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Լ.Ա. Աղալովյան 
Անիզոտրոպ սալերի և թաղանթների ասիմպտոտիկ տեսություն 

Աշխատանքն ունի ակնարկային բնույթ ուր շարադրված են սինգուլյար գրգռված դիֆերենցիալ 
հավասարումների լուծման ասիմպտոտիկ մեթոդը և այդ մեթոդի կիրառությունը բարակ 
մարմինների (հեծաններ, սալեր, թաղանթներ) դասական և ոչ դասական եզրային խնդիրները 
լուծելու համար: Ստացված ընդհանուր ասիմպոտիկ լուծումներն ուղեկցվում են որոշ դասի 
խնդիրների ճշգրիտ լուծումներով: 
 

 
Л.А. Агаловян 

Асимптотическая теория анизотропных пластин и оболочек 
Работа носит обзорный характер, где изложены суть асимптотического метода решения сингулярно 

возмущенных дифференциальных уравнений и методика применения этого метода для решения 
статических и динамических краевых задач тонких тел (балки, пластины, оболочки). Рассмотрены как 
классические, так и неклассические краевые задачи. Более общие результаты проиллюстрированы 
решениями конкретных задач. 

 
The essence of asymptotic method solution of singularly-perturbed differential equations is explained. The 

mentioned method is applying for the boundary-value problems of statics and  dynamics of thin bodies (beams, 
plates, shells) solving. The general results is illustrated by the solutions of determined classes problems. 

 

 
I. The solution of the first static boundary value problem of thermoelasticity for beams, 
bars, plates and shells. 

Before describing the essence of the asymptotic method of plane and space problems 
solutions of elasticity theory for beams, plates and shells, we shall find out what kind of 
perturbed by small (big) parameters differential equations correspond to these thin bodies. 

1. Regularly and singularly perturbed differential equations and the asymptotic 
method of their solution. All the differential equations, containing a small parameter, are 
divided into regularly perturbed and singularly perturbed equations. In order to reveal their 
principal difference and the application singularities of the asymptotic method for their 
solution, we consider the following two model equations: 

0, ( ), [0,1]u u u u x x′′ ′+ ε = = ∈a)      (1.1) 
0u u′′ ′ε + =  (1.2) b)     

where  is a small parameter. It is required to find the solution of equations ε (1.1), (1.2) 
under the boundary conditions 

(0) , (1)u u= α = β

                                                

. (1.3) 

 
∗)
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1 2
xu C C e− ε= +  (1.4) 

εwhich is the continuous function from small parameter , will be the solution of equation 
(1.1). Satisfying conditions (1.3) we have the solution 

( ) ( )(1 )
(1 )

( ) at 0
1 at 0x x

x x

u x

u e e e e
e e

ε + ε ε ε
ε + ε

= α + β−α ε =

⎡ ⎤= β − −α − ε ≠⎣ ⎦−

 (1.5) 

0ε =it's easy to verify the continuousness of the solution at . 
As equation (1.1) contains a small parameter, it is natural to use the asymptotic 

method and sick the solution in the form of a power series 

, 0s
su u s= ε = ∞,  (1.6) 

0,s = ∞where signification  means summing by umbral (repeating) index  from zero to 
. Substituting 

s
(+∞) (1.6) into (1.1) we get an iteration equation 

1 0, 0 at 0s s mu u u m−′′ ′+ = ≡ <  (1.7) 

sufor determining coefficients . 
Conditions (1.3) will have the form 

0 0(0) , (1) , (0) 0, (1) 0, 1s su u u u= α = β = = ≥s  (1.8) 

At  equation 0s = (1.7) will have the form 

0 0u′′ =  (1.9) 

εi.e. in case of regularly perturbed equation (small parameter  is not the coefficient of the 
big derivative), the shortened (not perturbed) equation, i.e. equation (1.1) at , has the 
same order, which the initial equation 

0ε =
(1.1) has. This important property permits us to 

satisfy the given boundary conditions. Particularly, at 0s =  we have 

0 ( )u x= β−α +α  (1.10) 

and at ,  taking into account conditions 1,2s = (1.8), the solutions 

1 2
1 1( ) ( 1), ( ) ( 1)(2 1
2 12

u x x u x x= α −β − = − α −β − − )x  (1.11) 

The iteration process may be continued and got the solution for any approach. Later on, the 
question of series (1.6) similarity is considered. As a rule, the similarity is asymptotical, i.e. 
the error is of the first rejected term order of the series. 

The property, illustrated on the boundary value problem (1.1), (1.3), is common for all 
the regularly perturbed equations including for the equations in private derivatives, 
therefore such equations may be solved using the decomposition of type (1.6). 

Now we consider singularly perturbed equation (1.2), i.e. when the small parameter is 
the coefficient of he highest operator (derivative). The solution of equation (1.2) is 

1 2
xu A A e− ε= +  (1.12) 
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εwhich is not the continuous function from  already. Satisfying conditions (1.3) we get 

1
1

1 ( )
1

xu e
e

e− ε
− ε

− ε⎡ ⎤= β−α + α −β⎣ ⎦−
 (1.13) 

At   out of dependence on values u ≈ β x1ε << , except some small area near , 
which is called boundary layer. The corresponding graphs are depicted in fig.1, fig.2. 

0x =

 

Consi ity of the boundary value problem der a possibil solution (1.2), (1.3) by an 
asymptotic method. Naturally, the solution, in this case too, is sought in the form of (1.6). 
For su  we obtain the equation 

1 0s su u−′′ ′+ =  (1.14) 

At  we have 0s =
0 0 10 or constu u C′ = = =  (1.15) 

i.e. the unperturbed equation has less order, than the perturbed (1.2). That’s why by 
solution (1.15) it is not possible to satisfy two conditions (1.3). A question rises – which of 
these conditions should be satisfied. From the above brought analysis of the exact solution, 
the satisfaction of the second of the conditions (1.3) becomes natural, i.e. the condition, 
near the end of which there is no boundary layer. Then 1C = β  and u0 = β . It appears that 
it is possible to satisfy the first condition of (1.3) too, if the solution of the boundary layer 
for the end  is built. For it replacement of variable 0x = t x= − ε  is introduced and such 
solution of transformed equation (1.2) which has fading nature and can remove arising 
residual at  [1-4] 0x =

2 2
t

bu C e C e x− ε= =  (1.16) 

will be this solution. Requiring at 0 ( 0)x t= =  

0 ( 0) ( 0)bu x u t= + = = α  (1.17) 

we determine . As a result the initial approach will correspond to solution 2C = α −β

0 x

u  

1 

α  

β  

Fig. 1    

β

( )β

α

0 x  

u

1 
Fig. 2    
( )β
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(0)
0 ( ) x

bu u u e− ε= + = β+ α −β  (1.18) 

ε  practically coincides with the exact solution (1.13)which at small . If at determination 
 we satisfy the first condition of 0u 0u = α(1.3), we get . Then it is impossible to satisfy 

the condition at 1x = , as there is no boundary layer there, because introducing the 
replacement of the variable ( 1)xη = − ε 1 0− ε ≤ η≤, , equation (1.2) is transformed 

into , which does not have fading solution on the interval 0u uη η′′ ′+ = 1 0− ε ≤ η≤ . The 
iteration process may be continued. In this way it is possible to give mathematical proof of 
the procedure of finding asymptotic solution. 

From the above built asymptotic solution the conclusions general for singularly 
perturbed differential equations follow: the solution cannot be obtained on the form of one 
decomposition by small parameter of (1.6) type, it is made up from the principal solution 
( int )I ( )bI and the solutions for the boundary layers ; several boundary layers may exist 
in dependence of the problem and order of the perturbed operator; these solutions may be 
built separately and product their conjugation with the help of the boundary conditions. 

In the problems of elasticity theory for thin bodies in the equations the small 
parameter is the coefficient of not the whole highest operator, but of its part, yet the 
structure of the solution remains unchangeable ( int

b )I I I= + . The unperturbed equation 
has the smallest space dimension and the boundary functions constitute a countable set. 

2. The asymptotics of problems solutions of bend of beams and tension-
compression of bars. Classical theory of beams and bars is built on the base of Bernoulli-
Coulomb-Euler plane cross-sections hypothesis. Kirchhoff generalized this hypothesis 
(hypothesis of undeformable normals) for derivation of two-dimensional equations of plates 
and by the variation method developed the well-known boundary condition for the free end. 
Love applied the hypothesis of undeformable normals for deducing the equations of shell. 
The classical theory of shells obtained a complete form thanks to S.P.Timoshenko, 
V.Flugge, V.Z.Vlasov, A.L.Goldenweiser, A.I.Lurier, V.V.Novoghilov monographs. The 
classical theory of anisotropic plates, including layered plates, is built by S.G.Lekhnitski, 
and the theory for anisotropic shells was built by S.A.Ambartsumyan. And with this 
sequence we discuss the problem of reduction of the corresponding three-dimensional 
problems of elasticity theory to two-dimensional and one-dimensional problems of 
mathematical physics, reveal the connection of such reduction with classical theory of 
beams, plates and shells. By asymptotic method we solve new classes of problems for thin 
bodies, which are not possible to solve on the base of the classical theory hypothesis. 

We set the problem: to find the solution of the first static boundary value problem of 
thermoelasticity in rectangular domain {( , ) : 0 , , }D x y x l h y h h l= ≤ ≤ − ≤ ≤ <<  
with the account of volume forces and temperature by Duhamel-Neumann model. It is 
necessary to find the solution: 

of the equilibrium equations 

( , ) 0

( , ) 0

xyxx
x

xy yy
y

F x y
x y

F x y
x y

∂σ∂σ
+ + =

∂ ∂
∂σ ∂σ

+ + =
∂ ∂

  (2.1) 

of the equations of state (Hook’s generalized law) 
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11
1 ( )xx yy

u
x E
∂

= σ −νσ +α
∂

θ  

22
v 1 ( )yy xxy E
∂

= σ −νσ +α
∂

θ  (2.2) 

12
v 1

xy
u
y x G
∂ ∂

+ = σ +α
∂ ∂

θ  

where  are the coefficients of thermal conductivity,  are Young’s and shear 

modules,  is Poisson’s ratio,  is the change of temperature under 

boundary conditions on the longitudinal ends 

,E Gikα

0( , ) ( , )T x y T x yθ = −ν
y h= ±  

( , ) ( ), ( , ) ( )xy yyx h X x x h Y x±σ ± = ± σ ± = ± ±  (2.3) 

0,x l=and under the conditions at  (conditions of fastening), which are considered to be 

arbitrary for the present. As mass forces, for example, weight ( ( , )yF x y g= −ρ0xF = , ) 

or the reduced seismic force by Mononobe model ( 0.75yF xF≈x sF k P= β , ) may come 

forward, where ρ  is the density, β  is the coefficient of dynamics, sk  is the coefficient of 

seismicity, P  is the weight of the rectangle.  
For solving the set problem we pass to dimensionless coordinates and displacements 

, , , vx l y h U u l V= ξ = lζ = =  (2.4) 

Equations (2.1), (2.2) will have the form 

1 ( , ) 0,xyxx
xlF l h h l− ∂σ∂σ

+ ε + ξ ζ = ε =
∂ξ ∂ζ

 

1 ( , ) 0xy yy
ylF l h−∂σ ∂σ

+ ε + ξ ζ =
∂ξ ∂ζ

 

11
1 ( )xx yy

U
E

∂
= σ −νσ +α

∂ξ
θ  (2.5) 

1
22

1 ( )yy xx
V

E
− ∂
ε = σ − νσ +α

∂ζ
θ  

1
12

1
xy

U V
G

− ∂ ∂
ε + = σ +α

∂ζ ∂ξ
θ  

ε(2.5) is singularly perturbed by small parameter System , but this singularity differs 
from the classical singularity (1.2), as the small (big) parameter is not the coefficient of the 
whole highest operator (derivative), but only part of it. The structure of the solution, as we 
shall be convinced of it below, remains unchangeable 

int
bI I I= +  (2.6) 

i.e. the solution consists of the solutions of the inner (basic) problem and the problem for 
the boundary layer. In our case (1) (2)

b b bI I I= + (1)
bI, where  is the solution of the boundary 
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(2)
bIlayer for the end , and 0x = x l= is for the end . Note that such a structure of 

solution (2.6) takes place in any physical problem, considered in narrow area. 
It is known that not all the components of the stresses tensor and displacement vector 

have the same contribution in the common stress-strain state. By virtue of it when 
determining the solution, particularly, of the inner problem, the question of the correct 
determination of asymptotic order of sought values is really very important and 
considerably difficult. It has deeper roots, as having formulated any physical law or 
hypothesis, some asymptotics is given in fact. The correct determination of the asymptotics 
is considered to be art by some authors [6]. 

intIThe solution of the inner problem  will be sought in the form of 

( ) ( , ) 0,Iq sint sI I s+= ε ξ ζ = N  (2.7) 

0,s =where  is any of the stresses and displacements, I N  means summing by repeated 
(dummy) index  from the zero up to the number of approaches . It is established [5,7], 
that after the substitution of 

s N
(2.7) into the system (2.5) and equalizing the coefficients at the 

same degrees of ε  in each equation, we get incontradictory system for determining ( )sI , if 

, 2, 1, 0, 3
xx xy yyuq q q qσ σ σ= − = − = = −v  (2.8) 

Having solved with the account of (2.7), (2.8) obtained from (2.5) a system we have 
( ) ( ) ( )

*v ( ) v ( , )s s sV = ξ + ξ ζ  
( )

( ) ( ) ( )
*

v ( ) ( , )
s

s sdU u u
d

= − sζ + ξ + ξ ζ
ξ

 

2 ( ) ( )
( ) ( )

*2

v s s
s s

xx
d duE E
d d

σ = − xζ + +
ξ ξ

σ  (2.9) 

3 ( ) 2 ( )
( ) 2 ( ) ( )

0 *3 2

1 v ( ) ( , )
2

s s
s s

xy xy xy
d d uE E
d d

σ = sζ − ζ +σ ξ +σ ξ ζ
ξ ξ

 

( )4 ( ) 3 ( )
0( ) 3 2 ( ) ( )

0 *4 3

1 v 1 ( ) ( , )
6 2

ss s
xys s

yy yy y

dd d uE E
d d d

σ
σ = − sζ + ζ − +σ ξ +σ ξ ζ

ξ ξ ξ
 

where  

( )( ) ( 4) ( 2) ( 2)
* 2

0

1v s s s s
yy xx d

E

ζ
− − −⎡ ⎤= σ −νσ +α θ⎢ ⎥⎣ ⎦∫ 2 ζ  

( )
( ) ( 2) ( 1) *
* 12

0

v1 s
s s s

xyu d
G

ζ
− −⎡ ⎤∂

= σ +α θ −⎢ ⎥∂ξ⎣ ⎦
∫ ζ  

( )
( ) ( 2) ( )*
*

s

11
s s

x yy
uE −∂

σ = + νσ − α θ
∂ξ

sE  (2.10)  

( )( )
*( ) ( ) ( ) ( )*

* *
0 0

,
ss

xys s s sx
xy x y yF d F

ζ ζ ⎛ ⎞∂σ⎛ ⎞∂σ
σ = − + dζ σ = − + ζ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ξ ∂ξ⎝ ⎠ ⎝ ⎠

∫ ∫  
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(0) 2 (0) ( ) ( )( , ), ( , ), 0, 0s s
x x y y x yF l F l h F l F l h F F s= ε ξ ζ = ε ξ ζ = = ≠  

(0) 2 ( ) ( ), 0, 0, 0 ats ms I m 0θ = ε θ θ = ≠ ≡ <  

( ) ( ) ( ) ( )
0, v , , 0

s s s s
xy yyu σ σ(2.9) contains unknown functions Solution , which must be 

determined from conditions 0,x l=(2.3) and the conditions at . Having satisfied (2.3) 
( ) ( )

0 , 0
s s

xy yyσ σ ( ) ( ), vs su are expressed through  

( ) ( )
3 ( )

( ) +(s) ( ) ( ) ( )
0 *3

1 v 1 1X ( ,1)
2 2 2

s
s s s

xy xy xy
dE X
d

−σ = − + − − σ ξ +σ ξ −
ξ *( , 1)s  

( ) (
( )

( ) +(s) ( ) ( ) ( )
0 *

1 1 1Y ( ,1)
2 2 2

s
s s s sx

yy y y
dqY
d

−σ = − − − σ ξ +σ ξ −
ξ

)* ( , 1)

0

 (2.11) 

(0) (0) ( ) ( ), , 0,s sX X Y Y X Y s± ± ± ± ± ±= ε = = = ≠  

( ) ( ), vs suFor determining functions  

2 ( )
( )

2

s
s

x
d uE q
d

=
ξ

 

( ) ( )( ) ( ) ( ) ( ) ( )
* *

1 1 ( ,1) ( , 1)
2 2

s s s s s
x xyq X X+ −= − + + σ ξ −σ ξ −xy  

4 ( )
( )

4

1 v
3

s
sdE q

d
=

ξ
 (2.12) 

( ) ( )( ) ( ) ( ) ( ) ( )
* *

( ) ( ) ( ) ( )
* *

1 1 ( ,1) ( , 1)
2 2

1 ( ,1) ( , 1)
2

s s s s s
y y

s s s s
xy xy

q Y Y

d X X
d

+ −

+ −

= + − σ ξ − σ ξ −

⎡ ⎤+ − − σ ξ − σ ξ⎣ ⎦ξ

+

−
 

equations are obtained. 
From (2.12) we have 

( ) ( ) ( ) ( )
1 2

0 0

3 2
( ) ( ) ( ) ( ) ( ) ( )

3 4 5
0 0 0 0

1 v
3 3!

s s s s
x

62
s s s s s

Eu d q d C C

E d d d q d C C C C

ξ ξ

ξ ξ ξ ξ

= ξ ξ + ξ +

ξ ξ
= ξ ξ ξ ξ + + + ξ +

∫ ∫

∫ ∫ ∫ ∫
 (2.13) 

s

(2.13) with (2.9), the stresses will contain constants Comparing solution 
( ) ( ) ( )
1 3 4, ,s sC C C s ( ) ( ) ( )

2 5 6, ,s sC C C s, constants  will characterize rigid displacements, which 
may be excluded fastening one point, for example the origin of coordinates, requiring 

0,0)0,0(,0)0,0(
0
0

)()(
)()( =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

==
=
=

ζ
ξξζ

ss
ss VUVU  (2.14) 
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0,x l=Only by solution (2.7)-(2.13) it is impossible to satisfy the conditions at , for 
example, conditions like 

1 1

a) (0, ) ( ), (0, ) ( )

b) (0, ) ( ), v(0, ) ( )
xx xy

u

σ ζ = ϕ ζ σ ζ = ψ ζ

ζ = ϕ ζ ζ = ψ ζ
 (2.15) 

In better case we can satisfy conditions (2.15) in one or two points, but not in all the points 
with unknown yet constants ( ) ( ) ( )

1 3 4, ,s sC C C s  of the solution, this again proves the 
singular perturbance of the initial boundary problem. In order to satisfy conditions (2.15), it 
is necessary to built the solution of the boundary layer at 0x = . 

As inhomogeneous equations (2.5) and boundary conditions (2.3) are satisfied by the 
solution of the inner problem, the boundary layer should be determined from homogeneous 
equations corresponding to (2.5) with homogeneous (zero) boundary conditions at . 

Making substitution in these homogeneous equations by variable [2,5,7] 

1ξ = ±
t = ξ ε  and 

putting index “b ” (boundary) to all the quantities, we get the system 

0, 0xyb xyb yybxxb

t t
∂σ ∂σ ∂σ∂σ

+ = + =
∂ ∂ζ ∂ ∂ζ

 

1 11 1( ), (b b )xxb yyb yyb xxb
U V
t E E

− −∂ ∂
ε = σ −νσ ε = σ −νσ

∂ ∂ζ
 (2.16) 

1 1 1b b
xyb

U V
t G

− −∂ ∂
ε + ε = σ

∂ζ ∂
 

It is necessary to find such a solution of system (2.16), which satisfies the conditions 

( , 1) 0, ( , 1) 0xyb yybt tσ ± = σ ± =  (2.17) 

0 ( 0)x t= =and has fading character when removing from  into the inside the rectangle-
strip. This solution has the form 

( )

1 ( )

( ) ( )

( , ) ( ) exp( ), 0,

( , ) ( ), v ( ) exp( )

s s
ijb ijb

s s s
b b b b

t t

U V u t

− +σ ζ = ε σ ζ −λ =

= ε ζ ζ −λ

s N
 (2.18) 

where λ  is yet the unknown number. 
( )s
yybσSubstituting (2.18) into (2.16), all the unknowns may be expressed through : 

2 ( ) ( )
( ) ( )

2 2

1 1,
s s

yyb yybs s
xxb xyb

d d
d d
σ σ

σ = σ =
λ ζ λ ζ

 

2 ( )
( ) 2 ( )

3 2

1 s
yybs

b

d
u

E d
⎛ ⎞σ

= − − νλ σ⎜⎜λ ζ⎝ ⎠

s
yyb ⎟⎟  (2.19) 

3 ( ) ( )
( ) 2

4 3

1v (2 )
s s

yyb yybs
b

d d
E d d
⎛ ⎞σ σ

= − + + ν λ⎜ ⎟⎜ ⎟λ ζ ζ⎝ ⎠
 

which is determined from the equation 
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4 ( ) 2 ( )
2 4 ( )

4 22
s s

yyb yyb s
yyb

d d
d d
σ σ

+ λ +λ σ =
ζ ζ

0  (2.20) 

From the first two formulae of (2.19) and conditions (2.17) follows a very important 
property – self equilibrium of the stresses ,xxb xybσ σ  in the arbitrary cross-section  kt t=

1 1 1

1 1 1

( , ) 0, 0, 0,xxb xxb xyb kt d d d t t
+ + +

− − −

σ ζ ζ = ζσ ζ = σ ζ = ∀ =∫ ∫ ∫  (2.21) 

(2.21), i.e. But the displacements do not have this property 
1 1 1

1 1 1

0, 0, 0b b bU d U d V d
+ + +

− − −

ζ ≠ ζ ζ ≠ ζ ≠∫ ∫ ∫  (2.22) 

Having solved (2.20) and satisfied conditions (2.17) we get 

( ) ( ) ( ), 0,s s
yyb n nA F nσ = ζ = N  (2.23) 

, ,xxb b yybuσ σIn the symmetrical problem (tension-compression)  are even, and 

 are odd functions from v ,b xybσ ζ , in the skew-symmetrical (bending) problem it is vice 
versa. We have 

symmetric problem 

( ) sin tan cos , sin 2 2 0n n n n nF nζ = ζ λ ζ − λ λ ζ λ + λ =  (2.24) 

skew-symmetric problem 

( ) sin tan cos , sin 2 2 0n n n n n nF ζ = λ ζ − ζ λ λ ζ λ − λ =  (2.25) 

Transcendental equations sin 2 2 0n nλ ± λ =  have complex conjugate roots (except 

trivial ), situated symmetrically relative to the axes of the coordinates. We are 
interested in the roots with Re , providing the fading character of the solution. The 

values of the first five roots with 

0λ =
0nλ >

Re 0nλ >  are brought in Table 1. 
Table 1 

2 n n nX iYλ = ±  
 sin 2 2 0n nλ + λ = sin 2 2 0n nλ − λ =  

n nX nY nX nY     

1.  4.2124  2.2507  7.4977  2.7687 
2. 10.7125  3.1031 13.8999  3.3522 
3. 17.0734  3.5511 20.2385  3.7168 
4. 23.3984  3.8588 26.5545  3.9831 
5. 29.7081  4.0937 32.8597  4.1933 

 
Solution (2.18), (2.19), (2.23) may be transformed so that the real quantities should 

appeare only. For any of the stresses and displacements , admitting bQ
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),(~)()( ζtQAQ nb
s

n
s

nb = )exp()(~ tQQ nnbnb λζ −=, where ,  is the coefficient under 

the arbitrary constant 

nbQ

)(
2
1 )(

2
)(

1
)( s

n
s
n

s
n iAAA −=( )s

nA  for the given quantity, representing , 

we have 

)(
2

)(
1

)( ~Im~Re s
nnb

s
nnb

s
nb AQAQQ +=  (2.26) 

Note that solution (2.18), (2.26) is exact solution for arbitrary . It is known in 
elasticity theory as Shiff-Popkovich-Lourier homogeneous solution. 

s

(2)
bI x l=The solution of the boundary layer  at  may be obtained from the solution 

at  by formal replacement  with t 1 1t t= ε −0x = . 

2.1. The connection with classical theory of beams and bars. The solution of the 
inner problem (2.7)-(2.13) has a direct connection with classical theory of beams bend and 
tension-compression of bars. In order to reveal this connection we write equations (2.12) in 
dimensional coordinates and displacements, according to (2.7), (2.8) 

++++== +−
s

sss uuuulu εεε 10
)(2  

++++== +−
s

sssl vvvvv 10
)(3 εεε  (2.27) 

( ) 2 ( ) 31 1, v vs s
s su u

l l
= ε = ε  

( ) ( ), vs suSubstituting values for  into equations (2.12) we get 
2

( ) ( ) 1 ( )
0 02 , 2 , 2s s ss

x x x
d u 1EF q q q F
dx

−= = ε = h ⋅  (2.28) 

4
( ) ( ) ( ) 3
0 04

v 2, 2 ,
3

s s ssd 1EJ q q q J h
dx

= = = ⋅  (2.29) 

where  is the rigidness of the bar under tension-compression, EF EJ  is the rigidness of 

the beam under bend. At ( )(0)
0xq X X+ −= − +0s =  , 

( ) ((0) dq Y Y h X X
dx

+ − + −= + + − ) , equation (2.28) coincides with the classical 

equation of bars tension-compression [8], and equation (2.29) coincides with the classical 
equation of beams bend [8, 9]. Moreover, the initial approach of the asymptotic solution of 
the inner problem contains more information, as by formulae (2.9)-(2.11), (2.13) the 
stresses ,xy yσ σ y , the last of which in the classical theory is neglected at all, are calculated 

as well. The approaches  correct the results on classical theory, displacements and 
stresses, corresponding them, change along the transverse coordinate 

1s ≥
ζ  nonlinearly. So, 

admitting the hypothesis of plane sections, approaches  of the inner problem and the 
boundary layer, to which the new exact solution of elasticity theory equations 
(homogeneous solution), which is not possible to obtain with the method of hypotheses, 
corresponds, are neglected. 

1s ≥
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2.2. Conjugation of the solutions of the inner problem and the boundary layer. 
Let at  conditions (1) (2)int

b bI I I I= + +0x = (2.15)a be given. According to (2.6) . When 

satisfying the equations on the end-wall (2)
bI0x = , the influence of  is usually neglected. 

It equivalent to 11 exp( Re ) 1l h+ − λ ≈ , which, according to Table 1, always takes place 

for real beams and bars ( ). We have 10l ≥ h
2 ( ) 1 ( )

1 ( ) 1 ( )

s s s s
xx xx xxb

s s s s
xy xy

− + χ− +

− + χ− +

σ = ε σ + ε σ

σ = ε σ + ε σ
 (2.30) 

xyb

χεMultiplier  expresses the fact that the solution of the boundary layer, as the solution of 
the homogeneous boundary value problem, is determined with the accuracy of the constant 
multiplier. χ  should be determined so, that during the satisfaction of conditions (2.15) a 
contradictions wouldn’t arise. It is achieved at 1χ = − . As a result we have 

( ) ( ) ( 2)( 0, ) ( 0, )s s
xx xxbx t s−σ = ζ + σ = ζ = ϕ  

( 1) ( ) ( 2)( 0, ) ( 0, )s s
xy xybx t−σ = ζ +σ = ζ = ψ s−  (2.31) 

(0) ( )0, 0, 0 ( , )s sϕ = ϕ = ≠ ϕ ψ  

( ) ( ),s s
xxb xybσ σ  satisfy conditions (2.21). As a result we have the conditions Functions 

1 1 1 1
( ) ( 2) ( ) ( 2)

1 1 1 1
1 1

( ) ( 1)

1 1

(0, ) , (0, )

(0, )

s s s
xx xx

s s
xy

d d d

d d

+ + + +
− −

− − − −

+ +
−

− −

σ s dζ ζ = ϕ ζ ζσ ζ ζ = ζϕ ζ

σ ζ ζ = ψ ζ

∫ ∫ ∫ ∫

∫ ∫
 (2.32) 

( )
1

sCFrom the three conditions (2.32) constants of the solution of the inner problem , 
( )
3

sC ( )
4
sC,  are determined. It is interesting that in (2.32) the conditions turned out to be as 

many as the unknown constants are in the solution of the inner problem, which indicates the 
presence of the inner harmony in elasticity theory. Coming back to (2.31), where 

( ) ( ),s s
xx xyσ σ  are already known functions, for determining the constants in the solution  of 

the boundary layer we obtain the conditions 
( ) ( 2) ( )

( ) ( 2) ( 1)

( 0, ) (0, )

( 0, ) (0,

s s s
xxb xx

s s s
xyb xy

t

t

−

− −

σ =

)

ζ = ϕ −σ ζ

σ = ζ = ψ −σ ζ
 (2.33) 

or 

)()(
2

)(
1

)()(
2

)(
1

),0(~Im),0(~Re

),0(~Im),0(~Re
ss

nxyb
s
nxyb

ss
nxxb

s
nxxb

AA

AA

ψ=ζσ+ζσ

ϕ=ζσ+ζσ
 (2.34) 

 15 



( ) ( ),s sϕ ψwhere  are the right parts of conditions (2.33). For the calculation of the values 

of ( )
1

s
nA ( )

2
s
nA and  from system (2.34), collocation method, Fourier method, the method of 

least squares etc., may be used. 

2.3. Connection with Saint-Venant principle. From conditions (2.32), (2.33) a very 
important fact follows – if at 0x =  conditions (2.15)a relative to the stresses are given, 
then the solution of the inner problem takes non-self-balanced part of the load on itself, and 
the boundary layer by virtue of (2.33) takes the self-balanced part of the end-wall load on 
itself. From this purely mathematical fact follows that if the beam (bar) is loaded by the 
end-wall load, then the same inner stress-strain state will statically correspond to the 
equivalent loads. This is the very principle of Saint-Venant. So, justification of this 
principle in case of the first boundary value problem of elasticity theory for a rectangle-
strip is mathematically proved. Let’s show what was above said in some examples. Let in 

23 (1 ), 0
2

pϕ = −ζ ψ = 2 | |, 0pϕ = ζ ψ = x l=(2.15)a 1) , 2) , and at  

. In both cases ,xx xypσ = σ = 0 0,xx xy yypσ = σ = σ =  is the solution of the inner 
problem. The difference will be in the solutions for the boundary layer. We have (fig. 3), 
(fig. 4) 

 

=
3
2

p  

p
1) 
 
 
 

= 

Fig. 3 
 
The fading solution when removing from the end-wall 0x = , according to (2.33) 

will correspond to functions 2(1 ), 0
2
p

ϕ = −ζ ψ = . The graphs of the stresses are 

brought in [5]. 
2) 
 
 
 
 

Fig. 4 
 

2 p
p

 

+

p−

+

2
p

p−

−
p  p

=

+

−

p  pp

+
p−−

+
=

p
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12 | | ,
2

p ⎛ ⎞ 0ϕ = − − ζ ψ =⎜ ⎟
⎝ ⎠

The fading solution corresponds to functions . 

xx pσ = − ζIn analogous way one and the same solution of beam pure bend problem ( , 

,  at 35( ) , ( ) 0
3

pϕ ζ = ζ ψ ζ =0xyσ = 0yyσ = x l= ) corresponds to conditions 1) ,   

2) 
2

( ) sin
12 2

pπ π
ϕ ζ = ζ ( ) 0ψ ζ =, . The initial approach already gives the exact 

solution of the inner problem: int
xx

M y
J

σ = − M0xy yyσ = σ =, , where  is the bending 

moment,  is the moment of inertia of the cross-section, which coincides with the well-
known elementary solution of elasticity theory. The fading solutions correspond to the   

end-wall values of stresses 1) 

J

3(5 3 ), 0
3
p

ϕ = ζ − ζ ψ = ,                      

2) 
2

sin 3 , 0
3 4 2
p ⎛ ⎞π π

ϕ = ζ − ζ ψ =⎜ ⎟
⎝ ⎠

,  the graphs of the stresses are brought in [5]. 

If at  the conditions relative to displacements 0x = (2.15)b are given, by virtue of 
(2.22) the conjugation of the solutions of the inner problem and the boundary layer should 
be conducted in another way, for example, by the method of least squares. It is obvious that 
Saint-Venant principle must not be formally spread over the displacements. 

3. Asymptotic solutions of the boundary value problem for anisotropic beams 
and plates. The asymptotic method of the boundary value problem for an isotropic strip 
without any difficulty is spread for a strip-rectangle having in its plane general anisotropy, 
and for a layered strip-beam, as well. In the first case we have the following state 
correlations 

11 12 16 11xx yy xy
u a a a
x
∂

= σ + σ + σ +α θ
∂

 

12 22 26 22
v

xx yy xya a a
y
∂

= σ + σ + σ +α
∂

θ  (3.1) 

16 26 66 12
v

xx yy xy
u a a a
y x
∂ ∂

+ = σ + σ + σ +α
∂ ∂

θ  

Transforming according to (2.4) the equations of equilibrium (2.1) and correlations 
ε(3.1), we obtain singularly perturbed by small parameter  system, the solution of which 

will have the form (2.6)-(2.8). The solution of the inner problem is again expressed by the 
analogous formulae through functions ( ) ( ), vs su , which are  determined from equations 

2 ( )
( ) ( ) ( ) ( ) ( ) ( )

* *2
11

2 , ( ,1
s

s s s s s s
x x xy xy

d u q q X X
a d

+ − ) ( , 1)⎡ ⎤= = − + −σ ξ +σ ξ −⎣ ⎦ξ
 

4 ( )
( )

114
11 1

2 v 1,
3

s
sd q a

a d E
=

ξ
=  (3.2) 
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( ) ( ) ( ) ( ) ( )
* *

( ) ( ) ( ) ( )
* *

( ,1) ( , 1)

( ,1) ( , 1)

s s s s s
y y

s s s s
xy xy

q Y Y

d X X
d

+ −

+ −

= + −σ ξ +σ ξ − +

⎡ ⎤+ − −σ ξ −σ ξ⎣ ⎦ξ
−

 

The solution of the boundary layer have the form (2.18) and is determined by 
formulae 

( ) ( ) ( ) ( ) 1 ( ) ( ) 2( ), ( ), ( )s s s s s s
yyb n n xyb n n n xxb n n nA F A F A F− −′ ′′σ = ζ σ = λ ζ σ = λ ζ  

(( ) ( ) 3 2 1
11 16 12

s s
b n n n n n nu A a F a F a F− − −′′ ′= − λ + λ + λ )n  (3.3) 

( )( ) ( ) 4 3 2 1
11 16 12 66 26v 2 ( )s s

b n n n n n n n n nA a F a F a a F a F− − − −′′′ ′′ ′= − λ + λ + + λ + λ  

nFwhere functions  are determined from the boundary value problem 

2 3 4
11 16 12 66 26 222 (2 ) 2

( 1) 0, ( 1) 0

IV
n n n n n n n n n

n n

a F a F a a F a F a F
F F

′′′ ′′ ′ 0+ λ + + λ + λ + λ =
′ζ = ± = ζ = ± =

 (3.4) 

,xxb xybσ σFrom (3.3), (3.4) the self-balance of stresses  again follows in the arbitrary 

cross-section kt t= , i.e. Saint-Venant principle takes place for the strip-beam having a 
general anisotropy in the plane of the cross-section, as well. 

The conjugation of the inner problem and boundary layer solutions is realized in the 
similar way. 

In case of a layered strip-beam it is necessary to assign all the values entering into the 
equations of the equilibrium (2.1) and elasticity correlations (3.1) by index "  ( k  is the 
layer number) and to seek the solution of the transformed system in the form of 

"k
(2.6)-(2.8). 

As a result for the values "  of that layer we have "k
( , ) ( , ) ( , )

*v ( ) v ( ,k s k s k sV = ξ + ξ )ζ  
( , )

( , ) ( , ) ( , )
*

v ( ) ( , )
k s

k s k s k sdU u u
d

= − ζ + ξ + ξ ζ
ξ

 

( , ) 2 ( , )
( , ) ( , )

*( ) ( ) 2
11 11

1 1 v ( , )
k s k s

k s k s
xx xk k

du d
a d a d

σ = − +σ ξ ζ
ξ ξ

 (3.5) 

3 ( , ) 2 2 ( , )
( , ) ( , ) ( , )

0 *( ) 3 ( ) 2
11 11

1 v 1 ( ) ( , )
2

k s k s
k s k s k s

xy xy xyk k

d d u
a d a d

ζ
σ = − ζ +σ ξ +σ ξ ζ

ξ ξ
 

( , )4 ( , ) 3 3 ( , ) 2
0( , ) ( , ) ( , )

0 *( ) 4 ( ) 3
11 11

1 v 1 ( ) ( , )
6 2

k sk s k s
xyk s k s k s

yy yy yk k

dd d u
a d a d d

σζ ζ
σ = − + − ζ+σ ξ +σ ξ ζ

ξ ξ ξ
 

It is not difficult to write out the expressions , which are the known functions. 
If the packet consists of n  layers, where n  is the quantity of the layers stood above, 
and  is lower the axis O , satisfying the boundary conditions on the facial surfaces of 
the packet and the conditions of full contact among the layers (continuity of the 

( , )
*

k sQ
m+
ξm
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,xy yyσ σdisplacements and the stresses ), all the values may be expressed through the 
displacement of n th layer, and for them obtain the equations [10] 

2 ( , ) 3 ( , )
( )

2 3

4 ( , ) 3 ( , )
( )

4 3

v

v

n s n s
s

n s n s
s

d u dC K
d d

d d uD K
d d

+ =
ξ ξ

+ =
ξ ξ

p

q
 (3.6) 

where 

1 1( ) ( )
1 111 11

1 1( ) (
n m

k k k kk k
k k

C
a a− −−

= =

= ζ − ζ − ζ − ζ∑ ∑ )− +  

( ) ( )3 3 3 3
1 1( ) ( )

1 111 11

1 1 1 1
3 3

n m

k k k kk k
k k

D
a a− −−

= =

= ζ − ζ − ζ −ζ∑ ∑ − +  

( ) (2 2 2 2
1( ) ( )

1 111 11

1 1 1 1
2 2

n m

k k k kk k
k k

K
a a− −−

= =

= − ζ −ζ + ζ −ζ∑ ∑ )1− +  (3.7) 

),,2,1(1),,,2,1(1
11

mkh
h

nkh
h

k

j
jk

k

j
jk =−=== ∑∑

=
−−

=

ζζ  

1 1

n m

j j
j j

h h h−
= =

= +∑ ∑  

D  are positive, and the position of the axis OξStiffness  and C  can be chosen so, that 
. Then the first equation of 0K = (3.6) will correspond to tension-compression of the 

layered bar, and the second will correspond to the bend of the layered beam. At  
system 

0s =
(3.6) coincides with the classical system by the hypothesis of plane sections [11]. 

In order to solve space problem for plates 
 having common anisotropy  

(21 elasticity constants) we input dimensionless coordinates 
{( , , ) : 0 , 0 , }D x y z x a y b h z h= ≤ ≤ ≤ ≤ − ≤ ≤ +

x l= ξ y l= η z h= ζ, ,  

( ) and dimensionless displacements U u l= vV l=min( , ),l a b h= l<< , , 

W w l= . The corresponding system of thermoelasticity equations 

1 ( , , ) 0 ( , , ; , , )xyxx xz
xlF x y z−∂σ∂σ ∂σ

+ + ε + ξ η ζ = ξ η ζ
∂ξ ∂η ∂ζ

 

11 12 13 14 15 16 11xx yy zz yz xz xy
U a a a a a a∂

= σ + σ + σ + σ + σ + σ +α θ
∂ξ

 

12 22 23 24 25 26 22xx yy zz yz xz xy
V a a a a a a∂
= σ + σ + σ + σ + σ + σ +α θ

∂η
 

1
13 23 33 34 35 36 33xx yy zz yz xz xy

W a a a a a a− ∂
ε = σ + σ + σ + σ + σ + σ +α θ

∂ζ
 (3.8) 

1
14 24 34 44 45 46 23xx yy zz yz xz xy

V W a a a a a a− ∂ ∂
ε + = σ + σ + σ + σ + σ + σ +α θ

∂ζ ∂η
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1
15 25 35 45 55 56 13xx yy zz yz xz xy

U W a a a a a a− ∂ ∂
ε + = σ + σ + σ + σ + σ + σ +α θ

∂ζ ∂ξ
 

16 26 36 46 56 66 12xx yy zz yz xz xy
V U a a a a a a∂ ∂
+ = σ + σ + σ + σ + σ + σ +α

∂ξ ∂η
θ  

h lε = . The solution of system (3.8)is again singularly perturbed by small parameter  has 
the form of (2.6), for the inner problem we have 

2q = −  for ;  , , , ,xx xy yy uσ σ σ v 1q = − ,xz yzσ σ for ;   

0q =  for ;   for  (3.9) 3q = − wzzσ

ζ(3.9) into (3.8) we obtain a system which permits integration by Substituting  and 
satisfaction of the conditions at 1ζ = ± . As a result we have 

( ) ( ) ( )
*( , ) ( , , )s s sW w w= ξ η + ξ η ζ  

( )
( ) ( ) ( )

*( , ) ( , , ), ( , v; , )
s

s s swU u u u∂
= −ζ + ξ η + ξ η ζ ξ η

∂ξ
 

( ) ( ) ( ) ( )
1 0 * ( , , ), ( , )s s s s

xx x x x x yσ = ζτ + τ + σ ξ η ζ  (3.10) 

( ) ( ) ( ) ( )
1 0 *

s s s s
xy xy xyσ = xyζτ + τ +σ  

( ) 2 ( ) ( ) ( ) ( )
2 1 0 *

1 , ( , )
2

s s s s s
xz xz xz xz xz x yσ = ζ τ + ζτ + τ + σ  

( ) 3 ( ) 2 ( ) ( ) ( ) ( )
3 2 1 0

1 1
6 2 *

s s s s s
z z z z zσ = s

zζ τ + ζ τ + ζτ + τ +σ  

( )sτ ( ) ( ) ( ), v ,s su sw are expressed through Functions , which are determined from the 
equations [5] 

( ) ( ) ( ) ( ) ( ) ( )
11 12 1 12 22 2v , vs s s s sl u l p l u l p+ = + = s  (3.11) 

4 ( ) 4 ( ) 4 ( )

11 16 12 664 3

4 ( ) 4 ( )
( )

26 223 4

4 2( 2 )

4

2 2

s s s

s s
s

w wB B B B

w wB B q

∂ ∂ ∂
+ + +

∂ξ ∂ξ ∂η ∂ξ ∂η

∂ ∂
+ + =

∂ξ∂η ∂η

w

 (3.12) 

where 
2 2 2

11 11 66 162 2 2 , (1,2;l B B B∂ ∂ ∂ , )= + + ξ
∂ξ ∂η ∂ξ∂η

η  

2 2

12 16 12 66 262 2( )l B B B B∂ ∂
= + + +

∂ξ ∂ξ∂η ∂η

2∂
 

( ) ( )2
11 22 66 26 22 11 66 16,B a a a B a a a= − Ω = − 2 Ω  (3.13) 
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( )2
12 16 26 12 66 66 11 22 12( ) ,B a a a a B a a a= − Ω = − Ω  

16 12 26 22 16 26 12 16 11 26( ) , (B a a a a B a a a a= − Ω = − ) Ω
2

 

( )2 2
11 22 12 66 12 16 26 11 26 22 162a a a a a a a a a a aΩ = − + − −  

0s =Equations (3.11), written in dimensional coordinates, coincide at  with classical 
equations of the generalized plane problem, and equation (3.12) coincides with the classical 
equation of the plate bend, which has plane of the elastic symmetry [11]. At  the 
right parts of these equations (load members) change, where the elasticity coefficients of 
mutual influence, characterizing general anisotropy, enter too. Under the general anisotropy 

, 

0s >

(1)
1 0p ≠ (1)

2 0p ≠ ,  and the error of the classical theory makes up , when, 
as for isotropic, orthotropic plates and plates having plane elastic symmetry under the 
tempered anisotropy error is 

( )O ε(1) 0q ≠

2( )O ε , and under strong anisotropy these estimates sharply 
change into the worse side. 

Classical theory of plates does not take into account the boundary layer. The solution 
of the boundary layer localized in the vicinity of the end 0ξ =  is sought in the form of 

( ) ( , ) exp( ),s s
b bI I t tχ+= ε η ζ −λ = ξ ε  (3.14) 

where  for , , ; 0χ = 1χ = −bu bw ijbσvb  for . In general case all the values of the 

boundary layer are expressed through the functions ( ) ( ),s s
zzb yzbσ σ , which are determined from 

the equations [5] 
( ) ( ) ( 1)

1 2 1

( ) ( ) ( 1)
2 3 2

s s
zzb yzb

s s
zzb yzb

L L R

L L R

s

s

−

−

σ + σ =

σ + σ =
 (3.15) 

under the boundary conditions 
( ) ( ) ( )( 1) 0, ( 1) 0, ( 1)s s s
zzb xzb yzbσ 0ζ = ± = σ ζ = ± = σ ζ = ± =  (3.16) 

where  are known functions, ( 1) ( 1)
1 2,s sR R− − (0) (0)

1 2 0R R= = , and 

4 3 2
2 3

1 11 15 13 35 45 434 3 22 (2 ) 2L A A A A A A∂ ∂ ∂ ∂
= + λ + + λ + λ +

∂ζ ∂ζ ∂ζ ∂ζ
4λ  

3 2
2 3

2 16 14 25 23 34 443 2( ) ( )L A A A A A A∂ ∂ ∂
= λ + + λ + + λ + λ

∂ζ ∂ζ ∂ζ
4  (3.17) 

2
2 3

3 26 24 412 2L A A A∂ ∂
= λ + λ + λ

∂ζ ∂ζ
4

2L

 

At  admitting , the solution of the problem (0) (0)
3 ,zzb yzbLσ = φ σ = − φ0s = (3.15), (3.16) 

is reduced to the boundary value problem 

( )2
1 3 2

3 1 3 1 2 1

0

( ) 0, ( ) 0, ( ) 0

L L L

L L Lζ=± ζ=± ζ=±

− φ =

′φ = φ = φ =
 (3.18) 
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The operator of the problem (3.18) is ordinary differential of the sixth order. The 
system from six homogeneous algebraic equations corresponds to the boundary value 
problem (3.18), equalizing the determinant of this system to zero we obtain an equation for 

.  of this equation will characterize the rate of decrease of the boundary layer 

quantities. For isotropic and orthotropic plates

Re 0nλ >λ

2 0L ≡  and the boundary value problem 

(3.15), (3.16) splits at  into two independent problems 0s =

( )(0) (0) (0)
1 1

(0) (0)
3

0, ( 1) 0, 0

0, ( 1) 0

zzb zzb zzb

yzb yzb

L

L
ζ=±

′σ = σ ζ = ± = σ =

σ = σ ζ = ± =
 (3.19) 

nλto which plane and antiplane boundary layers correspond. In the first case  are complex 
conjugate, in the second case they are real, naturally, their values depend on the values of 
the elasticity constants. For the plates from composite materials the values nλ  are brought 
in [5].Conjugation of the solutions of the inner problem and the boundary layer is realized 
by the similar way, described above. 

In case of shells the structure of solution (2.6) remains unchangeable, yet in the inner 
problem asymptotics differs from (3.9). Iteration processes, corresponding to momentless 
and moment stress-strain state of shells, are built, the conjugation of the inner problem and 
boundary layer solutions is realized as for plates [5]. 

 
II. Nonclassical boundary value problems of beams, plates and shells 
Classical and precise theories of beams, plates and shells consider only one class of 

problems – on the facial surfaces of the thin body the values of the corresponding stresses 
tensor components are given, Meanwhile, in fundamental construction, seismic 
construction, aero-vessel construction and other areas classes of problems, when on the 
facial surfaces of the thin body other conditions – displacement vector, mixed conditions 
are given, arise. This class of problems is accepted to call nonclassical, in order to differ 
from the second and mixed problems of classical theory (similar conditions are given on the 
lateral area), though from the position of elasticity theory these problems are fully classical. 
Using the cited in chapter 2,3 correlations or correlations of classical theory, by direct 
check it is possible to verify, that they can’t satisfy the conditions of the second and mixed 
boundary value problems of elasticity theory on the facial surfaces, which means 
inapplicability of Bernoulli-Kirchhoff-Love hypothesis for the solution of this class of 
problems. The asymptotic method permits us to find the solutions of these boundary value 
problems for beams-strips, plates and shells, in addition to anisotropic and layered ones 
without using any hypothesis [5,13]. 

1. In case of anisotropic rectangular beams-strips it is required to find the equations 
solution of plane problems of thermoelasticity in the area 

},,0:),{( <<≤≤−≤≤= hhyhxyxD  under the conditions 

)(v),(v),(),( xhxxuhxu −− =−=− , particularly   (1.1) 0v == −−u
hy =  and one of the groups of conditions at 

)(v),(v),(),( xhxxuhxu ++ ==   (1.2) 

)(),(),(),( xhxxhx yyyyxyxy
++ σ=σσ=σ   (1.3) 

)(),(),(v),(v xyxxhx xyxy
++ σ=σ=  (1.4) 

)(),(),(),( xhxxuhxu yyyy
++ σ=σ=   (1.5) 
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and conditions at . Passing to dimensionless coordinates,0=x hyx /,/ == ζξ , 
and dimensionless displacement /v,/ == VuU , the equations of elasticity theory 
will be singularly perturbed by small parameter /h=ε . The solution of this system 
again has the form (I.2.6), but the asymptotics of the inner problem permitting to find the 
solutions corresponding to conditions (1.1)-(1.5) is different: 
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ζ : System (1.7) assumes integration by 
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Unknown functions , which are unambiguously determined from 
conditions (1.1)-(1.5), enter the solution of the inner problem (1.6), (1.8). For example, for 

)()()(
0

)(
0 v,,, sss

y
s

xy uσσ

 23 



conditions (1.1), (1.2) we have 
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In the problem corresponding to conditions (1.1), (1.3) we have 
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It is not difficult to extract the values of these functions under conditions (1.1), (1.4); 
(1.1), (1.5). So, unlike the first boundary value problem, the solution of the inner problem, 
under the different conditions on the facial surfaces hy ±= , is fully determined as a result 
of satisfaction of these conditions. If the boundary functions are polynomials from variable 
ξ , the iteration process breaks and the solution of the inner problem becomes 

mathematically exact. For example, at  from (1.6), (1.10) 
follows 
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Solution (1.12)-(1.14), as a rule, will not satisfy the boundary conditions at . 
The arising residual is removed by the solution for the boundary layer, which is built as in 
the case of the first boundary value problem. In this way the first established in [13] 
asymptotics (1.6) permitted to solve a new class of problems for which the hypotheses of 

,0=x
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classical theory are not applicable. Asymptotics (1.6) is true for layered beams and bars. 
Having solved equation (1.7) for the arbitrary -layer and satisfied the contact conditions 
among the layers, it is not difficult to write out the solution of the inner problem. This 
asymptotics may be generalized for finding the solutions of the corresponding space 
problems of anisotropic plates and shells as well, and layered in addition. Let’s illustrate 
what has been said above on the examples of two-layered plates and shell. In case of plates 
it is required to find the solution of thermoelasticity theory equations in the region   

k

}),,max(,,,:),,{( 21120 <<=≤γ≤−Ω∈βαγβα= hhhhhhD ,   is 

characteristic tangential dimension of the plate in the plane 0Ω  interface of the layers, 

when on the facial surface 2h−=γ  the displacement vector is given and on the opposite 

surface 1h=γ  the stress tensor , the displacement vector components or mixed 
conditions (Fig. 1). Passing in the equations and correlations of elasticity to dimensionless 
coordinates 

+
γσ j

h/γ=ζ,/,/ β=ηα=ξ   and displacements 

 for i-layer ( 2,1=i/,/v,/ γβα uwuuu === ) we have [5] 
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where  are the coefficients of the first quadratic form,  are the geophysical 

curvatures,  are the constants of elasticity under general anisotropic, 
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The solution of the inner problem is again sought in the form of (1.6), where  

for all the stresses and  for all the displacements. Substituting (1.6) into (1.15) by the 
above described procedure, iteration process for the sequential determination of all sought 
values and conditions on the facial surfaces 

1−=q
0=q

21, hh −=γ  is obtained. After satisfying these 
conditions the solution for  becomes well-known. s∀

2h−=γWe reduce this solution for the case, when surface  of two-layered plate is 

rigidly fastened, and on surface 1h=γ  the load of the constant intensity acts 

γβα==σ

σ=σσ=σσ=σ

=−=−=−

+
γ

+
γγγγ

+
βγβγ

+
αγαγ

,,,)(

)(,)(,)(

0)()(v)(

1

111

222

jconsth

hhh

hwhhu

j

 (1.16) 

Iteration process breaks on the initial approximation and we have the exact solution 
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Mathematically exact solution (1.17) permits us to answer a very important question 
– if the model of Vinker-Fuss bed coefficient for anisotropic and layered foundations is 
applicable and how to calculate the bed coefficient. For this we write out the connection 
among the displacements and stresses on the surface of the contact )0( =γ  among the 
layers, putting down index “c” to them: 
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If we consider that the normal load  only acts, we have +
γγσ
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i.e. under the effect of the normal load on the surface of the contact tangential 
displacements arise, which means Vinkler-Fuss model breakdown in case of general 
anisotropy, it will be more tangible with big values . For orthotropic and 

isotropic foundations  and 
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For orthotropic foundation according to (1.17) 
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For isotropic foundation 
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Coefficient  coincides with the well-known bed coefficient, reduced by very difficult 
way [14]. 

K

Considering by asymptotic method multi-layered and inhomogeneous by thickness 
foundations, we obtain [5] 
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where  is the general thickness of the foundation. h
Combining Flaman solution for half-plane and Bussinesk solution for half-space with 

asymptotic solution for strip and layer, it is possible to find the solutions for layered 
foundations under concentrated and sectionally continuous force effects [15]. 

Asymptotics (1.6) established for beams and plates is true for shells as well, but the 
iteration process in simplest cases does not already break on definite approximation, by 
virtue of which the solution of the inner problem is asymptotic. In general case the solution 
is fully determined and is expressed through the boundary functions during the satisfaction 
of the conditions on facial surfaces of the shell [5]. As an illustration we reduce the solution 
for orthotropic cylindrical shell the outer surface of which is rigidly fastened and inside the 
constant pressure  (Fig.2). P

Let e the length 
along the generator 
(element), and 

 b

βα ,  be 
ngth of the arch 

directing the cylinder, 
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the le

0,=k kα β=

11/ 0,R =  RR =2 , 

us of th
mi
R  is the radi e 

ddle surface of the 
cylinder. Taking into 
account that volume 
forces are lacking, and 
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temperature field does not change and bounded with exactness )( 2εO  we have solution:  
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The general asymptotic solution can be written out for layered shells, as well. 

II.  Asymptotic solution of space dynamic problems for plates and shells. 

1 nsider the following two interesting types of forced vibrations of orthotropic 
plat

αγ βγ αβ= σ = σ =
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es },),min(,,0,0:),,{( hbahzhbyaxzyxD >>=≤≤−≤≤≤≤= : 
a) vibrations of plates fastened with absolutely rigid plane foundation:  
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b) vibrations, caused by the displacement vector, applied t
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or 

o the facial surface of 
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where  are the given functions−−−+
ασ wuz ,v,, , Ω  is the frequency of t

ons (1.3),(1.4), p i  

 of elasticity theory of an 
orthot

he forcing effect. 
Conditi articularly, simulate seism c effects on the foot of the bases of the
constructions, and (1.3), (1.5) - on the flying-landing areas. 

It is required to find solutions of dynamic equations
ropic body:  
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satisfying the corresponding groups of conditions (1.1)-(1.5) and also the conditions on the 
lateral surface of the plate as well, which are not going to be defined concretely by us, 
because as in the static problem the appearance of the boundary layers corresponds to them. 
The solutions  of the formulated problem will be sought in the form of  
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Substituting (1.7) into (1.6), then passing to dimensionless coordinates 
,/,/ yx == ηξ /z=ζ /,/,/ zyx uWuVuU === and displacements  

we obtain 
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The solution of the singularly perturbed system (1.8) is again combined from the 
solution of the inner problem  and the boundary layer : . The 
solution of the inner problem is sought in the form of  
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Substituting (1.9) into (1.8), from the new system all the stresses will be expressed 
through the displacements according to the formulae  
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Substituting the values  into the corresponding first three equations 

(1.8),  we obtain equations to determine the functions :  
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The solution of the system (1.11) is 
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where the first is the summand solution of homogeneous equations, and the second is the 
particular solution of  inhomogeneous equations (1.11). Satisfying each group of the 
boundary conditions (1.1)-(1.5) we have the final solution. The solution  
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corresponds to  the conditions (1.1), (1.2).  
The solution (1.7), (1.9), (1.14) will be finite, if  

)/1,,(,02cos 11445555* Aaaa ≠Ω  (1.15) 

If  is so that one of the three conditions is not fulfilled, resonance takes place, such 
values  coincide with the principal values of the frequencies of the free vibrations.  
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corresponds to the conditions (1.3), (1.4). 
Under the conditions (1.3), (1.5) we have 
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−

The stresses are calculated by formulae (1.7), (1.9), (1.10), and  -by 
formulae (1.14). These solutions will be finite, if corresponding to 
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The values Ω  under which at least one of the conditions (1.18) or (1.19) is not 
fulfilled correspond to the resonance. These values coincide with the principal values of the 
free vibrations frequencies of the plate, under the corresponding homogeneous conditions 
on the facial planes . Note an important fact-if the entering boundary conditions 
functions  are polynomials from 

z h±=
−−−+ wujy ,v,,σ ηξ , , iteration process breaks, as a result 

in the inner dynamic problem we obtain an exact solution (solution for the layer). 
The above described approach can be used to solve problems on forced vibrations of 

layered plates. For this, equations (1.6) for an arbitrary layer with number “ ” are solved, 
the structure of solution (1.7), (1.9)-(1.13) remains unchangeable, index “ ” is only 
ascribed to all the values, then the boundary conditions on the facial surfaces and the 
conditions of full contact between the layers are satisfied. As an illustration we bring the 
solution for a two-layered orthotropic plate 
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},,),min(,,0,0:),,{( 2112 <<=+=≤≤−≤≤≤≤= hhhhbahzhbyaxzyxD , 

corresponding conditions (1.3) at 2hz −=  and conditions (1.4) at , when 

. The iteration breaks at the initial approach and the following exact 
solution is obtained:  

1hz =
constwu =−−− ,v,

IIIktiwutiuu jmkjmkkk ,,exp~),,v,(,exp~ =Ωσ=σΩ=  (1.20) 

hh /,0 111 =ζζ≤ζ≤for the first layer ( ) 
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Solution (1.20)-(1.22) will be finite, if  
0,0,0 321 ≠Δ≠Δ≠Δ  (1.23) 

otherwise a resonance will arise and the corresponding values Ω  will coincide with the 
main values of the frequencies of two-layered plate free vibrations. 

This result can have an obvious application in seismic steady construction. The two-
layered plate simulates the packet base-foundation of the constructions. The power 
(thickness) and the elastic characteristics of the compressed layer (foundation) are usually 
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Ωknown, the region of frequencies  change of the outer dynamic (seismic) effect is 
known, as well. Using formulae (1.22) for 321 ,, ΔΔΔ  the parameters of the first layer 
(base) can be chosen so, that conditions (1.23) were fulfilled, i.e. the construction from the 
very beginning wouldn’t fall into resonance condition. 

By the described above procedure the solutions for three-layered and multilayered 
plates are written out. The analysis of the asymptotic solution of the corresponding three-
dimensional boundary problems for three-layered plates reduces to the important 
conclusions too. 

It is established, that when the displacement vector, which changes harmonically in 
time, is applied to the facial surface of the lower-third layer, and the upper layer is rigidly 
fastened or free, then if all the three layers consist of rigid similar materials, the amplitudes 
of the vibrations grow, though negligibly from layer to later. And in the presence of the 
middle layer from softer material (for example, rubber) the vibrations amplitudes in the 
upper layer, particularly tangential vibrations, diminish abruptly [16]. The established fact 
proves the necessity of application of seismoisolators in the seismic construction, as when 
building the constructions, if between the concrete base and foundation a thin layer of 
rubber like soft material is inserted, it will bring to diminution of dangerous vibrations in 
the base during the earthquakes and, as consequence and to the increase of the construction 
seismosteadiness. 

In case of the first dynamic boundary value problem of elasticity theory for strips-
beams, plates and shells (on the facial surfaces the corresponding stresses tensor 
components are given) the asymptotics of the static problem: 

,0,1,2 =−==−===
zzyzxzyyxyxx

qqqqqq σσσσσσ   

reduces to contradictory correlations, but the above brought 
asymptotics (1.7), (1.9) of mixed problem [17] passes. In this sense the asymptotics (1.7), 
(1.9) is universal. The procedure of finding the general solution is unchangeable [17].  

3,2v −=−== wu qqq

  
IV Asymptotics of free vibrations of plates and shells. 
 
1. In the previous chapter we noted the particular role of free vibrations frequencies 

for arise of resonance states. The asymptotic method permits to determine the values of 
frequencies and forms of the free vibrations of known and anisotropic plates and shells on 
the base of the three-dimensional problem dynamic equations of elasticity theory. Consider 
variants of the free vibrations of plates and shells representing the greatest interest. Set the 
problem: to find the frequencies of the free vibrations and the free functions of an 
orthotropic plate   :),,{( zyxD =

},),min(,,0,0 hlbahzhbyax >>=≤≤−≤≤≤≤ corresponding to the 
following conditions of the facial surfaces 

0),,(),,(v),,( =−=−=− hyxwhyxhyxu  (1.1) 
0),,(),,(v),,( === hyxwhyxhyxu   (1.2) 

or 
0),,(),,(),,( =σ=σ=σ hyxhyxhyx zzyzxz   (1.3)  

For this it is necessary to find nontrivial solutions of dynamic equations (III.1.6) 
under the conditions (1.1), (1.2) or (1.1), (1.3). Below we shall be convinced, that the 
conditions on the lateral surface don’t influence on the values of the free vibrations 
frequencies, the vibrations in the boundary layer with the same frequency of free vibrations 
in the inner problem correspond them. The solutions of the set problem will be sought in 
the form of  
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ωwhere  is the frequency of the free vibrations. When passing to dimensionless 
coordinates hzyx /,/,/ =ζ=η=ξ  and displacements 

/,/,/ zyx uWuVuU ===  the dynamic equations of the three-dimensional 
problem will have the form 
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The solution of singularly perturbed system (1.5) has the form of . bIII += int

intIThe solution of the inner problem  will be sought in the form of [18] 
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Substituting (1.6) into (1.5) and equalizing the coefficients under the similar degrees 
ε , we obtain a system form where the stresses will be expressed through the displacements 
by formulae (III.1.10), the last ones are determined from the equations 
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At , equations (1.7), (1.8) become independent. 

Having solved equation (1.7) and satisfied conditions (1.1), (1.2) for U  we obtain a system 
of homogeneous algebraic equations for the existence of the nonzero solution of which it is 
necessary to fulfill the equations 
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Having satisfied the rest of the conditions (1.1), (1.2), we obtain dispersion equations 
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which correspond to the following values of frequencies 
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2313 ,where  are the shear module, 2313 ,GG  are the well-known 

in seismology velocities of shear waves propagations, and 
ρ

= 11AVp  is the velocity of 

longitudinal waves. The frequencies (1.10) correspond to the following free functions and 
solutions: 
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In case of the frequencies (1.13) we have 
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ϕ = π nζ ψ = + ζThe free functions  compose an 

orthonormalized system on the interval [-1;1]. Thus, in the plate two types of vibrations – 
shear ((1.14), (1.15)) and longitudinal ((1.16)) vibrations arise. 

At  the solution of the equations (1.10), (1.12) may be sought in the form of 
series along the free functions {  or {

1≥s
}nϕ }nψ of the initial approach for each variant (1.10), 

(1.12), (1.13) of the frequencies values. The calculations show, that 
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= + ε ω = ω + ε ω

= ε + ε = ε + ε
  (1.18) 

From (1.18) two important properties: 1) correction to the basic solution and 
frequency of the order , that is why at small )( 2εO ε  we may be restricted by the initial 
approach, 2) shear vibrations of one type generate the shear vibrations of another type and 
longitudinal vibrations as well and both of them are with the same basic frequency, but the 
amplitudes accompanying the vibrations are one order smaller than the basic ones. The 
analogous picture takes place for the frequencies (1.12), (1.13). 

Consider the boundary conditions (1.1), (1.3). They correspond to the equations of 
the frequencies 

55 *0 55 44
11

1cos 2 0, ( , , )a a a
A

ω =   (1.19) 

which correspond to the frequencies  

13
0

55

55 44 11 13 23 11

(2 1) (2 1),
44

( , , ; , ,1/ ; , , )

I
n

Gp n n
hh a

I II III a a A G G A

π n Nω = + = +
ρρ

∈
  (1.20) 

It is not difficult to write out free functions too. 
The consideration of free vibrations in the zone of the boundary layer reduces to the 

conduction, that each frequency, determined from the solution of the inner problem, 
corresponds to the class of boundary functions, which when removing from the lateral 
surface into the inside the plate diminish exponentially, i.e. in the zone of the boundary 
layer under the free vibrations a mixed picture is originated. 

2. In case of layered plates the basic equations and correlations of elasticity are the 
same, the number of layer “ k ” is only ascribed to all the values. The solution for an 
arbitrary layer “ ” which by its form coincides with the solution of the inner problem for a  
one-layered plate [19], then the conditions (1.1), (1.2), or (1.1), (1.3) on the facial surfaces 
of a layered packet and the conditions of full contact among all the layers are satisfied. As a 
result we obtain a system from homogeneous algebraic equations. The existence condition 

k
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of nonzero solution of this system (the determinant equals zero) is the very equation of 
frequencies of free vibrations. For two-layered orthotropic plates 

  

three variants of independent equations at 
2 1{( , , );0 ,0 , , min( , ) ,D x y z x a y b h z h a b= ≤ ≤ ≤ ≤ − ≤ ≤ = 1 2 ,h h h= +

}h << 0=s  are obtained 

55
55 *0 1 55 *0 2 55 *0 1 55 *0 2

55

55 44 1 1 2 2
11

sin sin cos cos 0

1( , , ), / , / ; ,

II
I II I III

I II I III
II

k k
k

a
a a a a

a

a a h h h h k I II
A

ρ
ρ ω ζ ρ ω ζ − ρ ω ζ ρ ω ζ =

ρ

ζ = ζ = =

  (2.1) 

Corresponding to the boundary conditions 

1z h=0I I I
xz yz zzσ = σ = σ =   for   (2.2) 

v 0II II IIu w= = = 2z h= −  for   (2.3) 
( ,0) ( ,0)

55 *0 1

( ,0) ( ,0)
55 *0 2

55 44 11

cos ( )

sin ( )

( , ,1/ )

I I I
u I

II II II
u II

k k k

U C a

U C a

a a A

= ρ ω ζ − ζ

= ρ ω ζ + ζ   (2.4) 

are free functions. 
The equations (2.1) are reduced to the standard form 

*0 *0cos cos 0p r qω ω+ =                                                              (2.5) 
where 

1 55 2 55 1 55 2 55

55 55
55 44 11

55 55

,

, ( , ,1/ ), ,

I II I II
I II I II

I II
II I k k k

I II
II I

p a a q a a

a a
r a a A

a a

=

k I II

ζ ρ + ζ ρ = ζ ρ − ζ ρ

ρ − ρ
= =

ρ + ρ

  (2.6) 

The roots of which are easily found, if elastic and geometrical parameters of a layered 
packet are given. Dispersion equations for three-layered and multilayered plates, too, can be 
obtained. 

IF we introduce function : mϕ
( ,0)

1

( ,0)
2

, 0

, 0

I
I m

m II
II m

U

U

⎧ ρ ≤ ζ ≤ ζ⎪ϕ = ⎨
ρ − ζ ≤ ζ ≤⎪⎩

  (2.7) 

2 1[ , ]ζ ζ−It is proved, that the function { }mϕ  are orthogonal on the interval , i.e. the 
free functions are orthogonal with the weight. 

The described approach of frequencies determination and forms of free vibrations are 
spread on the shell too [20], particularly, it is established that *1 0nω ≠ , i.e. if restricted by 

initial approach, the error will be about )(εO . 
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