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KJIACCHMYECKUE, TaK M HEKJIACCHYECKHE KpaeBble 3a1aud. bosiee oOIIMe pe3yibTaThl MPOUILTIOCTPHUPOBAHBL
pELICHUSIMI KOHKPETHBIX 3a/1a4.

The essence of asymptotic method solution of singularly-perturbed differential equations is explained. The
mentioned method is applying for the boundary-value problems of statics and dynamics of thin bodies (beams,
plates, shells) solving. The general results is illustrated by the solutions of determined classes problems.

I. The solution of the first static boundary value problem of thermoelasticity for beams,
bars, plates and shells.

Before describing the essence of the asymptotic method of plane and space problems
solutions of elasticity theory for beams, plates and shells, we shall find out what kind of
perturbed by small (big) parameters differential equations correspond to these thin bodies.

1. Regularly and singularly perturbed differential equations and the asymptotic
method of their solution. All the differential equations, containing a small parameter, are
divided into regularly perturbed and singularly perturbed equations. In order to reveal their
principal difference and the application singularities of the asymptotic method for their
solution, we consider the following two model equations:

a) U'+eu'=0, u=u(x), xe[0,1] (1.1)
b) eu"+u'=0 (1.2)

where € is a small parameter. It is required to find the solution of equations (1.1), (1.2)
under the boundary conditions
u(0)=a, ud)=p. (1.3)

“Four lectures reading by author in “South-Caucasian Summer School on Mathematical
Modeling of Thin Structures”. June 16-20, 2008. Tsakhkadzor, Armenia.



u=C +Ce™ (1.4)

which is the continuous function from small parameter €, will be the solution of equation
(1.1). Satisfying conditions (1.3) we have the solution

U=a+(P-a)x at €=0

u :m[ﬁ(egmx)_es)—a(eex—eg)} at €20 (1.3)

it's easy to verify the continuousness of the solution at € =0 .
As equation (1.1) contains a small parameter, it is natural to use the asymptotic
method and sick the solution in the form of a power series

s=0,0 (1.6)

u=¢'u

S

where signification S = 0,00 means summing by umbral (repeating) index S from zero to
(+00) . Substituting (1.6) into (1.1) we get an iteration equation

"
S

u/+u;,, =0, u,=0 at m<0 (1.7)

for determining coefficients U, .
Conditions (1.3) will have the form

U, (0)=a, u,(1)=p, u,(0)=0, u,(1)=0, s>1 (1.8)
At S =0 equation (1.7) will have the form
u, =0 (1.9)

i.e. in case of regularly perturbed equation (small parameter € is not the coefficient of the
big derivative), the shortened (not perturbed) equation, i.e. equation (1.1) at € =0, has the
same order, which the initial equation (1.1) has. This important property permits us to
satisfy the given boundary conditions. Particularly, at S =0 we have

U, =(B-a)x+o (1.10)

and at S =1,2, taking into account conditions (1.8), the solutions

1 1
u, _E(oc—[?))x(x—l), u, _—E(oc—[?))x(x—l)(zx—l) (1.11)

The iteration process may be continued and got the solution for any approach. Later on, the
question of series (1.6) similarity is considered. As a rule, the similarity is asymptotical, i.e.
the error is of the first rejected term order of the series.

The property, illustrated on the boundary value problem (1.1), (1.3), is common for all
the regularly perturbed equations including for the equations in private derivatives,
therefore such equations may be solved using the decomposition of type (1.6).

Now we consider singularly perturbed equation (1.2), i.e. when the small parameter is
the coefficient of he highest operator (derivative). The solution of equation (1.2) is

u=A+Ae™" (1.12)



which is not the continuous function from € already. Satisfying conditions (1.3) we get

1 —1/€ —X/€
U:m[ﬁ—ae Vet (a—ple ] (1.13)

At e<<] U= B out of dependence on values X, except some small area near X =0,
which is called boundary layer. The corresponding graphs are depicted in fig.1, fig.2.

Fig. 1 Fig. 2
Consider a possibility of the boundary value problem solution (1.2), (1.3) by an
asymptotic method. Naturally, the solution, in this case too, is sought in the form of (1.6).
For U, we obtain the equation

u’,+u, =0 (1.14)
At S =0 we have
uo=0 or u,=C, =const (1.15)

i.e. the unperturbed equation has less order, than the perturbed (1.2). That’s why by
solution (1.15) it is not possible to satisfy two conditions (1.3). A question rises — which of
these conditions should be satisfied. From the above brought analysis of the exact solution,
the satisfaction of the second of the conditions (1.3) becomes natural, i.e. the condition,

near the end of which there is no boundary layer. Then C, =3 and U, = 3. It appears that
it is possible to satisfy the first condition of (1.3) too, if the solution of the boundary layer
for the end X =0 is built. For it replacement of variable t = — X/ € is introduced and such

solution of transformed equation (1.2) which has fading nature and can remove arising
residual at X =0 [1-4]

u, =Ce' =Ce™* (1.16)
will be this solution. Requiring at X =0 (t =0)
Uy(X=0)+u,(t=0)=a (1.17)

we determine C, = a.—[3. As a result the initial approach will correspond to solution



u® =u, +u, =B+ (a-pe* (1.18)

which at small € practically coincides with the exact solution (1.13). If at determination
U, we satisfy the first condition of (1.3), we get U, = ot. Then it is impossible to satisfy

the condition at X =1, as there is no boundary layer there, because introducing the
replacement of the variable 1= (X—1)/¢, —1/&6 <N <0, equation (1.2) is transformed

into Uy +U; = 0, which does not have fading solution on the interval —1/6<m<0. The

iteration process may be continued. In this way it is possible to give mathematical proof of
the procedure of finding asymptotic solution.

From the above built asymptotic solution the conclusions general for singularly
perturbed differential equations follow: the solution cannot be obtained on the form of one
decomposition by small parameter of (1.6) type, it is made up from the principal solution

(1"™) and the solutions for the boundary layers (1) ; several boundary layers may exist

in dependence of the problem and order of the perturbed operator; these solutions may be
built separately and product their conjugation with the help of the boundary conditions.

In the problems of elasticity theory for thin bodies in the equations the small
parameter is the coefficient of not the whole highest operator, but of its part, yet the
I int

structure of the solution remains unchangeable (I = 1" + ;). The unperturbed equation

has the smallest space dimension and the boundary functions constitute a countable set.

2. The asymptotics of problems solutions of bend of beams and tension-
compression of bars. Classical theory of beams and bars is built on the base of Bernoulli-
Coulomb-Euler plane cross-sections hypothesis. Kirchhoff generalized this hypothesis
(hypothesis of undeformable normals) for derivation of two-dimensional equations of plates
and by the variation method developed the well-known boundary condition for the free end.
Love applied the hypothesis of undeformable normals for deducing the equations of shell.
The classical theory of shells obtained a complete form thanks to S.P.Timoshenko,
V.Flugge, V.Z.Vlasov, A.L.Goldenweiser, A.l.Lurier, V.V.Novoghilov monographs. The
classical theory of anisotropic plates, including layered plates, is built by S.G.Lekhnitski,
and the theory for anisotropic shells was built by S.A.Ambartsumyan. And with this
sequence we discuss the problem of reduction of the corresponding three-dimensional
problems of elasticity theory to two-dimensional and one-dimensional problems of
mathematical physics, reveal the connection of such reduction with classical theory of
beams, plates and shells. By asymptotic method we solve new classes of problems for thin
bodies, which are not possible to solve on the base of the classical theory hypothesis.

We set the problem: to find the solution of the first static boundary value problem of
thermoelasticity in rectangular domain D ={(X,y): 0<x<Il,-h<y<h, h<<l}

with the account of volume forces and temperature by Duhamel-Neumann model. It is
necessary to find the solution:
of the equilibrium equations
0o 0c
24— 24+ F(X,Yy)=0
OX oy

0c,, Oc
L+ —2 4+ F (X,y)=0
OX oy

@.1)

of the equations of state (Hook’s generalized law)



ou 1

&:E(GXX —VGW)+G.116

ov 1

~ :E(csyy -VvG,,)+0a.,,0 (2.2)
ou ov 1

—+—_—==0,+ta,0

oy ox G

where o, are the coefficients of thermal conductivity, E, G are Young’s and shear
modules, V is Poisson’s ratio, O =T (X, y)—T,(X, Y) is the change of temperature under

boundary conditions on the longitudinal ends Y = £h
0, (X £h) =£X*(X), o, (X,2h)=£Y*(x) (2.3)

and under the conditions at X = 0,| (conditions of fastening), which are considered to be

arbitrary for the present. As mass forces, for example, weight (F, =0, F, =—p(X,y)g )
or the reduced seismic force by Mononobe model (F, = BKP, Fy ~ 0.75F, ) may come

forward, where P is the density, B is the coefficient of dynamics, kS is the coefficient of

seismicity, P is the weight of the rectangle.
For solving the set problem we pass to dimensionless coordinates and displacements

x=1, y=ht, U=u/l, V=v/l (2.4)

Equations (2.1), (2.2) will have the form

oo 4 80Xy
X IF (1€,hC) =0, =h/l
o +e o +IF (IE,hC) e=h/

doc,, 0o,

+e +IF,(1€,h0) =0
o€ o
o 1
a—azg(cxx —Vny)+OL119 (2.5
LoV 1
€ IE:E(GW —VGXX)+a229

LU v 1
& —+—=—=0,
oC & G
System (2.5) is singularly perturbed by small parameter €, but this singularity differs
from the classical singularity (1.2), as the small (big) parameter is not the coefficient of the

whole highest operator (derivative), but only part of it. The structure of the solution, as we
shall be convinced of it below, remains unchangeable

+0a,,0

I=1"+1, (2.6)

i.e. the solution consists of the solutions of the inner (basic) problem and the problem for

the boundary layer. In our case |, = |él) + |é2) , Where |k§1) is the solution of the boundary
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layer for the end X =0, and |éz) is for the end X =I. Note that such a structure of

solution (2.6) takes place in any physical problem, considered in narrow area.

It is known that not all the components of the stresses tensor and displacement vector
have the same contribution in the common stress-strain state. By virtue of it when
determining the solution, particularly, of the inner problem, the question of the correct
determination of asymptotic order of sought values is really very important and
considerably difficult. It has deeper roots, as having formulated any physical law or
hypothesis, some asymptotics is given in fact. The correct determination of the asymptotics
is considered to be art by some authors [6].

The solution of the inner problem | " will be sought in the form of

I = g5 O, £) s=0,N (2.7)

where | is any of the stresses and displacements, S =0, N means summing by repeated

(dummy) index S from the zero up to the number of approaches N . It is established [5,7],
that after the substitution of (2.7) into the system (2.5) and equalizing the coefficients at the

same degrees of € in each equation, we get incontradictory system for determining | © , if
qux 2 quy qcyy = O’ qv = _3 (28)
Having solved with the account of (2.7), (2.8) obtained from (2.5) a system we have
VO =V 60
u® = C+U(s)(§)+u(s)(é 0)
di
sV
ol = C+E +o' (2.9)
dé dg
v d2u®
(s) _ () (s)
Oy = 2 az ¢'-E ac’ C+00(8) +0,(E,0)
Ledv® o 1odu® |, dog,
oy == B Oy Ea O g o © 060
6 d¢ 2 de dé
where
4
v = J‘[ (s 4) Vcii_z) ) + (1229(5_2) } d¢
0
) i 65 4. 00 o
u = | = SO a0 = |dc
0 g
ou’ 5
o) =E——+vo'; ' —Eq, 6" (2.10)
ac
¢ (s) ¢ (s)
0G .. G, .
of.=—[| ¥ +=2|dg, ol =—[| K +—2 |d¢
0 a& 0 a&

10



FO =1g’F,(Ig,h0), F =IgF,(1g,h0), F=F® =0, s#0

00 —¢29, 09 =0, 50, ™ =0 at m<0

Solution (2.9) contains unknown functions U(S), V(S), G(x;)oa G(y?)o, which must be
determined from conditions (2.3) and the conditions at X =0,| . Having satisfied (2.3)
Gisy)o, G(yi/)o are expressed through U, v

1 _d’v® 1
(s) +(S) —(s) (s) (s)
o =——E + ~X L&)+ (E,~1)
xy0 2 dE_,3 2( ) ( Xy Xy )
1 , 1 dg
(s) _ +s) —(s) (s) (s)
) —E(Y -Y )_5 dg ——( (& D+0 (& D)) Q.11

XEO =X, YEO ZyE XEO YO 0, 520

For determining functions u“), v

d u(s) ®
dg "
= (X0 X G606 )

1 _d*v®
—E =q® 2.12
3 d&“ q (2.12)

q® =%(Y+(S) +Y*(S)) ( (S)(a - G(S)(};,—l))+

20|&[X*“) X —oll (&) -ch.E-D ]

equations are obtained.
From (2.12) we have

g £
Eu® = [de[qdg+C{E+Cy

00 (2.13)
1 (S)_éd éd éd i (S)d C(S) §3 C(S) (:2 C(S) C(S)
SEv —! a{ a! alq E+C S+ C S+ CEC

Comparing solution (2.13) with (2.9), the stresses will contain constants
Cl(s), C3(5), Cis) , constants Cz(s), CS(S), Cés) will characterize rigid displacements, which
may be excluded fastening one point, for example the origin of coordinates, requiring

U v

— = 0

g 0O¢

U ®(0,0)=0, V*®(0,0)=0, ( (2.14)

11



Only by solution (2.7)-(2.13) it is impossible to satisfy the conditions at X = 0,1, for
example, conditions like

a) 6,,(0,0) =0(C), 6,,(0,0)=w(C)
b) U(O, C) = (Pl(C)a V(O’ C) = \Vl(C)

In better case we can satisfy conditions (2.15) in one or two points, but not in all the points

(2.15)

with unknown yet constants Cl(s), C;S), Cf) of the solution, this again proves the

singular perturbance of the initial boundary problem. In order to satisfy conditions (2.15), it
is necessary to built the solution of the boundary layer at X =0 .

As inhomogeneous equations (2.5) and boundary conditions (2.3) are satisfied by the
solution of the inner problem, the boundary layer should be determined from homogeneous

equations corresponding to (2.5) with homogeneous (zero) boundary conditions at & = 1.
Making substitution in these homogeneous equations by variable [2,5,7] t =& / € and
putting index “D  (boundary) to all the quantities, we get the system

0G, N 0C _ 0G N 0G p _

b

ot o ot o
_,0U 1 LoV, 1
€ ]?b:E(Gxxb—vcyyb), € la_Cb:E(nyb_VGxxb) (2.16)
g Ay, +¢! My :lc
oc a G
It is necessary to find such a solution of system (2.16), which satisfies the conditions
Cyb (t,£1)=0, Oy (t,£1H)=0 (2.17)

and has fading character when removing from X =0 (t = 0) into the inside the rectangle-
strip. This solution has the form

;i (1,8) = g_Hscgjsb)(C) exp(—At), s=0,N
U,.Vy) =2 (U (£), v (£) ) exp(-At)

where A is yet the unknown number.

(2.18)

Substituting (2.18) into (2.16), all the unknowns may be expressed through G(ysyi) :

2__(9) S
(s) _Ld Oyyb (s) _ldc(yy)b
Oy = 2 2 xyb T
W dC % dC
S 1 dZG(SL S
e BT (2.19)

3__(s) (s)
v = —% d Ggyb +(2+Vv)A? 9%y,
VE| dC dc

which is determined from the equation

12



d4c® d26®
ag g om0 (220

From the first two formulae of (2.19) and conditions (2.17) follows a very important

O, in the arbitrary cross-section t =1,

property — self equilibrium of the stresses G, , Xy

+1 +1 +1
J. Oxxb (t’ C)dc = 09 j chxbdq = 09 I nyde_, = 03 Vi= tk (2.21)
-1 -1 -1

But the displacements do not have this property (2.21), i.e.

+1 +1 +1
[u,dg=0, [eu,dg=0, [v,dg#0 (2.22)
-1 -1

-1

Having solved (2.20) and satisfied conditions (2.17) we get
o) =A®F (), n=0,N (2.23)

yyb
In the symmetrical problem (tension-compression) GO, , U, Gy, are even, and

Vy,, O,,, are odd functions from C, in the skew-symmetrical (bending) problem it is vice

Xy
versa. We have
symmetric problem

F.(§)=CsinA L—tanA cosA,C, sin2i, +2A, =0 (2.24)
skew-symmetric problem

F.()=sinA,L—-CtanA cosA.,C, sin2i,—2A, =0 (2.25)

Transcendental equations sin 24, £2A, =0 have complex conjugate roots (except

trivial A =0), situated symmetrically relative to the axes of the coordinates. We are
interested in the roots with ReA | > 0, providing the fading character of the solution. The

values of the first five roots with Re A, > 0 are brought in Table 1.

Table 1
27\.n = Xn + IYn
Sin27un +27\n =0 Sin27»n —27»n =0
n Xn Yn Xn Yn
1. 42124 2.2507 7.4977 2.7687
2. 10.7125 3.1031 13.8999 3.3522
3. 17.0734 3.5511 20.2385 3.7168
4. 23.3984 3.8588 26.5545 3.9831
5. 29.7081 4.0937 32.8597 4.1933

Solution (2.18), (2.19), (2.23) may be transformed so that the real quantities should
appeare only. For any of the stresses and displacements Q,, admitting

13



QY = Aﬁs)dnb (t,&), where (jnb =Q,p (&) exp(=4,1t), Q,, is the coefficient under

the arbitrary constant Aﬁs for the given quantity, representing A}gs) ( A(S) (S)),

n

we have

QY =ReQ,,A® +ImQ, Al (2.26)

Note that solution (2.18), (2.26) is exact solution for arbitrary S. It is known in
elasticity theory as Shiff-Popkovich-Lourier homogeneous solution.

The solution of the boundary layer It()Z) at X =] may be obtained from the solution

at X =0 by formal replacement t with t, =1/g—t.

2.1. The connection with classical theory of beams and bars. The solution of the
inner problem (2.7)-(2.13) has a direct connection with classical theory of beams bend and
tension-compression of bars. In order to reveal this connection we write equations (2.12) in
dimensional coordinates and displacements, according to (2.7), (2.8)

u=le?u® =u, +au, +---+&ug +--

—3+sV(s)

v=le =Vot+ev, ++ &V +oe (2.27)

1
© =—g'v,

into equations (2.12) we get

1
u® =-¢g’u, v
I S

Substituting values for U(S), v

d’u
EF ™ =0y, O =260, F=2h (2.28)
d*v, 2
(s) ( ) (s) _ 3
EJ PV =q,”, ¥ =2q", J_gh -1 (2.29)
where EF is the rigidness of the bar under tension-compression, EJ is the rigidness of
the beam under bend. At s=0 )(((())) =— ( X"+ X _) ,

d _
q” = (Y+ +Y~ )+ hd—( X=X ), equation (2.28) coincides with the classical
X

equation of bars tension-compression [8], and equation (2.29) coincides with the classical
equation of beams bend [8, 9]. Moreover, the initial approach of the asymptotic solution of
the inner problem contains more information, as by formulae (2.9)-(2.11), (2.13) the

stresses Oy, Oy, the last of which in the classical theory is neglected at all, are calculated

as well. The approaches S >1 correct the results on classical theory, displacements and
stresses, corresponding them, change along the transverse coordinate C nonlinearly. So,
admitting the hypothesis of plane sections, approaches S >1 of the inner problem and the
boundary layer, to which the new exact solution of elasticity theory equations

(homogeneous solution), which is not possible to obtain with the method of hypotheses,
corresponds, are neglected.

14



2.2. Conjugation of the solutions of the inner problem and the boundary layer.
Letat X =0 conditions (2.15)a be given. According to (2.6) | = 1™ + |,§l) + |é2). When
satisfying the equations on the end-wall X = 0, the influence of ItEZ) is usually neglected.
It equivalent to 1+ exp(—ReA, 1/h) ~ 1, which, according to Table 1, always takes place
for real beams and bars (|1 > 10h). We have

G, = 8—2+s6(s) Py Si)
(S) 17148 5(9) (2.30)
y = e +e" o,

Multiplier € expresses the fact that the solution of the boundary layer, as the solution of
the homogeneous boundary value problem, is determined with the accuracy of the constant
multiplier. ) should be determined so, that during the satisfaction of conditions (2.15) a

contradictions wouldn’t arise. It is achieved at f = —1. As a result we have

G (x=0,0) + 0 (t=0,0) = ¢

xxb

ol "(x=0,0)+o (t=0,0) =y 2.31)

xyb

0" =0, ¢9=0, 520 (o,y)

(s)
xyb

(s)

xxb 2

Functions & O, satisfy conditions (2.21). As a result we have the conditions

j o$(0,4)dg = j 0¢dg, j Go' (0,6)dg = j Go" g
(2.32)

j oy (0.0)dG = j v g

From the three conditions (2.32) constants of the solution of the inner problem Cl(s),

C®, C¥ are determined. It is interesting that in (2.32) the conditions turned out to be as

many as the unknown constants are in the solution of the inner problem, which indicates the
presence of the inner harmony in elasticity theory. Coming back to (2.31), where

) 6 are already known functions, for determining the constants in the solution of

Oy » Xy

the boundary layer we obtain the conditions

G (t=0,0) ="~ (0,0)

. . . (2.33)
ol (t=0.0) =y ol (0,0)

or
Rerxb(O C)A1(S) +IInGxxb(O C) (S) _(S)

. o (2.34)
Reryb(O C)Al( )+Im0xyb(0 C) ( ) ( )

15



where 6(5), \TJ(S) are the right parts of conditions (2.33). For the calculation of the values

of Al(rf ) and (i) from system (2.34), collocation method, Fourier method, the method of

least squares etc., may be used.

2.3. Connection with Saint-Venant principle. From conditions (2.32), (2.33) a very
important fact follows — if at X =0 conditions (2.15)a relative to the stresses are given,
then the solution of the inner problem takes non-self-balanced part of the load on itself, and
the boundary layer by virtue of (2.33) takes the self-balanced part of the end-wall load on
itself. From this purely mathematical fact follows that if the beam (bar) is loaded by the
end-wall load, then the same inner stress-strain state will statically correspond to the
equivalent loads. This is the very principle of Saint-Venant. So, justification of this
principle in case of the first boundary value problem of elasticity theory for a rectangle-
strip is mathematically proved. Let’s show what was above said in some examples. Let in

215 1) <P=%IO(1—C2),\V=0, 2) ¢=2p|Clw=0, and at x=I

G = P, 0, =0. In both cases G,, =P, ,, =6, =0 is the solution of the inner

problem. The difference will be in the solutions for the boundary layer. We have (fig. 3),
(fig. 4)

1) P

Fig. 3
The fading solution when removing from the end-wall X =0, according to (2.33)

will correspond to functions $=§(1—C2), Y =0. The graphs of the stresses are

brought in [5].
2) D

Zp\? _
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_ 1 _
The fading solution corresponds to functions ¢ =—2 [E_ | \j , y=0.
In analogous way one and the same solution of beam pure bend problem (G,, =—pC,

c,, =0, o, =0 at Xx=1) corresponds to conditions 1) @(C) Zg pC, w() =0,

2
s . T
2) o(6) ZE pSlnEC , Y(€)=0. The initial approach already gives the exact

solution of the inner problem: G'Xr:(t = _T y,o, =0, = 0, where M is the bending

moment, J is the moment of inertia of the cross-section, which coincides with the well-
known elementary solution of elasticity theory. The fading solutions correspond to the

end-wall values of stresses 1) 0= §(5C3 -3(), y=0,

2
— T . T —
2) o= B(T s1n5§ - 3@} , W =0, the graphs of the stresses are brought in [5].

3

If at X=0 the conditions relative to displacements (2.15)b are given, by virtue of
(2.22) the conjugation of the solutions of the inner problem and the boundary layer should
be conducted in another way, for example, by the method of least squares. It is obvious that
Saint-Venant principle must not be formally spread over the displacements.

3. Asymptotic solutions of the boundary value problem for anisotropic beams
and plates. The asymptotic method of the boundary value problem for an isotropic strip
without any difficulty is spread for a strip-rectangle having in its plane general anisotropy,
and for a layered strip-beam, as well. In the first case we have the following state
correlations

ou

& =0, +8,0,,+3,0, + a,,0

ov

a—y = 8,0, +8,0,, + 8,0, + a,,0 3.1
ou ov

E + & = a.lGGXX + 326ny + a66(5xy + (1129

Transforming according to (2.4) the equations of equilibrium (2.1) and correlations
(3.1), we obtain singularly perturbed by small parameter € system, the solution of which
will have the form (2.6)-(2.8). The solution of the inner problem is again expressed by the

(s)

analogous formulae through functions U ® , V.7, which are determined from equations

2..(5)
fddiz =47, g =-[ XX O —oRE Do E D]
11

_;E_szfl: CIPY _1 (3.2)
3a, d&’ o
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q(s) =Y*® Ly-G) _ (S)(E‘, 1)_{_6(5)(5‘> 1)+

+di&[x+“>—x<s> 6% (ED -0 (E D]

The solution of the boundary layer have the form (2.18) and is determined by
formulae

o = AYF(Q), ol =ANFIQ). o =ATAFI)
U =—A (a4, Fr+ a0k, Fl +a,, ') (3.3)
Ve = =AY (3,1 F 28,0 F+ (@, + 8 A, F + 2, )

where functions F, are determined from the boundary value problem

a, F," +2a,h, F+ (28, + a4 A )+ 28,0 F/ + a0 F, =0 (34
F(C=%)=0, F/(C=1)=0

From (3.3), (3.4) the self-balance of stresses Oy, G, again follows in the arbitrary

xxb 2
cross-section T =1, , i.e. Saint-Venant principle takes place for the strip-beam having a

general anisotropy in the plane of the cross-section, as well.

The conjugation of the inner problem and boundary layer solutions is realized in the
similar way.

In case of a layered strip-beam it is necessary to assign all the values entering into the
equations of the equilibrium (2.1) and elasticity correlations (3.1) by index "K" (K is the
layer number) and to seek the solution of the transformed system in the form of (2.6)-(2.8).
As a result for the values "K" of that layer we have

V&S = v () 4 viF (€, 0)
(k,8)

S d ,S ,S
Ut == G @+t G0
k) _ 1 du®® ~ 1 d2V(k,s)

* ey de & dg
1 dBV(k,s) Cz 1 dzu(k,s)
(k;s) — (k s) (k.)
O, = - +0 +o,.(E,
Xy al(|1<) dzv;3 2 al(i() d(tjz C (&) Xy (EJ C)
ko) _ 1 d4 (kS)C +Ld3u(k’5)c_2 dG(kS)
W ™ et 6 a® dg 2 de
11 11

o (£,0) (3.5)

C+ay (©)+0y” (E,0)

It is not difficult to write out the expressions Qik’s) , which are the known functions.
If the packet consists of N+ M layers, where N is the quantity of the layers stood above,
and M is lower the axis OE, satisfying the boundary conditions on the facial surfaces of
the packet and the conditions of full contact among the layers (continuity of the

18



displacements and the stresses G Oy ), all the values may be expressed through the

Xy 2
displacement of N ™ layer, and for them obtain the equations [10]

2. .(n,s) 3..(n,s)
d-u LK dv™ _ _p®

de’ de’

d*v™s d3u™e 3.6)
+K = ®
de’ dg
where
n m 1
= W(Ck _Ck—l)_z ) (ka C—kﬂ)
=l k=1 &y
1 3 LA ; 3
3 (Ck Ck—1)_§kz:, al(l_k) (C—k - —k+1)
1 1S 1
Y —Cia )+ 6 —Cl. 3.7)
2 al(:o( k1> ZKZ_;aflk’( k kl)

3

h:im+2nj

j=1 j=1
Stiffness C and D are positive, and the position of the axis O can be chosen so, that
K =0. Then the first equation of (3.6) will correspond to tension-compression of the

layered bar, and the second will correspond to the bend of the layered beam. At S=0
system (3.6) coincides with the classical system by the hypothesis of plane sections [11].
In order to solve space problem for plates

D={(X,y,2):0<x<a,0<y<b,-h<z<+h} having common anisotropy
(21 elasticity constants) we input dimensionless coordinates X = |§, y= |T], Z= hC
(I =min(a,b), h<<l) and dimensionless displacements U = U/| , V= V/| ,
W = W/ | . The corresponding system of thermoelasticity equations

0
aGXX Gy n 8—1 anz + ”:X (&) n, C) =0 (X, Y, Z, &9 n, C)

ac  on ac
ou
aa = a'llcxx + alZny + a13622 + a'14Gyz + alSze + alGny + a’lle
oV
an = alZGXX + aZZny + aZBGzz + a24Gyz + aZSze + aZécxy + OLZZO
W
-1
€ _5C =830, + 85,0, +83;0,, +8;,0,, +8;50,, + 80, + a,,0 (3.8)
L0V 8W
€ ac 511 =q,0,ta,,0,, +8,,6,, +3,,06,, +3,;0,, +3,,0,, + a,,0
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10U oW
T

v  au
+

o5 on

is again singularly perturbed by small parameter € = h/ | . The solution of system (3.8) has
the form of (2.6), for the inner problem we have

=8,,0,, T 8,;0,, +3;,0,, +3,;0,, +8,0,, +3;,0,, + 030

=840, T 850, +850, +8,0,, +8,0, + 8,0, + a,,0

q=-2 for 6, G,,0,,U,v; q=—1 for 5, 5,

Xz

g=0 for o

z°

; Q=-3 for W (3.9)

Substituting (3.9) into (3.8) we obtain a system which permits integration by C and

satisfaction of the conditions at { = %1. As a result we have

W(s) — W(S)(ayn)_'_WiS)(&’n’ C)

(s)
U(S) :_Caw_+u(s)((i,n)+u18)(a;nﬂ g)’ (U,V; &Jn)

0g
oy =Cty) +15 +0(EN.0),  (X,Y) (3.10)
oy = Crisyi Ty +OClon

o = C2 e HCT T o (XY)

sz Xz*

(S) C3 ) 4 CZ (S)+CT(S)+’C(S)+G(S)

(s)

Functions T~ are expressed through u(s), V(S), W(S), which are determined from the

equations [5]

L u® +1,v®=p®, 1 u®+1,v® =p (.11)

4., /(3) 4.0 /(3) 41, /(3)
Bn g W4 +4Bm ow +2(B]2 +2Béé) o 2W 2
g o0&’ on dg°on

400 (5) 400 (5)
+4B,, gg\g - +B,, 68W4 = q<5)
n n

(3.12)

where
o o’ o
& o’ i
l, =B, e —+(B, +Bg) —— P + By o

B, a22a66 26 /Q B,, = (a11a66 _a126 )/Q (3.13)
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12 = (@686 — a12a66)/Q’ Bgs a11a22 12 /Q
Bs = (8,8 - azzalé)/Q’ Bys = (@8, — alla26)/Q
2 2 2
Q= (anazz - a12)a66 + 2a12a16a26 8,85 — 8,85

Equations (3.11), written in dimensional coordinates, coincide at S = 0 with classical
equations of the generalized plane problem, and equation (3.12) coincides with the classical
equation of the plate bend, which has plane of the elastic symmetry [11]. At S>0 the
right parts of these equations (load members) change, where the elasticity coefficients of
mutual influence, characterizing general anisotropy, enter too. Under the general anisotropy

W20, pi? #0, " #0 and the error of the classical theory makes up O(€) , when,
as for isotropic, orthotropic plates and plates having plane elastic symmetry under the

tempered anisotropy error is 0(82) , and under strong anisotropy these estimates sharply

change into the worse side.
Classical theory of plates does not take into account the boundary layer. The solution

of the boundary layer localized in the vicinity of the end & = 0 is sought in the form of

I, =" 11" (M, ) exp(—At), t=Efe (3.14)

where % =0 for Uy, v,, W,; x=-1 for Gy - In general case all the values of the
(s) (s)

boundary layer are expressed through the functions G, , Gy s which are determined from
the equations [5]
Lol + chs(yszf) R(s D
(s) (s) (s-1) (3135
L cYzzb + I'3Gyzb = RZ
under the boundary conditions
o(C=tD)=0, c3((=xD)=0, oy ((=%)=0 (3.16)

where Rl(s_l) , Rz(s_l) are known functions, RI(O) = R§0) =0, and

u=Ala 20 +QN#A@W——+2&5 +&¢4

L, = A C+UM+%QV%?HAmHﬁﬂ3i+&J4 17

L= %42 AL +&x4

At $=0 admitting G\ = L, G(y% =—L,¢, the solution of the problem (3.15), (3.16)

is reduced to the boundary value problem
LL -L)p=0
(LL-L)o | a8
(L3¢)C=il =0, (L )g:ﬂ =0, (de))(;:ﬂ =0
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The operator of the problem (3.18) is ordinary differential of the sixth order. The
system from six homogeneous algebraic equations corresponds to the boundary value
problem (3.18), equalizing the determinant of this system to zero we obtain an equation for

L. ReA, >0 of this equation will characterize the rate of decrease of the boundary layer
quantities. For isotropic and orthotropic plates L, =0 and the boundary value problem

(3.15), (3.16) splits at S =0 into two independent problems

7zh zzb 7zh
Loy =0, op(C=+)=0

to which plane and antiplane boundary layers correspond. In the first case A, are complex

Lo® =0, o@(@E=21)=0, (c2) =0
c C=%1)=0, (o )g=ﬂ (3.19)

conjugate, in the second case they are real, naturally, their values depend on the values of
the elasticity constants. For the plates from composite materials the values A are brought

in [5].Conjugation of the solutions of the inner problem and the boundary layer is realized
by the similar way, described above.

In case of shells the structure of solution (2.6) remains unchangeable, yet in the inner
problem asymptotics differs from (3.9). Iteration processes, corresponding to momentless
and moment stress-strain state of shells, are built, the conjugation of the inner problem and
boundary layer solutions is realized as for plates [5].

I1. Nonclassical boundary value problems of beams, plates and shells

Classical and precise theories of beams, plates and shells consider only one class of
problems — on the facial surfaces of the thin body the values of the corresponding stresses
tensor components are given, Meanwhile, in fundamental construction, seismic
construction, aero-vessel construction and other areas classes of problems, when on the
facial surfaces of the thin body other conditions — displacement vector, mixed conditions
are given, arise. This class of problems is accepted to call nonclassical, in order to differ
from the second and mixed problems of classical theory (similar conditions are given on the
lateral area), though from the position of elasticity theory these problems are fully classical.
Using the cited in chapter 2,3 correlations or correlations of classical theory, by direct
check it is possible to verify, that they can’t satisfy the conditions of the second and mixed
boundary value problems of elasticity theory on the facial surfaces, which means
inapplicability of Bernoulli-Kirchhoff-Love hypothesis for the solution of this class of
problems. The asymptotic method permits us to find the solutions of these boundary value
problems for beams-strips, plates and shells, in addition to anisotropic and layered ones
without using any hypothesis [5,13].

1. In case of anisotropic rectangular beams-strips it is required to find the equations
solution of plane problems of thermoelasticity in the area

D={(XYy):0<x</,—h<y<h,h<</} under the conditions
u(x,—h) =u~(x), v(x,—h) =v"(X), particularly U~ =v~ =0 (1.1)

and one of the groups of conditions at Yy = h

u(x,h)y =u"(x), v(x,h)=v"(x) (1.2)
o, (X,h) =0, (X), o, (X,h)=c],(X) (1.3)
v(X,h) =v'(X), 0,(X,y)=0,(X) (14)

u(x,h)=u"(x), o, (x,h)=0oy,(x) (1.5)
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and conditions at X =0,/ . Passing to dimensionless coordinates& = X//, ¢ =Yy/h,
and dimensionless displacement U =U//,V = v/ /, the equations of elasticity theory

will be singularly perturbed by small parameter & = h//. The solution of this system
again has the form (I1.2.6), but the asymptotics of the inner problem permitting to find the
solutions corresponding to conditions (1.1)-(1.5) is different:

Iint — q+s|(s) ,
€ &0 (1.6)
q=-1 for o,,0,,0,; q=0 for UV

which corresponds to the equations

oD o™ c®  oc®

O D g y=0, 2040 RO 020

¢ o & &
ou &
o - a, oy +a,0") +a,0% +0,0(EC)
ou® v e ; s s s

o¢ + o0& =2,,0,, +8,0)) +a666( | +0,,0%(8,0) (1.7)
ov

=a,,0% +a,,0\) +a,0,) +0,0° (&)

FX(O) = 82€Fx, FX(S) =0, s#0 (x,y),0” =¢€0, 6 =0,5%0
System (1.7) assumes integration by ¢ :

Gy =0 (8) + 0. (E,0), o)) =cy(E) +0,)(E,0)

(s) o (s) (s) () (1.8)
_(a‘IZG +a166xy0 1 +G (&.0)
) _ ( (
U® = (Aol + AgOi0)G +U (€) + U (§,0)
VE = (A0 + A5+ v (€) + ViV (6,0)
where
¢ P (sl ¢ 86(5_1)
() _ ) 4 9O« (s) _ (s) xy
'l _—j{F; : }dg o) =—[|Ff +— e
0 & 1 g
oueh
E;) = [anG(S) + a166§<;)* + ane(S) - o€ ]anl
(1.9
¢ av(s—l)
® :J- a,,6%) + azﬁc(s) + aﬁéc(xi,l +0,,0® ———1d¢
g
v = I [aucs(s) +8,0\) +a,0%) + 0,0 ]dc
-1
A =(@,a,—a; )all s A = (88 — 8,83,
A66 = (a11a66 _a16)a7
Unknown functions 6°) .6 u (s) , which are unambiguously determined from

xy0 O yo0 >
conditions (1.1)-(1.5), enter the solution of the inner problem (1.6), (1.8). For example, for
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conditions (1.1), (1.2) we have
isy)o (AII(P(S) Af (S))Q_la (S) 0= (A f © A16(p(5))Q_1

U =S U +u) —%(ui”(a,l) FUO D)
VIR = (O ) - (D v D)

: 1 (1.10)
V(&)= E(U O —um) —E(Uis) (& -u (E-1)
FOQ) = (" v ) - (D E-D)
Q=A A, -AL, U@ =u/0, U =0, s£0, (U,v)
In the problem corresponding to conditions (1.1), (1.3) we have
oy =0 —o e, o =0y ~of (5]
U(S)(i) = A16G(yi/)0 + Asﬁcg)o +u™® - Uis)(ga_l)
v = Aol + Agoy + V(€)= v (€D (L11)
o =€oy, on =¢0,, o, =0,"=0, s£0

It is not difficult to extract the values of these functions under conditions (1.1), (1.4);
(1.1), (1.5). So, unlike the first boundary value problem, the solution of the inner problem,

under the different conditions on the facial surfaces Y = =, is fully determined as a result
of satisfaction of these conditions. If the boundary functions are polynomials from variable
&, the iteration process breaks and the solution of the inner problem becomes

mathematically exact. For example, at U" =const, v' =const from (1.6), (1.10)
follows

G,y =(AU —AN)/2hQ, o, =(Axv - Au")/2hQ
_[(al6Al] _a12A16)u+ +(al2A66 _alﬁAlé)V+]/(2ha1]Q) (1.12)

u’ \a
U=—(y+h), v=——(y+h
2h(y ) 2h(y )
For the orthotropic beam-strip (8, = AI ¢ =0)

u” E ’ E "
6y =Gh——, O, == Vs =Y Y (1.13)
2h 1-v,v, 2h 1-v,v, 2h

If 6, =1 =const, 6, =—c; =const from (1.6), (1.11) follows

. _ +
=1, 6, =—0,

U=(Agt — A (y+h), v=(As" —A0;)y+h)
Solution (1.12)-(1.14), as a rule, will not satisfy the boundary conditions at X =0,/ .

The arising residual is removed by the solution for the boundary layer, which is built as in
the case of the first boundary value problem. In this way the first established in [13]
asymptotics (1.6) permitted to solve a new class of problems for which the hypotheses of

+ + -1
Oy = (8,0, —3,T )3, Gy (1.14)
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classical theory are not applicable. Asymptotics (1.6) is true for layered beams and bars.
Having solved equation (1.7) for the arbitrary K -layer and satisfied the contact conditions
among the layers, it is not difficult to write out the solution of the inner problem. This
asymptotics may be generalized for finding the solutions of the corresponding space
problems of anisotropic plates and shells as well, and layered in addition. Let’s illustrate
what has been said above on the examples of two-layered plates and shell. In case of plates
it is required to find the solution of thermoelasticity theory equations in the region

D={(a,B,7):a,peQ,,—h, <y <h, h=max(h,h,),h<< ¢}, ¢ is
characteristic tangential dimension of the plate in the plane €, interface of the layers,
when on the facial surface y = —h2 the displacement vector is given and on the opposite

surface Y =h, the stress tensor G}r},, the displacement vector components or mixed

conditions (Fig. 1). Passing in the equations and correlations of elasticity to dimensionless
coordinates E=a/l,m=B/1, C=vy/h and displacements
u=u,/t, v=uy/t,w=u /¢ for i-layer (1 =1,2) we have [5]

0} (O] ()
10c,, 100, 00

+e” —2L+ (o) — ok, + 20k, ol +(FP =0
A ai B an ag ( oo B[}) B o~ of o

1 6u(i) . R, S L L
) _ A () (i) ( () () H . . .
K_aa +/k v =alc® +all Gﬁg +e Qg O +00 00 (1,250,585, V)

(1.15)

()

-1 _ ) (D) (i) (1) () () H)
€ a—c—a136m+a230ﬁﬁ +---+a360uﬁ+a336
1 aw? ,ov? o L o o
- — A (D) 1) (D) 1) (D H )
— +€ =80, +8,,0p; + -+ 8,40, +0,,0

B on ac
where A, B are the coefficients of the first quadratic form, ka, k 5 are the geophysical

curvatures, @,; are the constants of elasticity under general anisotropic, a,; are the

coefficients of the heat extension, 8" =T® — To(i) in the temperature differential.

/4

= =
< T > T2
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The solution of the inner problem is again sought in the form of (1.6), where Q = —1
for all the stresses and (| = 0 for all the displacements. Substituting (1.6) into (1.15) by the
above described procedure, iteration process for the sequential determination of all sought
values and conditions on the facial surfaces y = hl,—h2 is obtained. After satisfying these
conditions the solution for V'S becomes well-known.

We reduce this solution for the case, when surface ¥ = —h2 of two-layered plate is
rigidly fastened, and on surface y = h1 the load of the constant intensity acts

u(=h,) =v(-h,) =w(-h,)=0
o, (h) =0, c,() =04, o, (h)=c, (1.16)

o, (h)=const, j=a,B,y
Iteration process breaks on the initial approximation and we have the exact solution
(I) () () (1) <+
= Ajo, + Ao, + Ao,

i _ A (I)

()
GBB 36 +

4GBV+

(XY
(l) (i) (1 (l)
G + A, GBV + Gy
(l) — i) _ i _
o = Gow, Cp, = GBY, G, = G (1.17)

uy’ =h,(DYs;, + Do, + Dg';c
ug’ =h,(D{s; +D{Jo, +D{o,,
ul’ =h,(DYs; +D{Jo, +DYo,,
D =CAY +A?, i=12; £=y/h,
A, = _aMBkl —a,By, —a4By, £,m=345
An =ay A +an Ay +ag A, +ay, Ay = A,
Bij = (aikajk - aijakk)/A7 Bkk = (aiiajj _ai?)/A
i=j=k=i 1, ),k=12,6, B; =B;
A =a)8,86 28,8585 — allajé - a22a126 a a66a122
Mathematically exact solution (1.17) permits us to answer a very important question

— if the model of Vinker-Fuss bed coefficient for anisotropic and layered foundations is
applicable and how to calculate the bed coefficient. For this we write out the connection

among the displacements and stresses on the surface of the contact (¥ =0) among the

“ 2

layers, putting down index “c” to them:
(©) _ (2) (C) (2) () (2) (C) (C)
u,’ =h, (Ao + Aoy’ +Aj'c =0,

(c) _ (2) (C) (2) ~(¢) (2) (C) (©) _

u’ =h,(Ajc) + Aoy’ + Afc,)), of =0, (1.18)
(©) _ (2) ~(c) A50© 4 AP (C) (C) —

u” =h, (Ao’ + Aoy + Ao =0,

If we consider that the normal load o, W only acts, we have
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© _ (2) ~(¢) (©) _ (2) 5(©) ©) _ (2) 5(©)
u,’ =h,Ayc’, U’ =h,Ajc’, u”=hAlc] (1.19)

i.e. under the effect of the normal load on the surface of the contact tangential
displacements arise, which means Vinkler-Fuss model breakdown in case of general
(2) A2
3573

anisotropy, it will be more tangible with big values A . For orthotropic and

isotropic foundations A&’ = A2’ =0 and
1

(©) (©)
o’ =Ku K=—— (1.20)
Y Yo (2)
hA;j
For orthotropic foundation according to (1.17)
1-v Ve, )E
_ ( op [301) Y (121)
Ny 1=V, Vi = Ve Vaa =VapVia =2VepViy Vi)
For isotropic foundation
1-v)E
( ) (1.22)

T h (4 v)(1-2v)

Coefficient K coincides with the well-known bed coefficient, reduced by very difficult
way [14].

Considering by asymptotic method multi-layered and inhomogeneous by thickness
foundations, we obtain [5]

K 1 1

Ea— K=y
2hAY [ A (rydy

where h is the general thickness of the foundation.

Combining Flaman solution for half-plane and Bussinesk solution for half-space with
asymptotic solution for strip and layer, it is possible to find the solutions for layered
foundations under concentrated and sectionally continuous force effects [15].

Asymptotics (1.6) established for beams and plates is true for shells as well, but the
iteration process in simplest cases does not already break on definite approximation, by
virtue of which the solution of the inner problem is asymptotic. In general case the solution
is fully determined and is expressed through the boundary functions during the satisfaction
of the conditions on facial surfaces of the shell [S]. As an illustration we reduce the solution
for orthotropic cylindrical shell the outer surface of which is rigidly fastened and inside the

(1.23)

constant pressure P (Fig.2).

Let ¢ be the length
along the  generator
(element), and &, be

the length of the arch
directing the cylinder,

then A=B=1,
ka:kﬁzo,
1/R =0, R, =R,

R is the radius of the
middle surface of the
cylinder. Taking into
account that volume
forces are lacking, and
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temperature field does not change and bounded with exactness 0(82) we have solution:
G, =0p, =0, =0, U, =U; =0,
R—-h y+h

c, =- P -
n R+y R+

——[A3<R—h>+ABAB(hw)—%AB(

P

b

(1.24)
__[A23(R h)+A23(h+y)+ A33(y_ )]_

__A33(Y h)(R - h+hAz3 + A33(Y _h2 —AA (Y- h)_

2
A=a,a, —a,

The general asymptotic solution can be written out for layered shells, as well.
I1. Asymptotic solution of space dynamic problems for plates and shells.

1. Let’s consider the following two interesting types of forced vibrations of orthotropic
plates D ={(X,y,2):0<x<a,0<y<b,—-h<z<hmin(a,b)=/¢,¢>>h}:

a) vibrations of plates fastened with absolutely rigid plane foundation:

o,(Xy,h) =0, (X y)exp(iQt), a=X,Y,Z (1.1)
u(x, y,—h)=0,v(x,y,—h)=0, w(x,y,~h)=0 (1.2)
b) vibrations, caused by the displacement vector, applied to the facial surface of
Z = —h plate:
u(x, y,—h)=u-(x, y)exp(iQat), (u,v,w) (1.3)
u(x,y,h)=0, (u,v,w) (1.4)
or
. (XY, =0c,(Xy,h)=0c,(XYy,h)=0 (1.5)
where G, T U7,V ,W are the given functions, ) is the frequency of the forcing effect.

Conditions (1.3),(1.4), particularly, simulate seismic effects on the foot of the bases of the
constructions, and (1.3), (1.5) - on the flying-landing areas.
It is required to find solutions of dynamic equations of elasticity theory of an
orthotropic body:
2
0, O | 00y _ 0 (XY, ZU VW)
OX oy 0z ot

ou

rvia 8,0, +3,0, +3,0,, (1,2,3;X,y,Z;u,v,W) (1.6)
au+av_a0 6u+8w_a0 8v+8w_a6
8y ox 66 xy oz ox 55 xz oz 6y 44 yz

satisfying the corresponding groups of conditions (1.1)-(1.5) and also the conditions on the
lateral surface of the plate as well, which are not going to be defined concretely by us,
because as in the static problem the appearance of the boundary layers corresponds to them.
The solutions of the formulated problem will be sought in the form of
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Ga[}(xa y> Zat) = ij (Xa y: Z) CXp(th)
(U, v, W) = (U, (X, ¥), Uy (X, ¥, 2),U, (X, Y, 2)) exp(iQt) (L7
o,B=xY,2; j,k=123
Substituting (1.7) into (1.6), then passing to dimensionless coordinates
§=x/tin=y/l, ¢=1/land displacements U =u,/(,V =u, /l{, W=u,//
we obtain
%o, D | g1 % +£7QU =0
e on 28

01 Bz, ;1 B +£7QV =0

& o G
00, | Do , 1 %0 +e7QW =0
g on aq
ouU
a_a =80y, + 8,0y +8,303;, (1,2;&,m;U,V)
4 OW
€ E = a,;0,; +a,3;0,, +a;;0; (1.8)
ou oV ow oU
E"’a_& = 84012, 6_§+8 E = 85503
%ﬂ+8-1 g—\é =a,0,,, Qi=ph’Q* e=h//
m

The solution of the singularly perturbed system (1.8) is again combined from the
solution of the inner problem (1™) and the boundary layer (I,):1=1" +1,. The
solution of the inner problem is sought in the form of

ol =& ol (En,0), j,k=123;5=0,N
(U —int Vint Wint) — SS(U (s) V(S) W(S))

Substituting (1.9) into (1.8), from the new system all the stresses will be expressed
through the displacements according to the formulae

W® AUt Ve

(1.9)

Gﬁ) =-A,; ac +A, o€ - A, on
ow® ov e ov e
) __ _ N
Gy As; ac A, o€ A, on

s ow ©® oy ™ A
Ggs) A,

=A, ac — M3 5E 3 on

(1.10)
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o 1 (aueh ayedYy o (au®  aw e
b =— + , O =— +
o % ac o

a66
®) (s
o) =1 [6\/ oW j, Q™ =0, m<0

13 a,.
. u\ 0C on
A, =(a,a,, _alzz)/A: A, =(ayay; _a§3)/A
Ay =(aay _afs)/A: A, =(a;;8,, —a,;a,)/ A
A =(8,8y —a,8;3)/ A, Ay =(aya; —a,8,)/ A
A= ;8,585 + 2a12a23a13 _a11a223 - a22a123 - a33a122
Substituting the values GS) R Gg) R Gg? into the corresponding first three equations

(1.8), we obtain equations to determine the functions U,V ) W )

aZU (s)
8—4/2 + aSSQfU ® = RLES)’ U.,Via;,a,:R,.R)

(1.11)
A0 (S)
A, d Wz + QW =R}
o¢
where
S aZW (s-1) 66(571) 80(571)
RLE Y= 8L — Qs alé + 81:] , (U,v; §,§;855,344;1,2)
aZU (s-1) aZV (s-1) ac(s—l) ac(s—l) (112)
R(S) — A2 + A13 _ 13 4 23 ,
" A moc o o
The solution of the system (1.11) is
Uu®=ul+u®, U,V,W) (1.13)

where the first is the summand solution of homogeneous equations, and the second is the
particular solution of inhomogeneous equations (1.11). Satisfying each group of the
boundary conditions (1.1)-(1.5) we have the final solution. The solution

S 1 S
U® = [-u” (€ m—D) cos Q. fas (1-0) +

c0s 202, /s,

V a' +(S S . S
+ QSS (GIBS : - 6531 (aa nal)) S Q* \I a55 (1 + C.;)] + U‘E )(ao na C.a)
ol = Ll [-u®(&,m,~1)sin Q. Ja, (1-§) +
/@55 €08 2Q), /A

1’ a +(s S ]
+ QSS (013( ' - 053)1 (&.n nvl)) Cos Q* V a55 (1 + C)] + 6}31 (E—” n, C)

U,V;ay,a,:1,2)
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1 Q
WS = [-WO(E,n,-1)cos———=(1-) +
oa A

CcO
VA, (1.14)

+(s) (s) Q,

+Q*;ﬁ(% -oEnD)sin 2 4 O W En0)

o QA s . Q,
oy = —29*[—WE '(&,m,~1)sin \/E (1-0)+

COS
A,
b (61— o & ) cos—2 (1+ O]+ 6L (6,1, 0)
QA VA,
c;§°> =£G,, cﬁgs) =0, s#0, j=123
1 |ou® owe?
o =— —+ 5 1,2,8. 545 s
131 . [ aC o€ ( 5508405 &5M)
s aWT(S) ou (s-1) oV (s-1)
Ggs)r =A, ac -A; o€ - A; on

corresponds to the conditions (1.1), (1.2).
The solution (1.7), (1.9), (1.14) will be finite, if

cos2Q.\Jass #0, (Ag,a,,17/ A)) (1.15)

If € is so that one of the three conditions is not fulfilled, resonance takes place, such

values 2 coincide with the principal values of the frequencies of the free vibrations.
The solution

(s) _ 1 =(s) _(s) - _ : [ _ _
D TSnaanfa, e
—u®(C =1)sin Q. fa, 1+0)]+u®(En,Q);  (U,V;ag,a,,)
1 Q
W® = ——[(W® W =-1))sin——=(1-,) - (1.16)
sin 2, VA

VA
Q
W (= Dsin—= 1+ 0)]+ W (. ¢)
VA,

u@=u/¢, u®=0,s%0, (Uv,w

corresponds to the conditions (1.3), (1.4).
Under the conditions (1.3), (1.5) we have
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1

U® =— 1™ —u®=-1 Q.Ja.(1-8) -

Y [( ©(E=-1))cos Q. fas (1-L)

a

- QF o3 (G =Dsin Q. fas (1+ O]+l €. O);
U,V;a,a,:1,2) (1.17)
1 Q

We = [(W® —w® (§ = 1)) cos—=—= (1) -

cos 2Q. \/E

JA,

1 ©) Q. )
————on (=)sin—(1+ )]+ W.” (&,n,C)
Q* \[ All \) AlI

The stresses are calculated by formulae (1.7), (1.9), (1.10), and GS)T, 6(253)1 , 0253)1 -by

formulae (1.14). These solutions will be finite, if corresponding to

sin 2Q, (/a5 #0, sin2Q.,/a,, #0, sin 22 0 (1.18)
VA
2Q),

cos2Q,./a,, #0, cos2Q,,/a,, #0, cos #0 (1.19)

VA

The values €2 under which at least one of the conditions (1.18) or (1.19) is not
fulfilled correspond to the resonance. These values coincide with the principal values of the
free vibrations frequencies of the plate, under the corresponding homogeneous conditions

on the facial planes Z = +h. Note an important fact-if the entering boundary conditions

functions O'j+y ,U", Vv ,W are polynomials from &,77, iteration process breaks, as a result

in the inner dynamic problem we obtain an exact solution (solution for the layer).

The above described approach can be used to solve problems on forced vibrations of
layered plates. For this, equations (1.6) for an arbitrary layer with number “K » are solved,
the structure of solution (1.7), (1.9)-(1.13) remains unchangeable, index “K ™ is only
ascribed to all the values, then the boundary conditions on the facial surfaces and the
conditions of full contact between the layers are satisfied. As an illustration we bring the
solution for a two-layered orthotropic plate

D={(x,y,2):0<x<a,0<y<b,—h, <z<h,min(@,b)=/,h +h, =h,h <</},
corresponding conditions (1.3) at Z = —h2 and conditions (1.4) at Z= |’I1 , When

U ,v ,W =const. The iteration breaks at the initial approach and the following exact
solution is obtained:
u, = U, expiQt, (u,v,w),

for the first layer (0 < <C,, £, =h,/h)

G jm €XpIQL, k=111 (1.20)

jmk —
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U, =u" p“ L ~—sinaQ.(g, - &)
55 AI
~ Pu 2
V, =V ——sma 'Q, 1.21
e € -0 a21)

~ _ Q. .
W, =Ww A,Iip” A_Slnaﬁlg*(Q -0)

3
- L an L& o AW,
G

G5 = hass aC G ha44 @C G331 = h
1 A
5, =0, &, AW AW

h og h &
forthesecondlayer(—é’2 <£<0,¢,=h,/h)

o, = /p,, sina/ Q.g, cosa' Q.L— |- cosa/ Q.(, sina' Q. (;
ass 355 A

v, = ’p,, sina) Q¢ cosay Q.L— |- cosayQ.¢, sina, Q. Q
i 2 a44 A

1

2

_ [MSlna; Q*Cl COS&;IQ*C _ ’Allpl Cosa:: Q*Cl Slna;IQ*C]%W—
3

&. = 1 aay 5 = 1 aV” = _iawn
ELET Oosn =11 Oy = -
a‘55 aC a44 aC h 8C
~ - |; a\N” _ I; aW” (122)
Gy =0, S, :_TE, G :_TE

arzvagspkaa ‘\[ 44pk, I k: ,“

Al:( ap—l cosa, Q. sina' Q.L, + /Z“ smancosa”QQ]
55 55

A, = ( / P cosa Q.G sina) Q.C, + ’p,, sina,Q.¢, cosa, Q Z;ZJ
A, a,

A, :(w/Al'lp, cosa, Q.¢ sinal Q.L, ++/A'lp,, sina;Q*Qlcosa;'Q*Qz)Q*
Solution (1.20)-(1.22) will be finite, if
A #0, A,#0, A;#0 (1.23)

otherwise a resonance will arise and the corresponding values {2 will coincide with the
main values of the frequencies of two-layered plate free vibrations.

This result can have an obvious application in seismic steady construction. The two-
layered plate simulates the packet base-foundation of the constructions. The power
(thickness) and the elastic characteristics of the compressed layer (foundation) are usually
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known, the region of frequencies €2 change of the outer dynamic (seismic) effect is
known, as well. Using formulae (1.22) for A,,A,,A; the parameters of the first layer

(base) can be chosen so, that conditions (1.23) were fulfilled, i.e. the construction from the
very beginning wouldn’t fall into resonance condition.

By the described above procedure the solutions for three-layered and multilayered
plates are written out. The analysis of the asymptotic solution of the corresponding three-
dimensional boundary problems for three-layered plates reduces to the important
conclusions too.

It is established, that when the displacement vector, which changes harmonically in
time, is applied to the facial surface of the lower-third layer, and the upper layer is rigidly
fastened or free, then if all the three layers consist of rigid similar materials, the amplitudes
of the vibrations grow, though negligibly from layer to later. And in the presence of the
middle layer from softer material (for example, rubber) the vibrations amplitudes in the
upper layer, particularly tangential vibrations, diminish abruptly [16]. The established fact
proves the necessity of application of seismoisolators in the seismic construction, as when
building the constructions, if between the concrete base and foundation a thin layer of
rubber like soft material is inserted, it will bring to diminution of dangerous vibrations in
the base during the earthquakes and, as consequence and to the increase of the construction
seismosteadiness.

In case of the first dynamic boundary value problem of elasticity theory for strips-
beams, plates and shells (on the facial surfaces the corresponding stresses tensor
components are given) the asymptotics of  the static problem:

qaxx = qo'xy = qo'yy = _2’ qaxz = qayz = _17 quz = 09
q, =9, =2, q,, =—3reduces to contradictory correlations, but the above brought

asymptotics (1.7), (1.9) of mixed problem [17] passes. In this sense the asymptotics (1.7),
(1.9) is universal. The procedure of finding the general solution is unchangeable [17].

1V Asymptotics of free vibrations of plates and shells.

1. In the previous chapter we noted the particular role of free vibrations frequencies
for arise of resonance states. The asymptotic method permits to determine the values of
frequencies and forms of the free vibrations of known and anisotropic plates and shells on
the base of the three-dimensional problem dynamic equations of elasticity theory. Consider
variants of the free vibrations of plates and shells representing the greatest interest. Set the
problem: to find the frequencies of the free vibrations and the free functions of an

orthotropic plate D={(x,y,2):
0<x<a,0<y<b—~h<z<h, min(a,b) =71 >> h} corresponding  to  the
following conditions of the facial surfaces

U(X, yv_h) = V(X’ yv_h) = W(Xv yv_h) = 0 (11)

u(x,y,h)y=v(x,y,h)y=w(x,y,h)=0 (1.2)
or

c.(Xy,h=0c,(Xy,h)=0c,(XYy,h)=0 (1.3)

For this it is necessary to find nontrivial solutions of dynamic equations (III.1.6)
under the conditions (1.1), (1.2) or (1.1), (1.3). Below we shall be convinced, that the
conditions on the lateral surface don’t influence on the values of the free vibrations
frequencies, the vibrations in the boundary layer with the same frequency of free vibrations
in the inner problem correspond them. The solutions of the set problem will be sought in
the form of
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Ga[} (X’ y’ Z’t) = ij (Xa ya Z) eXp(I(x)t)
(U, v,w) = (U, (X, ¥,2),u, (X, ¥,2),U,(X,Y, 2)) exp(iot) (1.4)
oB=xY,2 j,k=123

where @ is the frequency of the free vibrations. When passing to dimensionless
coordinates E=x/l,n=y/L,C=12/h and displacements

U=u,/LV=u/l,W=u,/l the dynamic equations of the three-dimensional

problem will have the form

agg +6§];2 +¢” Gl +e U =0

agg + a;flz +g7 6;55 +& @V =0

6;23 + 8;;;3 v B +e7 W =0

ou ) _

a_é'; =a,,0,, +8,,6,, +3505;, (LZEn;U,V) (1.5)
- E = 8,30, T 8,0,, + 85503,

ou oV ow  ,0uU

E"’a_& = 84012, a_(g"'g E = 85503

%ﬂﬂzl aa—\é =a,0,,, o:=ph’w’, e=h//
n

The solution of singularly perturbed system (1.5) has the form of | = I™ + l,.

The solution of the inner problem | ™ will be sought in the form of [18]
o)l =¢ "o (6 n.0)
U int’Vint’Wint) = &*(U (s)’V(s)’W(s)) (1.6)
o} =g'0k, s=0,N

Substituting (1.6) into (1.5) and equalizing the coefficients under the similar degrees
& , we obtain a system form where the stresses will be expressed through the displacements
by formulae (III.1.10), the last ones are determined from the equations

o’y 216k (s) n e
S— S .
—— t+ago,U =R,”, (U.,V;ag,a,,), k=0,s

(1.7)

Aps (s-1) (s=1) (s=1)
RO _ _ o'W {80“ N 0o,
55

— , (U,V;&na,a,:1,2
u BeaC o€ on } ( &, ass,a,,1,2)
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o'W ®
ac?

+o,WE =R k=0,s

Al

(1.8)
RO — A oy R VAN _|:8C5§§_1) N 66(253_1)}

+
oo Y omac | % om
At s=0, RSO) = Rio) = R‘fvo) =0, equations (1.7), (1.8) become independent.

Having solved equation (1.7) and satisfied conditions (1.1), (1.2) for U we obtain a system
of homogeneous algebraic equations for the existence of the nonzero solution of which it is
necessary to fulfill the equations

sin2,/a; ., =0

TN

where Ouyy = —F7—>
24/ as;

or
of = _ ™ Ga nen (1.10)
2hypa;; 20\ p

Having satisfied the rest of the conditions (1.1), (1.2), we obtain dispersion equations

neN 1.9)

: .2
sin 2,/a,, ., =0, SIHWO)*O =0 (1.11)
1

which correspond to the following values of frequencies

n n |G
mgﬁzn—:”— —2_  neN (1.12)
2hypa,, 2hY p
o? _m /i :n_n\/i 1-v,vy, (1.13)
2h\ p 20\ p 1=v,vy =V (VipVas +Vi3) = Vg (Vo Vs +Vy5)

|G |G
where G ,,G,; are the shear module, .|—2> =V, [=2 =V are the well-known
p p

Al

in seismology velocities of shear waves propagations, and Vp = |—— is the velocity of
p

longitudinal waves. The frequencies (1.10) correspond to the following free functions and
solutions:

UL =CO (& m)sinang or UL =CO(&,m) cosg(zn +1)¢ (1.14)

(0)
0) _ L ou nl (0)

_ 0) _ 0 _ 0 _ 0 _ __(0) _ 0) _
G311 = o G, =0,V =0, o)) =0, =03; =0, =0,W;” =0
ass OC
The frequencies (1.12) correspond to
. T
Vn(,?) = Ci‘n)) (&,n)sin g or Vn(,?) = Cig) &M COSE 2n+1)¢ (1.15)

1 oV
o _ il ©
Gy = , Oy =0,U

0) _ 0) _ 0) _ ) _ (00 _
2 =0, oy =0,W," =0, o1 =05, =
a, dC

nll
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In case of the frequencies (1.13) we have

W) =Cl (€,m)sinnng or W) =CV(&,1) cos—(2n +1)¢ (1.16)

oW, oW, oW
c© S0 i ) nlll
Sy = Ay s O =—As———> O = A —— o

0) _ (0) — 0) _ 0  _ <0 _
UnIII 0, SIHT =0, VnIII =0, O3 = O =0

The free functions {@,}={sinnnl}, {y, }= {cosg(2n +1){} compose an

orthonormalized system on the interval [-1;1]. Thus, in the plate two types of vibrations —
shear ((1.14), (1.15)) and longitudinal ((1.16)) vibrations arise.

At S>1 the solution of the equations (1.10), (1.12) may be sought in the form of
series along the free functions {@,} or {y} of the initial approach for each variant (1.10),
(1.12), (1.13) of the frequencies values. The calculations show, that

uyl =0, @, =0, V"=0, W £0

u® £0, o.,, 20, V220, WP 20 17
nl > *2nl ’ nl ’ nl
If we are restricted by the approaches S = 0,1,2 we have
(0) 2112 2 _ 2 2.2
U _U +e UnI 5 Wy = s +& Wiy (1 18)
vV, = SV“) +e VP, W, =W+ W

From (1.18) two important properties: 1) correction to the basic solution and
frequency of the order 0(82) , that is why at small & we may be restricted by the initial

approach, 2) shear vibrations of one type generate the shear vibrations of another type and
longitudinal vibrations as well and both of them are with the same basic frequency, but the
amplitudes accompanying the vibrations are one order smaller than the basic ones. The
analogous picture takes place for the frequencies (1.12), (1.13).

Consider the boundary conditions (1.1), (1.3). They correspond to the equations of
the frequencies

cos 2 /a;; o, =0, (ass,a44,A%) (1.19)
1
which correspond to the frequencies
G
o =—P on+n=""[222n+1), neN
pas; 4h\ p (1.20)

(L, as,a,,1/ AGL,Gyul AY)

It is not difficult to write out free functions too.

The consideration of free vibrations in the zone of the boundary layer reduces to the
conduction, that each frequency, determined from the solution of the inner problem,
corresponds to the class of boundary functions, which when removing from the lateral
surface into the inside the plate diminish exponentially, i.e. in the zone of the boundary
layer under the free vibrations a mixed picture is originated.

2. In case of layered plates the basic equations and correlations of elasticity are the
same, the number of layer “K ™ is only ascribed to all the values. The solution for an

arbitrary layer “K ” which by its form coincides with the solution of the inner problem for a
one-layered plate [19], then the conditions (1.1), (1.2), or (1.1), (1.3) on the facial surfaces
of a layered packet and the conditions of full contact among all the layers are satisfied. As a
result we obtain a system from homogeneous algebraic equations. The existence condition
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of nonzero solution of this system (the determinant equals zero) is the very equation of
frequencies of  free  vibrations. For  two-layered orthotropic plates

D={(X,y,2);0<x<a,0<y<b,-h, <z<h,min(a,b) =7, h=h +h,

h<</ } three variants of independent equations at S = () are obtained

T
% sin\, aslspl 0, sin\/ a5"5p“ G, _Cos\laslspl ®, G, cos\/asusp“ ®,C, =0
sPu

2.1
1
(ags’azll(w_k)’ Cl :hl /h’ Cz :hz/h; k= I’ Il
1
Corresponding to the boundary conditions
o, =6, =0, =0 for Z=h (22)
u'=v"'=w"=0 for z=-h, (2.3)
U (-0 = CLEI,O) COs Y} a5l5p| (’0*0 (C - Cl)
UM =C{" sin/allp, ., (5 +¢,) (2.4)
(a5, a1/ AY)
are free functions.
The equations (2.1) are reduced to the standard form
cos P, +rcosqar, =0 (2.5

where

ngl\/aslsﬁ "‘(;z\/asuspu > ngl\/aSISPI _Cz\/asuspu
_\]aslspu _\]asllspl Kok k _ (2.6)
r=——= —, (ass,a,,1/ A}, k=11

\&ssPy T 4/8s5P,

The roots of which are easily found, if elastic and geometrical parameters of a layered
packet are given. Dispersion equations for three-layered and multilayered plates, too, can be
obtained.

IF we introduce function @, :
Ui, 0<csg,
APy Uy, —¢,<£<0

It is proved, that the function {@,} are orthogonal on the interval [~(,,&, ], i.e. the

Pp Q.7

free functions are orthogonal with the weight.
The described approach of frequencies determination and forms of free vibrations are

spread on the shell too [20], particularly, it is established that @, # 0, i.e. if restricted by
initial approach, the error will be about O(¢&).
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