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1. INTRODUCTION

During their service life, engineering structures are subjected not only to static and
dynamic loads, but usually they are also affected by the presence of thermal fields. Thermal
influences may sometimes alter the physic-mechanical properties of the materials and
consequently, they may affect their strength properties and the resistance of the structure to
loads. In the general case, the resulting expansions (contractions) are not occurring freely in
the continuous medium. Instead, they produce thermal stresses which, in combination with
the mechanical ones (due to external loading), can contribute to the initiation and
propagation of cracks.

Even if the failure mechanism cannot, in many cases, be completely described only by
the propagation of cracks in materials, the investigations of the conditions which trigger the
initiation of a crack or a crack system from the pre-existing defects in the material (cracks,
inclusions, cavities, welded joints etc.) is of great theoretical and practical importance. For
this reason, the present investigation is concerned with the study of the stress-deformation
state of a body under the influence of mechanical and thermal fields of forces, in the
regions where singularities or stress concentrators exist, by using the complex functions
method and the theory of singular integral equations [1, 2, 3]. The methodology applied is
based on the theory of linear elasticity and thermoelasticity of the anisotropic medium and
is an extension of a previous work [4], since it includes the effects of curvilinear (in the
form of circular arcs) thin strip inclusions and holes.
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The present development of this general method permits one to use it effectively for
studying the interaction between various types of defects in an isotropic or anisotropic
material and reinforcements, in the presence of mechanical and thermal fields of forces, and
furthermore to extend it for solving many important problems of engineering practice.

2. FUNDAMENTAL EQUATIONS OF PLANE PROBLEMS IN
THERMOCONDUCTIVITY AND THERMOELASTICITY

For the formulation of the mathematical theory of the strength of isotropic or
anisotropic bodies characterized by defects in the form of cracks, holes, inclusions etc.,
under the influence of mechanical and thermal fields of forces, the model of the linear
thermo elastic body is used [4]. A general theory of this model assumes that:

a) the strain components are infinitesimal;

b) the relationships between various components of stresses and strains are given by
the generalized linear Hooke’s law, and

c) the elastic and thermal properties of the body are, in general, different in different
directions, but they are independent of the temperature and stress.

Furthermore, it is assumed that at any point of an anisotropic body, a plane of elastic

and thermal symmetry exists. Also, it is assumed that the temperature 1' (x, V,Z,t ) in an
anisotropic body is a continuous function of spatial coordinates X, ),z and time f; and

that this holds also for the first differential coefficient with respect to ¢ and for the first and
second differential coefficients with respect to X, and z . The body is referred to a

> —

Cartesian or curvilinear coordinate system with unit vectors 7, j and k .Accordingly, an

elementary surface characterized by a normal vector # which contains a random point of
the body is considered. At the point under consideration, the thermo conductivity vector

K, which refers to the elementary surface with normal vector is defined by

K, = alk“lT + azkzzj' + a3k33l€ (1)

Where £k, (i = 1,3) are the coefficients of thermal conductivity, and @, are the

direction cosines between the vector 7 and the unit vectors i, j and k. The surfaces

where the thermal conductivity vector K, coincides with the normal vector n are called
principal surfaces of thermal conductivity, whereas the directions normal to them are called
principal directions of thermal conductivity. Accordingly, the density of the thermal flux
q,, across the elementary surface with normal direction is defined as

q, =—(K, -gradT) @)

The surface which is crossed by the thermal flux of maximum density is called
principal surface of thermal flux, and the direction perpendicular to it is called principal
direction of thermal flux at the point under consideration.

In the case where the axes of the reference system coincide with the principal
directions of the thermal conductivity, the thermal field is described by the following
differential equation

o°’T o0’T o0°’T oT

k=7 thkn <7 +hky—5=cp—-0. 3)

ox oy oz ot

Where ¢ is the specific heat of the body, p expresses its density, and Q is the
quantity of heat which is radiated from the unit volume per unit of time.
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In order to find the solution of the partial differential equation (3) in space and time
domains, the initial and boundary conditions should be known a priori. The boundary or
surface conditions of thermal conductivity encountered in practice are [5]:

i. Boundary conditions of the first kind, when the values of temperature are given at all
points of the surface of the body,

T=f(x,y,z,t) 4)
ii. Boundary conditions of the second kind, when the values of density of the thermal
flux are given at all points of the surface of the body,

K, -gradT = f, (x,y,2,0) (5)

iii. Boundary conditions of the third kind, called also “radiation boundary conditions”,
when the conditions of thermal exchange with the surrounding medium (of temperature
1)) are given at all points of the surface of the body,

K, -gradT =T -T,), ©)

where A is the coefficient of surface heat transfer.

In the sequel, the fundamental equations of thermoelasticity will be given. For this
purpose let us consider a cylindrical body with the generatrix of its lateral surface
perpendicular to the plane of the plane of the Cartesian coordinate system, and its end faces
being thermally insulated. Further it is assumed that the temperature at any point of the
body depends on the spatial coordinates X, ) and that the body is characterized by linear
thermal anisotropy, such that at any point one of the principal directions of thermal
conductivity is perpendicular to the plane xOy .If the body is homogeneous and it does not
contain any thermal source, then Eq. (3) takes the form

o°’T o°’T o°T
11 A 2 +2}"12 +7‘22 2 =0, @)
ox Ox0y oy

Where A,, = k;, cos” a+k,,sin’ a

A

Ay, =k, sin® a+k,, cos’ a ®
A, =(k,, —ky,)sinacosa
With a being the angle between the Ox -axis and one of the principal directions of

thermal conductivity, and the quantities k,;, A, (7, =1,2) are constant.

i
The general solution of Eq.(7) is given in the form [6]:
T'=F(z;)+F(z;)=2ReF(z;) )
Where the overbear denotes complex conjugate, Re denotes the real part of what

follows and £ (23) is an analytic function of the complex variable z, .Parameter L, is

one of the roots of the characteristic equation
Aplt® + 20,0+ Ay, =0 (10)
Where My =—Ay, +l'(kukzz)l/2 /s
With i denoting the usual imaginary unit.
The thermal flux as a function of F (23) is expressed by a function of f3,,f3,

Which are the direction cosines between the normal vector 7 and the element dls

- oT oT oT oT
K, -gradT = (A, a + A, 5)51 + (A, g + Ay 5)52 (11)

By virtue of Eq. (9), relationship (11) assumes the following form
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K, -gradT = A F'(z,) + 4 F'(z,) (12)
o d .
where| = » and A =(hpy + 130 (B, +1By)
dz,
Basing on relationships (9) and (12), we can find the temperature and the thermal flux at
any point of the body, if the mathematical form of the thermal potential F’ (23) is a priori
known.

At any point of homogeneous and anisotropic body under a plane strain state, where exists a

plane of elastic symmetry which is perpendicular to Oz -axis and coincides with one of the principal
directions of thermal conductivity. The generalized Hooke’s law in this case takes the form

€, =00, +0,0, +0,0, +0,0, + BT,
€, =00, +Q,0,, +0Ay0,, +0,0,, + BT,
Y = %10, T 0ps0,, + 03,0, + 0O, — 2B T (13)
€. =030, +0,0,, +03;0_ +0;30,,+ BT =0,
Y, =00, + 0,0, = 0,7,.= 0450, + 050, = 0,
or alternatively &, =¢;,6, +¢,0, +¢40, + oI
€, =C;0,, €50, +C)0,, + o, (14)
Y4y = €160, T €360, + €560, — 20,1
where a;,c; express the elasticity coefficients and are related by
c.—a 2303 106 (15)
a3
In the sequel By are the coefficients which given the strain tensor components of a

body element free form external tractions, due to a temperature change of one degree. For
these coefficients then following relationships hold true:

a =B, - B (i=12) a =P+ B33 (15)
as; 2as,

Under the condition that coefficients Cyi»

the variations of the stress components and the temperature of the body, the relationships
giving the stresses and displacements as a function of the complex potentials

(I)(Z1 ), ‘"P(Zz) and F(Z3) are the following:
Ouw = 2Re[p12d)(zl) + Mi‘P(Zz) +1,1,F(z;)]
G,, =2Re[®(z)+ ¥ (z,) +n,F(z;)]
Gy =—2Re[p, (z) + 1, ¥ (z,) + M, 13 F(25)] (16)
u=2Re[pd(z,)+ p,w(z,) + py(z;)]
v=2Re[q,9(z) +q,W(2,) +¢.W(2;)]
p;= Cnl«li T =Gk, Hg; = C12H2/ tep—ceht;  j=12

2 2
And p, =a, +n,(¢; 15 — ¢l +Ch WP =a, +M, (€13 — Cyelty +Cyy)

aw;‘ij remain constant and independent of
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n, = _(a1H§ +2a.us +a,)/ Apy)
A(H3) = C11(M3 - Ml)(l’% - Mz)(“s _M_1)(M3 _M_z) (17)
(D(Z1):¢'(Z1) LP(Zz):w’(zz) F(Z3):W'(Z3)

For the transversely isotropic body, Hooke’s law in plane strain conditions takes the
following simplified form

1 v % \% 1 v
g, =—06,-—06 —-——0o_ +B,,I, ¢ =——o, +—0c ——c_+B, T,
X E X E y EZ z Bll y E E ¥y EZ Bll
' 1 1
€, =—E (GX +Gy)+EGZ +B: 7 =0, Vo =Ty, (18)
z xy
and for the generally isotropic body,
1 1 1
€, ZE(G" —vcy)+aT, €, =E(Gy —Vcsx)+aT, Y =5’txy. (19)

In the above relations the coefficients [3;, and P;; are, respectively, the thermal

coefficients of linear expansion on the plane of isotropy (parallel to the plane xOy ), and

along the direction perpendicular to the plane of isotropy.
The relationships for the derivation of the stress tensor and displacement vector
components are simplified as follows:

.+, =20(z)+D(2)]
(6, —C,)+2ic, =2[z0'(z)+¥(2)]
2uu +iv) = kd(z) — z0(z) —y(z) + P j F(z)dz T(x,y)=ReF(z)

Where for the case of transversely isotropic body

(20)

2E (1-v 2v 2F
(@) k=1+ -——=1, B= —([311 +v_B;; ), (plane strain case),
I+v £ E. I+v
3-v 2EB, .
b)) K=——r0, p=——, (generalized plane stress case)
I+v I+v
And for the isotropic body
(c) k=3-4v, B=akE, (plane strain case),
3—-v ak )
d k= R = R (generalized plane stress case)
I+v l+v

In the case where at the point (xo , yo) inside the orthotropic medium a thermal
source of power ¢, exists, the complex potentials in the region enclosing this point take the
form ( j= 1,_3)

¢(Zl ) = a, (Zl —4 )ln(zl —1 ), \V(Zz ) = B:)(Zz —1 )ln(22 ) )s

_ _ 90 _ 2
\V(Zs)_mo(zs_t3)ln(zs_t3)a my =-— I, =Xy H1 Y,
4n\k, k,,

And the coefficients aé R BE) are given from the following relations:
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ol m—npy, B __m—np,

o By =,

Tn{mp i, + b, (1 + 1) = mg (agpy =2 (1 =1y —1,))/ ¢ ]=0,
(%H? "2“6“3 "ﬁz)
M3 _MIXMS _Mz)

For the case of the transversely isotropic or generally isotropic medium, the
corresponding complex potentials take the following form:

, Im[m(y, +p, )= npp, —mh, /¢, ]=0,

with 7\0 =

O(z)= 4, In(z-z2,), w(z)=—2%0 F(z)=m,In(z-z,) @)
Z—z
where A, =— P, , my= ~ o
1+x 4rh

Recapitulating, the solution of the plane problem of steady state thermoelasticity is
derived in two consecutive stages. In the first stage the steady thermal field 7(x,y) is

derived satisfying one of the boundary conditions (4)-(6) and the differential thermo elas-
ticity equation (7) for the anisotropic medium, or the Laplace equation

2 2
O’T(x,y), O°T(x.y) _, 23)
ox’ o

for the isotropic medium. The second stage refers to the derivation of the stress tensor and
displacement vector components by using relations (16) or (20).

3. THERMAL CONTACT CONDITIONS BETWEEN TWO BODIES.

At the first stage of the solution of the thermo elastic problem for bodies with thin
inclusions and cracks it is of great importance to describe correctly the phenomenon of
thermal conductivity along the lips of the crack and the contact interfaces of the thin
inclusion with the body. This is achieved by properly choosing the representative
computational model of thermal contact between the bodies characterized by different
elastic and thermal constants. Following [7] approach to the formulation of the model
which describes the condition of thermal contact, it is assumed that the contact surfaces are
separated by a thin interlayer (inclusion) with the same thermo-physical parameters (Fig.1).
If these parameters are assumed to be constant and the thickness of the interlayer tends to
zero, it takes the form of a physical separating surface of the two bodies, and the
corresponding boundary conditions on this surface correspond to the real contact condition
of the two bodies.

The thermo conductivity equation of the embedded layer (isotropic inclusion) referred
to the coordinate system (n,s) is the following:

02T, . 0T,
on? 05>
On the separating surfaces 7 =+h of the isotropic inclusion and the anisotropic
medium, the following conditions of thermal contact are satisfied

T (s,£h)=T*, 9L
n

0 24)

=T, (25),(26)

n=th

where A is the coefficient of thermal conductivity of the inclusion ,

T = —(Fn : gradT)i (27)

n
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and T R Tni express the limiting values of the temperature and the thermal flux along the

boundary 7 =1/ of the anisotropic medium.
Then the following integral representations are introduced:

Fig.1. Contact of two infinite elastic bodies, with the contact region to be represented by a thin inclusion characterized
by the same thermo physical properties as those of the two bodies.

h
T = 1 j T dn, 28)
23
3 h
TL, = WJ;TLI’ZCZI’I (29)

Multiplying relationship (24) by 1/2A and integrating with respect to n in the range
(— h, h) and by virtue of the relations (25) and (26), the following equation is derived:
o°T”

2
* Os

A

+(Tn+ —Tn‘)z 0, A, =2A\h. (30)

Furthermore, multiplying (24) by 3n/ 2h* and integrating with respect to 72 in the range
(= h, k) we get

2L w31 + 17 )-60, (T =T7)=0, %, =1/2h 31)

2
* Os

In order to derive the expressions for the quantities T:,T:* with respect to the limiting

values of the temperature 7' * of the anisotropic body, we use the operational expression of
the solution of (24) which can be written as follows:

o°T, 0’
£+ p'T. =0 p’=—5 (32)
on os
By considering condition the expression gives the following solution;
(T +7) (r+77)
=——2¢0s pn+-——=sin pn. (33)
2cos ph 2sin ph

By virtue of (33), relationships (28) and (29) become
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*_(T++T‘) R
Tc _thp ’ Tc _2]?2]’12

Substituting the values of 7. and 7.” found from (34) into relations (30) and (31),

(7" +77)(1- phetegph). (34)

respectively, and for 1 — 0, we get the following relations:

A, ;—22(T+ JrT")Jr2[(E;-gradT)+ —(Fn~gradT)} =0, (35)
AY

A, 88—22(? ~T7)+ 6[(E-gradT)+ +(Fn-gradT)_}—12kn (r*-17)=0.
A)

The above relations represent the conditions of “non-ideal thermal contact’’ at the surface
of the anisotropic medium. In the case of the isotropic medium, relations (35) are simplified

as follows,
2

A= (T +T7)+2%
" Os

@
on

)

or
on

;

(36)

5 o lgery (erY ] )
M= (T =TH+6X || == | +| =] |-120,(T* =T")=0
os on on

where A" is the coefficient of thermal conductivity of the isotropic medium.
In the case when instead of a thin inclusion we have a crack, the values of 7LS and 7Ln

characterize its thermal conductivity in the longitudinal and transverse directions,
respectively. Depending on thermal conductivity we distinguish three categories of cracks:

a) a thermally conducting crack for A, # 0,A, # 0;
b) a longitudinally thermally insulating crack for A, =0,A, #0;
¢) a thermally insulating crack for A, =A, =0.

4. STATEMENT OF THE PROBLEM OF A MULTI-CONNECTED BODY.
Let us consider an infinite isotropic plate S containing M internal curvilinear cracks

lj (] = 1,M), N thin strip inclusions (stringers) L, (j =L,N or j=1n + nz), n,
denotes the number of straight stringers, whereas n2 the number of curvilinear (circular
arcs) stringers and L the number of holes indexed as y j ( j= I,_L) The plate is subjected
to biaxial state of stresses (N N 2) at infinity and is under the influence of a homoge-
neous thermal flow ¢ . Besides these loading conditions, concentrated forces Pj +iQ f
are acting at the points Z: ( Jj= E), moments M ; at the points Zj*( j= @), and £k,

thermal sources of powers g ; at the points a j ( j= 1,k3) on the plane of the plate.

Here we assume that the only deformation, which can be sustained by the straight
stringers, is the one directed along their longitudinal axis. Furthermore, both the straight
and the curvilinear stringers are taken to be of zero bending stiffness.

In plane thermo conductivity problems of cracked bodies with inclusions, the

temperature field T (x, y) is expressed as follows:
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T(x, ) =T,(x, )+ T.(x,y) (37)
where T, (x, y) is the known thermal field induced to the continuous medium, and

T, (x, y) the perturbed thermal field due to the presence of defects in the body.

Ay

Bo

P curvilinear stringer L}i (k =n +1, Nj

hole .qjiaj(]:E)

Yj(j =1, L) straight stringer

Fig. 2. Infinite isotropic thin plate containing M curvilinear cracks, /N (L ; ) L*k ) thin strip

inclusions and L holes, which is subjected at infinity to a biaxial state of stress (N 1» N 2 ) and to a

homogeneous thermal flow g,

Depending on the thermal contact conditions at the boundaries of the crack and the thin
inclusion, we have the following three relations:

T = 10 -T,0). (K, -gradT,) =0 (1)~(K, - gradT;) (38).39)
o,

82 + - — ————\* -
ksg(T* +7, )+2[(Kn-gradT) —(Kn-gradT) }:—2)% 7
82
7%6?(

= -12(K, - gradT, ). (40)

*

=)o (K edT) (K gadT) -1, (10 -1 )=

Where f * (t ) and Qi (t ) express the know temperatures and thermal fluxes along the
boundaries of the crack or the thin inclusion, (n,s) refer to the curvilinear coordinate

system; A is the thermal conductivity. In the case of a crack, the parameters /15 and /1n

correspond to the thermal conductivity in the longitudinal and transverse directions,
respectively, and eq.(38)-(40) read:

T =f-TyteL,, j=Ln zeL’;j,j=(nl+n2+1,N+M+L) (41)
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k(a;j =in—k%°, tel,,j=n+1n +n, (42)

2 + =]
ksa_z(Tf—T[)Jr@» (GT*] +(8T*] _12xn(7;+_7;-):_12k@
Os on P

on n
2 i + -] 2
xsa—z(ﬂ*+n‘)+2x [aT*j —(aT*j =2M, 0 T2 (43)
Os on on " Os

where t is the complex coordinate of a point on the contour. When considering a hole, only
one of the (41)-(42) thermal conditions is applied.

In addition to the thermal boundary conditions (41)-(43) we also introduce the following
mechanical boundary conditions as in Refs. [8,9] on the crack, stringer and hole boundaries:

1. The normal and shear stresses that act along boundaries [, of the crack and the

boundaries 7y ; of the holes are considered to be known:

(o ~is?) . k=LM: (o,—ic,) . j=1L (44), (45)
k J
2. Along the boundary of the straight stringer L, the stresses are given by:
i} du; du; . L —
6, =0,,6g=——=——,u, +iu, =u, +u,onl, .k=1n, (46)
dx, dx,

Where X, denotes the abscissa referred to the local coordinate system x,0, y,

positioned at the mid-point of the stringer L, . By virtue of the condition of equilibrium and

Hooke’s law for the case of generalized plane stress, relations (46) take the form:

. . oy EWsW o d

lh[(G; - 10:)— (csn —ic, )]+ ie" — [(0; + G:)— (1+ V)G;]z 0

E dt

tel, k=1,n 47)
where t is the complex coordinate of a point on L,, h is the thickness of the plate,
E ) S (k), express the modulus of elasticity and cross-sectional area, respectively, of the
stringers L, and 0, denotes the angle formed by positive directions of stringer axis; Ox,

and Ox axis; E, Vv express the plate’s modulus of elasticity and Poisson’s ratio,
respectively.
3. Finally, along the -curvilinear (circular arc) boundary of the

stringer L, (k = n1 +1,N ), the following relationships hold [6,8,9,10]:

_i@) + h(cs; - iG;): 0, L_dT(O) + h(Gj - G;): 0 (48)
R, R, dO
P du; du;
u, +iu, =u, +iu,, & = -
dt  dt

If we consider Hooke’s law in generalized plane stress, the above set of equations read:

ERkh[(cs: -0, )—i(cst+ -0, )]—E(k)S(k){l—(t—mke"”k )%}(

k
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x[lo; + 1)~ (1+v)or]=0 (49)

where T (9) is the circumferential component of the force which acts along the line in
the middle plane of the stringer. In generalized plane stress conditions, 7' (G)is given by:

7(0)=E"S ey (50)

with 83” being the circumferential component of strain along the line in the middle
plane of the stringer:

str

1
i = o, ~v,) o

5. FORMATION OF THE STATE EQUATIONS.
The derivation of the singular integral equations is based on the method of complex
potentials.

The thermal potential F' (Z) [T (x, y) =2ReF (Z)] of the thermal field T (x, y) is

expressed as follows:
k'i

qoo —ip - q/
F(z)=21= o — ~In(z—a,+F, 52
@=fre =Yg, R 52

F, (Z ) represents the thermal potential that refers to the perturbed thermal field and is

given by:

n * -1(2) nj+n,
F (z): LJ. /i (T)Jrld)j (T)dr+ Jf** e ln(t—z)dt+

* .
T 2mi T—z i n]+1

LlJ
(1 4 :4(2)
¢j l(I)j It

T—2Z

Jj=

(1) +M+
RTICIE T

2mi Z, T—zZ Jem gl 2T z,

(53)
((1)51) + l'd)g2 ) denote the densities along the crack, stringer and hole boundaries.
The quantities [ j* (t ) and fj** (t ) are expressed as:

—lro-reb r0-- ) 4

By substitution of the limiting values of Eq. (53), to the boundary conditions Eqs (41)-

(43) we get the following system of integro-differential equations. ¢ € L, k=1, n

( nl+n2 ()
nL]K = 2TEL1 jem +1 TEZ L T—t
/¢ J J
NAM+L ¢(/})(T)+i(|)(jg)(1)
1= dt|=f —2Re
+‘,_,,IZ+,‘ZZ+1 nii[ T—t TE A ( )+fk =
+/Z; - j fe ™ In(x —t)dr+q2°° te™™ +/Z nfx In(r— a, ) (55)
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m *(2)
— I udr+
L

1
j= ,,l+1m T 3 T—t
Jj#k J

Jj=1

2 Red i) LJ' ¢*(l)(r) 1* * 1 J- ¢
niL*zk T—t T— t

2/

N N%MLJ.(I) +l(|) } ) 2Re[ ()iak(t)x

Jj=ny+ny+1 T ng

k + ia; (x)
s b0 _N 1 ) A R ) (T)e
X[[2e Z27c7ut a] Jzn L-[ 2 +1nz'[ T— ’

Jj=n
tel,,, k=n+1n +n, (56)
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In the description of the boundary conditions (44)-(48) the complex potentials @, (Z )
and P, (Z ) are defined as follows:
k .
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G, /.(t ), Gy, (t ), G, /.(t ) denote the densities on /,, L, and y; respectively.
By virtue of the boundary conditions Egs. (44)-(46) and Eq. (48), as well as
Muskhelishvilli formulae, we get the following integral representation for ‘I’(Z :
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Where:qu(t)=(G;—G;)—i(G:;G:), tel,, j=LM

ql*j(t):(cn—iot), tey,, Jj=LL
The combination of boundary conditions (44) and (46), with the Muskhelishvilli
formulae and Sohotsky-Plemelj formulae [1] for the integral representations of (I)(Z),

lP(Z) and F, (Z ), gives the following system of singular equations: ¢ €/j, k = LM
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Using the boundary conditions (46) we have relative integral equations along the
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If we use the boundary conditions (48)-(49) for the curvilinear stringer, we take another
two relative integral equations.
Finally, the system of integro-differential equations (60), (61) is augmented with the

conditions for singlevaluedness of the displacement along /, |k =1,M ):
I (—3 p
G, (t)dt= t)dt — t)dt, tel,, k:il,Mi 65
;[ lk() 1+K;!:q1k() 1+K;[(P1k() k (65)

The densities G, (t), G, (t), G, (t) on the cracks, stringers and holes,

respectively, are expressed as follows:

¢
6= g -, e, k=Th ©
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6. NUMERICAL APPLICATION

As examples of application of the method developed we present two different
problems. We assume an infinite plate which contains one rectilinear crack of a length
| .The Ox axis coincides with the axis of the crack and its origin with the mid-point of the

crack. The plate is under the influence of homogeneous flux heat ¢ at infinity.
Furthermore, heat sources + ¢,,—¢,, + ¢,,—¢, act at points (al,O ), (— al’O) (0, az) and
(0,—a2) respectively. The behavior of the stress intensity factors is given below:

9o
\@b

y

Fig. 3 Infinite plate under the influence of thermal field
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Fig(3a): The variation of K ; stress intensity factor when the length of the crack is increasing
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Fig(3d): The variation of K 7 intensity factor, when the angle b is increasing
In sequel we assume an infinite plate which contains three rectilinear cracks of
lengths [, =1m,l, =0.2m,l; =0.2m . The Ox axis coincides with the axis of the crack

[, and its origin with the mid-point of the crack. The crack /, is perpendicular to Ox axis at
0.5. The crack /; is parallel to Ox axis, and its mid-point is at point (0.5,—0.2). The plate
is submitted to stress NV, =9.81- 10* N/ m” at infinity. Heat sources act near the lips of

each of the cracks /, and /.
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The numerical solution of the singular integral equations, based on the substitution of
the integrals by a discrete analogue. The discrete points used (both integration and
collocation points) are the notes of an approximate formulae and they are determined on the
basis of some functional relation.

7. CONCLUDING REMARKS

Basing on the method of complex functions and the theory of singular integral
equations, a general method was proposed for solving plane thermoelasticity and thermo
conductivity problems for cracked, isotropic or anisotropic, multiply connected bodies with
linear and curvilinear stringers.

Many important engineering problems can be solved by the above general method,
such as the body with a partially of fully supported hole and periodic linear and circularly
symmetric arrays of cracks, stringers, inclusions etc., as well as other plane elastic problems
of a generic geometry which may be encountered in actual engineering applications. It is
obvious that the important aspect of prediction of the behavior of a body under the
influence of existing singularities inside the mechanical and thermal fields of forces can be
considered by using the proposed method.

Furthermore, the principles and procedures of the method can be effectively applied to
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extend it to a large category of problems, such as bodies with inclusions and bodies in
contact containing or not a s system of cracks.

The work was carried out in the framework of an agreement on scientific cooperation

between the National Technical University of Athens and the Institute of Mechanics,
national Academy of Sciences (NAS) of Armenia.
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