly, the density of the thermal flux 

nq  across the elementary surface with normal direction   is defined as  

( grad )n nq K T= − ⋅  (2) 
The surface which is crossed by the thermal flux of maximum density is called 

principal surface of thermal flux, and the direction perpendicular to it is called principal 
direction of thermal flux at the point under consideration. 

In the case where the axes of the reference system coincide with the principal 
directions of the thermal conductivity, the thermal field is described by the following 
differential equation 
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Where c  is the specific heat of the body, ρ  expresses its density, and Q  is the 
quantity of heat which is radiated from the unit volume per unit of time. 
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In order to find the solution of the partial differential equation (3) in space and time 
domains, the initial and boundary conditions should be known a priori. The boundary or 
surface conditions of thermal conductivity encountered in practice are [5]: 

i. Boundary conditions of the first kind, when the values of temperature are given at all 
points of the surface of the body, 

),,,(1 tzyxfT =  (4) 
ii. Boundary conditions of the second kind, when the values of density of the thermal 

flux are given at all points of the surface of the body, 

2grad ( , , , )nK T f x y z t⋅ =  (5) 
iii. Boundary conditions of the third kind, called also “radiation boundary conditions”, 

when the conditions of thermal exchange with the surrounding medium (of temperature 

oT ) are given at all points of the surface of the body,  

grad ( )n oK T T T⋅ = λ − , (6) 

where λ  is the coefficient of surface heat transfer. 
In the sequel, the fundamental equations of thermoelasticity will be given. For this 

purpose let us consider a cylindrical body with the generatrix of its lateral surface 
perpendicular to the plane of the plane of the Cartesian coordinate system, and its end faces 
being thermally insulated. Further it is assumed that the temperature at any point of the 
body depends on the spatial coordinates yx,  and that the body is characterized by linear 
thermal anisotropy, such that at any point one of the principal directions of thermal 
conductivity is perpendicular to the plane xOy .If the body is homogeneous and it does not 
contain any thermal source, then Eq. (3) takes the form 
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With a  being the angle between the Ox -axis and one of the principal directions of 
thermal conductivity, and the quantities ijijk λ,  ( 2,1, =ji ) are constant. 

The general solution of Eq.(7) is given in the form [6]: 
)(Re2)()( 333 zFzFzFT =+=  (9) 

Where the overbear denotes complex conjugate, Re denotes the real part of what 
follows and ( )3zF  is an analytic function of the complex variable 3z .Parameter 3μ   is 
one of the roots of the characteristic equation 

02 1112
2

22 =λ+μλ+μλ  (10) 

Where   22
21

2211123 /)( λ+λ−=μ kki  
With i  denoting the usual imaginary unit. 
The thermal flux as a function of ( )3zF  is expressed by a function of  21,ββ  

Which are the direction cosines between the normal vector n  and the element   ds   

11 12 1 12 22 2grad ( ) ( )n
T T T TK T
x y x y

∂ ∂ ∂ ∂
⋅ = λ + λ β + λ + λ β

∂ ∂ ∂ ∂
 (11) 

By virtue of Eq. (9), relationship (11) assumes the following form  
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* *
1 3 1 3grad ( ) ( )nK T A F z A F z′ ′⋅ = +  (12) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

3

'
dz
d

, and           ))(( 13222312
*
1 βμ+β−λμ+λ=A  

Basing on relationships (9) and (12), we can find the temperature and the thermal flux at 
any point of the body, if the mathematical form of the thermal potential ( )3zF  is a priori 
known.  

At any point of homogeneous and anisotropic body under a plane strain state, where exists a 
plane of elastic symmetry which is perpendicular to Oz -axis and coincides with one of the principal 
directions of thermal conductivity. The generalized Hooke’s law in this case takes the form 

Txyzzyyxxxx 1116131211 β+σα+σα+σα+σα=ε , 

Txyzzyyxxyy 2226232212 β+σα+σα+σα+σα=ε , 

Txyzzyyxxxy 6666362616 2β−σα+σα+σα+σα=γ , (13) 

03336332313 =β+σα+σα+σα+σα=ε Txyzzyyxxzz , 

04544 =σα+σα=γ xzyzyz , 05545 =σα+σα=γ xzyzxz , 

or alternatively  Tccc xyyyxxxx 1161211 α+σ+σ+σ=ε  

Tccc xyyyxxyy 2262212 α+σ+σ+σ=ε  (14) 

Tccc xyyyxxxy 6662616 2α−σ+σ+σ=γ  

where ijij ca , express the elasticity coefficients and are related by       

33
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In the sequel ijβ  are the coefficients which given the strain tensor components of a 
body element free form external tractions, due to a temperature change of one degree. For 
these coefficients then following relationships hold true: 
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Under the condition that coefficients ijiij ac λ,,  remain constant and independent of 
the variations of the stress components and the temperature of the body, the relationships 
giving the stresses and displacements as a function of the complex potentials 
( ) ( )21 , zz ΨΦ  and  ( )3zF  are the following: 
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)(/)2( 3236
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31 μΔ+μ+μ−=η aaao  

))()()((( 2313231311)3 μ−μμ−μμ−μμ−μ=μΔ c  (17) 

)()( 11 zz φ′=Φ      )()( 22 zz ψ′=Ψ      )()( 33 zzF ψ′=  
For the transversely isotropic body, Hooke’s law in plane strain conditions takes the 

following simplified form 
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and for the generally isotropic body, 

( ) ( ) .1,1,1
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E
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E

τ=γ+νσ−σ=ε+νσ−σ=ε  (19) 

In the above relations the coefficients 11β  and 33β  are, respectively, the thermal 

coefficients of  linear expansion on the plane of isotropy (parallel to the plane xOy ), and 
along the direction perpendicular to the plane of isotropy. 

The relationships for the derivation of the stress tensor and displacement vector 
components are simplified as follows: 
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Where for the case of transversely isotropic body   
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And for the isotropic body  
(c)  ,43 ν−=κ         ,aE=β             (plane strain case), 
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            (generalized plane stress case) 

In the case where at the point ( )00 , yx   inside the orthotropic medium a thermal 

source of power 0q  exists, the complex potentials in the region enclosing this point take the 

form ( )3,1=j  
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And the coefficients 00 ,β′′a  are given from the following relations: 
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For the case of the transversely isotropic or generally isotropic medium, the 
corresponding complex potentials take the following form: 
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Recapitulating, the solution of the plane problem of steady state thermoelasticity is 
derived in two consecutive stages. In the first stage the steady thermal field ( )yxT ,  is 
derived satisfying one of the boundary conditions (4)-(6) and the differential thermo elas-
ticity  equation (7) for the anisotropic medium, or the Laplace equation 
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for the isotropic medium. The second stage refers to the derivation of the stress tensor and 
displacement vector components by using relations (16) or (20). 

  
3. THERMAL CONTACT CONDITIONS BETWEEN TWO BODIES.  
At the first stage of the solution of the thermo elastic problem for bodies with thin 

inclusions and cracks it is of great importance to describe correctly the phenomenon of 
thermal conductivity along the lips of the crack and the contact interfaces of the thin 
inclusion with the body. This is achieved by properly choosing the representative 
computational model of thermal contact between the bodies characterized by different 
elastic and thermal constants. Following [7] approach to the formulation of the model 
which describes the condition of thermal contact, it is assumed that the contact surfaces are 
separated by a thin interlayer (inclusion) with the same thermo-physical parameters (Fig.1). 
If these parameters are assumed to be constant and the thickness of the interlayer tends to 
zero, it takes the form of a physical separating surface of the two bodies, and the 
corresponding boundary conditions on this surface correspond to the real contact condition 
of the two bodies. 

The thermo conductivity equation of the embedded layer (isotropic inclusion) referred 
to the coordinate system ( )sn,  is the following:  
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On the separating surfaces hn ±=  of the isotropic inclusion and the anisotropic 
medium, the following conditions of thermal contact are satisfied   
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where λ  is the coefficient of thermal conductivity of the inclusion ,  

( )gradn nT K T
±

± = − ⋅  (27) 
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and ±±
nTT ,   express the limiting values of the temperature and the thermal flux along the 

boundary hn ±=  of the anisotropic medium. 
Then the following integral representations are introduced:  

 

 
Fig.1. Contact of two infinite elastic bodies, with the contact region to be represented by a thin inclusion characterized 
by the same thermo physical properties as those of the two bodies. 
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Multiplying relationship (24) by h2/1  and integrating with respect to n  in the range   
( )hh,−  and by virtue of the relations (25) and (26), the following equation is derived: 
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Furthermore, multiplying (24) by 22/3 hn  and integrating with respect to n  in the range 
( )hh,−  we get 
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In order to derive the expressions for the quantities ∗∗∗
cc TT ,  with respect to the limiting 

values of the temperature ±T  of the anisotropic body, we use the operational expression of 
the solution of  (24) which can be written as follows:       
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By considering condition the expression   gives the following solution; 
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By virtue of (33), relationships (28) and (29) become  
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Substituting the values of  ∗
cT  and ∗∗

cT  found from (34) into relations (30) and (31), 

respectively, and for 0→h , we get the following relations: 
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The above relations represent the conditions of “non-ideal thermal contact’’ at the surface 
of the anisotropic medium. In the case of the isotropic medium, relations (35) are simplified 
as follows,  
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where ∗λ  is the coefficient of thermal conductivity of the isotropic medium. 
In the case when instead of a thin inclusion we have a crack, the values of sλ  and nλ  

characterize its thermal conductivity in the longitudinal and transverse directions, 
respectively. Depending on thermal conductivity we distinguish three categories of cracks: 

a) a thermally conducting crack for 0,0 ≠λ≠λ ns ; 

b) a longitudinally thermally insulating crack for 0,0 ≠λ=λ ns ; 

c) a thermally insulating crack for 0=λ=λ ns .        
 
4. STATEMENT OF THE PROBLEM OF A MULTI-CONNECTED BODY. 
Let us consider an infinite isotropic plate S containing M internal curvilinear cracks 

jl  ( )Mj ,1= , N  thin strip inclusions (stringers) jL  ( Nj ,1=  or  )'
2

'
1,1 nnj += ; '

1n  

denotes the number of straight stringers, whereas '
2n  the number of  curvilinear (circular 

arcs) stringers and L  the number of holes indexed as jγ  ( )Lj ,1= . The plate is subjected 

to biaxial state of stresses ( )21, NN  at infinity and is under the influence of a homoge-

neous thermal flow ∞q . Besides these loading conditions, concentrated forces jj iQP +  

are acting at the points ( )1,1 kjz j =∗ , moments jM  at the points  ( )2,1 kjz j =∗∗ , and 3k  

thermal sources of powers jq  at the points ( )3,1 kja j =  on the plane of the plate. 
Here we assume that the only deformation, which can be sustained by the straight 

stringers, is the one directed along their longitudinal axis. Furthermore, both the straight 
and the curvilinear stringers are taken to be of zero bending stiffness. 

In plane thermo conductivity problems of cracked bodies with inclusions, the 
temperature field ( )yxT ,  is expressed as follows:  



 31 

),(),(),( * yxTyxTyxT o +=  (37) 

where ( )yxT ,0  is the known thermal field induced to the continuous medium, and 

( )yxT ,∗ the perturbed thermal field due to the presence of defects in the body. 
 

Fig. 2. Infinite isotropic thin plate containing M curvilinear cracks, ( )*
kjN L L∪  thin strip 

inclusions and L  holes, which is subjected at infinity to a biaxial state of stress ( )1 2,N N  and to a 

homogeneous thermal flow ∞q  

Depending on the thermal contact conditions at the boundaries of the crack and the thin 
inclusion, we have the following three relations: 
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( )012 grad .nK T= − ⋅  (40) 

Where ( )tf ±  and ( )tQ± express the know temperatures and thermal fluxes along the 

boundaries of the crack or the thin inclusion, ( )sn,  refer to the curvilinear coordinate 

system; λ  is the thermal conductivity. In the case of a crack, the parameters sλ  and nλ   
correspond to the thermal conductivity in the longitudinal and transverse directions, 
respectively, and eq.(38)-(40) read: 

,, 10
∗±±

∗ ∈−= jj LtTfT    1,1 nj =     ( )LMNnnjLt j ++++=∈ ∗ ,1, 213  (41) 

 y 

x  

2N  

jQ  

jP  

1
* ,1, kjz j =  

3, ( 1, )j jq a j k• =  ( )**
2

      

1,

j

j

M

z j k

•

=
 

+-
( )Mjl j ,1=  

⎟
⎠
⎞⎜

⎝
⎛ = '

1,1 njL j
 ( )Ljj ,1=γ  

⎟
⎠
⎞⎜

⎝
⎛ += NnkLk ,1'

1
*  

hole

straight stringer  

crack 

curvilinear stringer  

οβ  

N1 

 q∞ 



 32 

,0

n
TQ

n
T

j ∂
∂

λ−±=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

λ ±
±

∗       ( )2112 ,1, nnnjLt j ++=∈ ∗  (42) 

n
ToTT

n
T

n
TTT

s ns ∂
∂

λ−=−λ−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

λ+−
∂
∂

λ −
∗

+
−+

∗−
∗

+ 12)(126)( *
*

*2

2

 

2

2
*

*2

2

22)(
s
T

n
T

n
TTT

s
o

ss ∂
∂

λ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

λ++
∂
∂

λ −

−+
∗−

∗
+  (43) 

where t is the complex coordinate of a point on the contour. When considering a hole, only 
one of the (41)-(42) thermal conditions is applied. 

In addition to the thermal boundary conditions (41)-(43) we also introduce the following 
mechanical boundary conditions as in Refs. [8,9] on the crack, stringer and hole boundaries: 

1. The normal and shear stresses that act along boundaries  kl  of the crack and the 

boundaries  jγ  of the holes are considered to be known: 

( ) ,
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tn i ±± σ−σ      Mk ,1= ;    ( ) ,
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2. Along the boundary of the straight stringer  kL  the stresses are given by: 
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Where kx  denotes the abscissa referred to the local coordinate system kkk yOx  

positioned at the mid-point of the stringer kL . By virtue of the condition of equilibrium and 
Hooke’s law for the case of generalized plane stress, relations (46) take the form: 
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where t is the complex coordinate of a point on kL , h is the thickness of the plate, 
( )kE , ( )kS , express the modulus of elasticity and cross-sectional area,  respectively, of the 

stringers kL  and kθ  denotes the angle formed by positive directions of stringer axis; kOx  

and Ox  axis; E , ν  express the plate’s modulus of elasticity and Poisson’s ratio, 
respectively. 

3. Finally, along the curvilinear (circular arc) boundary of the 

stringer ( )NnkLk ,1'
1 +=∗ , the following relationships hold [6,8,9,10]:  
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If we consider Hooke’s law in generalized plane stress, the above set of equations read: 
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( ) ( )[ ] 01 =σν+−σ+σ× +++
nsn  (49) 

where ( )θT  is the circumferential component of the force which acts along the line in 

the middle plane of the stringer. In generalized plane stress conditions, ( )θT is given by: 

( ) ( ) ( ) strkk SET 0ε=θ  (50) 

with str
θε being the circumferential component of strain along the line in the middle 

plane of the stringer: 

( )ns
str

E
νσ−σ=ε

1
0  (51) 

 
5. FORMATION OF THE STATE EQUATIONS. 
The derivation of the singular integral equations is based on the method of complex 

potentials. 
The thermal potential ( )zF  ( ) ( )[ ]zFyxT Re2, =  of the thermal field ( )yxT ,  is 

expressed as follows: 

∑
=

∗
β−∞ +−

πλ
−= ο

3

1
)* )(ln(

22
)(

k

j
j

ji zFaz
q

zeqzF  (52) 

( )zF∗  represents the thermal potential that refers to the perturbed thermal field and is 
given by: 
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( ) ( )( )21
jj iφ+φ  denote the densities along the crack, stringer and hole boundaries. 

The quantities ( )tf j
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∗∗  are expressed as: 
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By substitution of the limiting values of Eq. (53), to the boundary conditions Eqs (41)-
(43) we get the following system of integro-differential equations. ,1
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In the description of the boundary conditions (44)-(48) the complex potentials ( )z0Φ  

and ( )z0Ψ  are defined as follows: 
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( ),1 tG j   ( )tG j2 ,  ( )tG j3  denote the densities on jl , jL  and ,jγ  respectively. 
By virtue of the boundary conditions Eqs. (44)-(46) and Eq. (48), as well as 

Muskhelishvilli formulae, we get the following integral representation for ( )zΨ : 
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where: ( ) ( ) ( ),1
−+−+ σ−σ−σ−σ= ttnnj itq      ,jlt∈     Mj ,1=  

( ) ( ),1 tnj itq σ−σ=∗        ,jt γ∈       Lj ,1=  
The combination of boundary conditions (44) and (46), with the Muskhelishvilli 

formulae and Sohotsky-Plemelj formulae [1] for the integral representations of ( )zΦ , 

( )zΨ  and ( ),zF∗  gives the following system of singular equations: ,klt∈ Mk ,1=  
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Using the boundary conditions (46) we have relative integral equations along the 
boundaries of the hole jγ . 

and ,kLt∈ ′= 1,1 nk  
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If we use the boundary conditions (48)-(49) for the curvilinear stringer, we take another 
two relative integral equations. 

Finally, the system of integro-differential equations (60), (61) is augmented with the 
conditions for singlevaluedness of the displacement along kl  ( )Mk ,1= : 
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1 1
k k k

k k k
l l l

G t dt q t dt t dtβ
= − ϕ

+ κ + κ∫ ∫ ∫   ,klt∈     ( )Mk ,1=  (65) 

The densities ( )tG k1 , ( ),2 tG k  ( )tG k3  on the cracks, stringers and holes, 
respectively, are expressed as follows: 
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6. NUMERICAL APPLICATION 
As examples of application of the method developed we present two different 

problems. We assume an infinite plate which contains one rectilinear crack of a length 
l .The Ox axis coincides with the axis of the crack and its origin with the mid-point of the 
crack. The plate is under the influence of homogeneous flux heat ∞q  at infinity. 

Furthermore, heat sources 11, qq −+ , 22, qq −+ act at points ( )0,1a , ( )0,1a−  ( )2,0 a  and 

( )2,0 a−  respectively. The behavior of the stress intensity factors is given below:  

 
 

Fig. 3 Infinite plate under the influence of thermal field 
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Fig(3a): The variation of IK   stress intensity factor when the length of the crack is increasing 
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Fig(3b):The variation of IIK  stress intensity factor when the length of the crack is increasing 
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Fig(3c): The variation of IK  intensity factor when the distance of the heat source of the point O, is 
increasing 
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Fig(3d): The variation of IIK  intensity factor, when the angle b is increasing 

In sequel we assume an infinite plate which contains three rectilinear cracks of  
lengths mlmlml 2.0,2.0,1 321 === . The Ox axis coincides with the axis of the crack 

1l  and its origin with the mid-point of the crack. The crack 2l is perpendicular to Ox axis at 

0.5. The crack 3l  is parallel to Ox axis, and its mid-point is at point ( )2.0,5.0 − . The plate 

is submitted to stress 24
2 /1081.9 mNN ⋅=  at infinity. Heat sources act near the lips of 

each of the cracks 2l  and 3l . 
 
 



 40 

 
 
 
   
                   
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig (4a): The variation of IK  stress intensity factor , when the distance of the mid-point of 2l from Ox axis 
is increasing. 

 
Fig(4b): The variation of IIK  stress intensity factor, when the distance of the mid-point of 2l from   Ox axis 
increasing.  

The numerical solution of the singular integral equations, based on the substitution of 
the integrals by a discrete analogue. The discrete points used (both integration and 
collocation points) are the notes of an approximate formulae and they are determined on the 
basis of some functional relation. 

  
7. CONCLUDING REMARKS 
Basing on the method of complex functions and the theory of singular integral 

equations, a general method was proposed for solving plane thermoelasticity and thermo 
conductivity problems for cracked, isotropic or anisotropic, multiply connected bodies with 
linear and curvilinear stringers. 

Many important engineering problems can be solved by the above general method, 
such as the body with a partially of fully supported hole and periodic linear and circularly 
symmetric arrays of cracks, stringers, inclusions etc., as well as other plane elastic problems 
of a generic geometry which may be encountered in actual engineering applications. It is 
obvious that the important aspect of prediction of the behavior of a body under the 
influence of existing singularities inside the mechanical and thermal fields of forces can be 
considered by using the proposed method. 

Furthermore, the principles and procedures of the method can be effectively applied to 
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extend it to a large category of problems, such as bodies with inclusions and  bodies in 
contact containing or not a s  system of cracks. 

The work was carried out in the framework of an agreement on scientific cooperation 
between the National Technical University of Athens and the Institute of Mechanics, 
national Academy of Sciences (NAS) of Armenia. 
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