ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՍԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

61, №3, 2008

Механика

УДК 539.3

К УСТОЙЧИВОСТИ СТЕРЖНЯ С ДВУМЯ СОСРЕДОТОЧЕННЫМИ СИЛАМИ Мовсисян Л.А., Нерсисян Г.Г.

Ключевые слова: стержень, сосредоточенная сила, статическая и динамическая устойчивости, бесконечная система уравнений, частота, критическая сила. **Keywords:** rode, concentrated force, static and dynamic stability, infinite system of equations, frequency, critical force.

Լ.Ա. Մովսիսյան, Գ.Գ. Ներսիսյան Երկու կենտրոնացված ուժերով ձողի կայունության մասին

Դիտարկված են ձողի ստատիկական և դինամիկական կայունության խնդիրները երկու կենտրոնացված ուժերի դիրքերից և ուղղություններից կախված։

L.A. Movsisyan, G.G. Nersisyan About stability of beam with two concentrated forces

The dynamic and static stability of beam in dependence from position and direction of two concentrated forces is studied.

Изучаются динамическая и статическая устойчивости стержня в зависимости от раположения и направления двух сосредоточенных сил.

Объект исследования – стержень сжат двумя сосредоточенными силами – не нов и как будто не оригинален.

Однако, оказывается в зависимости от расположения и направления сил возможны интересные состояния напряженности и получаются еще более интересные задачи динамической устойчивости. Изучаются несколько задач динамической устойчивости: а) если силы – периодические функции времени, б) периодически меняются направления действия, или, в) если функция точки приложения сил периодическая. Отдельно исследуются также задачи статической устойчивости и колебаний этих систем.

1.Будем изучать стержень, который в продольном направлении (начальное состояние) закреплен на концах, а по отношению поперечных движений-шарнирно оперт.

Уравнение поперечных движений стержня при наличии осевого напряжения в безразмерных координатах запишется

$$\frac{\partial^2 w}{\partial \tau^2} + \frac{1}{\pi^4} \frac{\partial^4 w}{\partial \xi^4} - \frac{1}{\pi^2} \frac{\partial}{\partial \xi} \left(N \frac{\partial w}{\partial \xi} \right) = 0.$$
(1.1)

Здесь $\xi = \frac{x}{l}$, *l* – длина стержня, τ – безразмерное время

$$\tau = \omega_1 t, \quad \omega_1^2 = \frac{EJ\pi^4}{\rho Fl^4}, \tag{1.2}$$

 ω_1 – основная частота свободных колебаний, $N = N(\xi)$ – отношение продольной (неоднородной) силы к эйлеровой

$$N = \frac{P(\xi)}{P_{2}}, \quad P_{2} = \frac{EJ\pi^{2}}{l^{2}}.$$
 (1.3)

В зависимости от расположения и направления действующих сил различными будут $N(\xi)$.

Решение (1.1) будем искать в виде

$$w = \sum_{m=1}^{\infty} f_m(\tau) \sin m\pi \xi$$
(1.4)

удовлетворяющем граничным условиям свободного опирания, а $N(\xi)$ представим как

$$N = \sum_{n=0}^{\infty} a_n \cos n\pi \xi, \qquad (1.5)$$

тогда из (1.1), (1.4) и (1.5) получим следующую бесконечную систему [1] для неизвестных $f_m(t)$:

$$\frac{d^{2} f_{m}}{d\tau^{2}} + m^{4} f_{m} - \frac{1}{2} m^{2} \left[\left(2a_{0} + a_{2m} \right) f_{m} + \sum_{\substack{n=1\\n \neq m}}^{\infty} \left(a_{n-m} + a_{n+m} \right) \frac{n}{m} f_{n} \right] = 0.$$
(1.6)

Изучим несколько вариантов расположения сил.

а) Две сосредоточенные силы P_0 действуют на расстоянии ξ_1 от концов и направлены в одну сторону. Тогда по длине стержня будем иметь

$$P = \begin{cases} P_0 , & 0 \le \xi \le \xi_1, \\ 0 , & \xi_1 \le \xi \le 1 - \xi_1, \\ -P_0 , & 1 - \xi_1 \le \xi \le 1. \end{cases}$$
(1.7)

Коэффициенты a_m в этом случае определятся

$$a_{m} = \frac{2\delta}{m\pi} \Big[1 - (-1)^{m} \Big] \sin m\pi \xi_{1} , \quad \delta = \frac{P_{0}}{P_{2}}.$$
(1.8)

б) Силы направлены друг к другу (вовнутрь)

$$P = \begin{cases} P_0 \left(1 - 2\xi_1 \right), & 0 \le \xi \le \xi_1, \\ -P_0 2\xi_1 & \xi_1 \le \xi \le 1 - \xi_1, \\ P_0 \left(1 - 2\xi_1 \right), & 1 - \xi_1 \le \xi \le 1. \end{cases}$$
(1.9)

$$a_{m} = \frac{2\delta}{m\pi} \Big[1 + (-1)^{m} \Big] \sin m\pi \xi_{1} \,. \tag{1.10}$$

в) В случае, когда силы направлены к концам стержня в (1.9) и (1.10), нужно менять знаки при P_0 .

г) В случае, когда одна сила приложена в точке ξ_1 , то

$$P = \begin{cases} P_0 \left(1 - \xi_1 \right), & 0 \le \xi \le \xi_1, \\ -P_0 \xi_1, & \xi_1 \le \xi \le 1, \\ a_m = \frac{2\delta}{m\pi} \sin m\pi \xi_1 \end{cases}$$
(1.11)

2. Здесь изучим несколько задач динамической устойчивости, когда силы или точки их приложения – периодические функции времени.

Для случая г) рассмотрим задачу, когда сила – периодическая функция

$$P_0 = P_0^{(1)} + P_0^{(2)} \cos \theta t = P_0^{(1)} + P_0^{(2)} \cos \frac{\theta}{\omega_1} \tau.$$
(2.1)

Тогда, довольствуясь первым приближением, для определения главной области неустойчивости из (1.6), (1.11) и (2.1) будем иметь

$$\frac{d^{2} f_{1}}{d\tau^{2}} + f_{1} - A \left(1 + 2\mu \frac{\theta}{\omega_{1}} \tau \right) f_{2} = 0,$$

$$\frac{d^{2} f_{2}}{d\tau^{2}} + 16 f_{2} - A \left(1 + 2\mu \cos \frac{\theta}{\omega_{1}} \right) f_{1} = 0,$$

$$A = \frac{4}{\pi} \left(\sin \pi \xi_{1} + \frac{1}{3} \sin 3\pi \xi_{1} \right) \delta^{(1)}, \quad 2\mu = \frac{\delta^{(2)}}{\delta^{(1)}}, \quad \delta^{(i)} = \frac{P_{0}^{(i)}}{P_{2}}.$$
 (2.2)

Конечно, для уточнения предела главной области неустойчивости (устойчивости), как здесь, так и в дальнейшем, из бесконечной системы (1.6) можно брать побольше членов, но нашей основной целью является подчеркивать наличие подобных задач.

Области неустойчивости системы (2.2) находятся обычным образом [2] и они ограничены линиями.

$$\frac{\theta}{\omega_{1}} = \sqrt{2} \left[17 \pm \sqrt{225 + 4A^{2} \left(1 \pm \mu\right)^{2}} \right]^{\frac{1}{2}}$$
(2.3)

В качестве второй задачи рассмотрим такой вариант: в интервале времени $0 \le t \le t_1$ постоянные силы действуют вовнутрь (случай б)), а при $t_1 \le t \le 2t_1$ – на концах (случай в)). Частота колебаний будет

$$\theta = \frac{\pi}{t_1} = \frac{\pi \omega_1}{\tau_1} \,. \tag{2.4}$$

Здесь также, довольствуясь только первым приближением из (1.6), (1.10), имеем

$$\frac{d^2 f_1}{d\tau^2} + \Omega_1^2 f_1 = 0, \quad 0 \le \tau \le \frac{\pi \omega_1}{\theta},$$

$$\frac{d^2 f_1}{d\tau^2} + \Omega_2^2 f_1 = 0, \quad \frac{\pi \omega_1}{\theta} \le \tau \le \frac{2\pi \omega_1}{\theta},$$

$$\Omega_1^2 = 1 - \frac{\delta}{\pi} \sin 2\pi \xi_1 \quad , \qquad \Omega_2^2 = 1 + \frac{\delta}{\pi} \sin 2\pi \xi_1$$
(2.5)

Области устойчивости и неустойчивости разделены линиями

$$\cos\frac{\pi\Omega_{1}\omega_{1}}{\theta}\cos\frac{\pi\Omega_{1}\omega_{1}}{\theta} - \frac{1}{1 - \left(\frac{\delta}{\pi}\sin 2\pi\xi_{1}\right)^{2}}\sin\frac{\pi\Omega_{1}\omega_{1}}{\theta}\sin\frac{\pi\Omega_{2}\omega_{1}}{\theta} = \pm 1. \quad (2.6)$$

В табл. 1 приведены несколько корней $\left(\frac{\omega_1}{\theta}\right)$ уравнения (2.6). В каждой клетке числа первой строки соответствуют знаку минус в (2.6), а числа второй строки знаку плюс.

Таблица 1

δ ξ_1	1	2	3
0,2	0,4357	0,3855	0,3504
	0,9451	0,8430	0,7515
	0,4589	0,4224	0,3919
0,4	0,9769	0,9220	0,8579

Как видно из табл., изменение $\frac{\omega_l}{\theta}$ по δ более ощутимо, чем по ξ_l .

Следует отметить также, что из (2.6) при $\delta \rightarrow 0$ получается главный параметрический резонанс

$$\theta = 2\omega_1$$
.

Третью задачу возьмем такую. Рассмотрим случай б) – сила постоянная, но точка приложения - периодическая функция времени

$$\xi_1 = \xi_1^0 + \varepsilon \cos \frac{\theta}{\omega_1} \tau \quad , \quad \varepsilon \ll \xi_1^0 \,. \tag{2.7}$$

Тогда из (1.6) можно брать только одно уравнение

$$\frac{d^2 f_1}{a\tau^2} + f_1 - a_2 f_1 = 0, \qquad (2.8)$$

а a_2 с условиями (1.10) и (2.7) будет

$$a_2 = \frac{\delta}{2\pi} \sin 2\pi\xi_1 \left(1 + 2\pi\varepsilon \operatorname{ctg} 2\pi\xi_1 \cos \frac{\theta\tau}{\omega_1} \right), \tag{2.9}$$

`

и для f_1 будет обычно уравнение Матье

$$\frac{d^2 f_1}{d\tau^2} + \Omega_1^2 \left(1 - 2\mu \cos\frac{\theta\tau}{\omega_1}\right) f_1,$$

$$\Omega_1^2 = 1 - \frac{\delta}{2\pi} \sin 2\pi\xi_1, \quad \mu = \varepsilon \frac{\delta \cos 2\pi\xi_1}{\Omega_1^2}.$$
(2.10)

Главная область неустойчивости определяется линиями

$$\frac{\Omega_1 \omega_1}{\theta} = \sqrt{1 \pm \mu} . \tag{2.11}$$

3. Здесь изучим задачи статической устойчивости и свободных колебаний вышерассмотренных задач. Конечно, значения критических сил и частот можно получить и из системы (1.6). Однако, предпочтительно получить их точные значения традиционным способом – в отдельности рассматривать части стержня с однородным напряженным состоянием и в дальнейшем сращивать различные решения в точках разделения этих частей. Если искать решения (1.1) в виде

$$w = X(x)e^{i\omega t}, \qquad (3.1)$$

в зависимости от напряженного состояния для X(x)

$$X_{i}^{IV} \pm \delta_{i} \pi^{2} X_{i}^{"} - \Omega^{2} X_{i} = 0 \quad , \quad \Omega^{2} = \frac{\delta F l^{4}}{EJ} \omega^{2} . \tag{3.2}$$

В сжатой части стержня должны брать знак «+», а в растянутой – знак «-» Для задачи а) имеем

$$X_{i}^{IV} + \delta \pi^{2} X_{1}^{"} - \Omega^{2} X_{i} = 0, \qquad 0 \le \xi \le \xi_{1},$$

$$X_{2}^{IV} - \Omega^{2} X_{2} = 0, \qquad \xi_{1} \le \xi \le 1 - \xi_{1},$$

$$X_{3}^{IV} - \delta \pi^{2} X_{3}^{"} - \Omega^{2} X_{3} = 0, \qquad 1 - \xi_{1} \le \xi \le 1.$$
(3.3)

Решение системы (3.3) будет

$$\begin{aligned} X_{1} &= C_{1} \mathrm{ch} P_{2} \xi + C_{2} \mathrm{sh} P_{2} \xi + C_{3} \cos P_{1} \xi + C_{4} \sin P_{1} \xi, \\ X_{2} &= D_{1} \mathrm{ch} P \xi + D_{2} \mathrm{sh} P \xi + D_{3} \cos P \xi + D_{4} \sin P \xi, \\ X_{3} &= E_{1} \mathrm{ch} P_{1} \xi + E_{2} \mathrm{sh} P_{1} \xi + E_{3} \cos P_{2} \xi + E_{4} \sin P_{2} \xi, \\ P_{1} &= \left(\Lambda - \frac{1}{2} \delta \pi^{2} \right)^{\frac{1}{2}}, \quad P_{2} = \left(\Lambda + \frac{1}{2} \delta \pi^{2} \right)^{\frac{1}{2}}, \\ P &= \sqrt{\Omega}, \quad \Lambda = \sqrt{\Omega^{2} + \frac{1}{2} \delta \pi^{2}}. \end{aligned}$$
(3.4)

при этом должны быть удовлетворены следующие условия:

$$X_{1} = X_{1}'' = 0 \quad \text{при} \quad \xi = -\xi_{1},$$

$$X_{1} = X_{2}, \quad X_{1}' = X_{2}', \quad X_{1}'' = X_{2}'', \quad X_{1}''' = X_{2}''' \quad \text{при} \quad \xi = 0,$$

$$X_{2} = X_{3}, \quad X_{2}' = X_{3}', \quad X_{2}'' = X_{3}'', \quad X_{2}''' = X_{3}''' \quad \text{при} \quad \xi = 1 - 2\xi_{1},$$

$$X_{3}' = X_{3}'' = 0 \quad \text{при} \quad \xi = 1. \quad (3.5)$$

Полученное трансцендентное уравнение настолько громадное, что привести здесь не имеет смысла (такое для второй задачи будет сделано). Приведем только уравнение статической устойчивости. Тогда

$$X_{1} = C_{1} chK\xi + C_{2} shK\xi + C_{3}\xi + C_{4},$$

$$X_{2} = D_{1} + D_{2}\xi + D_{3}\xi^{2} + D_{4}\xi^{3},$$

$$X_{3} = F_{1} cos K\xi + F_{2} sin K\xi + F_{3}\xi + F_{4}, K = \pi\sqrt{\delta}.$$
(3.6)

Удовлетворяя условиям (3.5), для определения δ получим

$$tgK\xi_{1} + thK\xi_{1} + K(1 - 2\xi_{1}) = 0.$$
(3.7)

Для второй задачи -

55

$$X_{i}^{IV} - K_{1}^{2}X_{1}^{"} - \Omega^{2}X_{1} = 0,$$

$$X_{i}^{IV} + K_{2}^{2}X_{2}^{"} - \Omega^{2}X_{2} = 0,$$

$$K_{1}^{2} = \delta\pi^{2} (1 - 2\xi_{1}), \quad K_{2}^{2} = 2\delta\pi^{2}\xi_{1},$$

$$X_{1} = C_{1}chS_{1}\xi + C_{2}shS_{1}\xi + C_{3}\cos S_{2}\xi + C_{4}\sin S_{2}\xi,$$

$$X_{2} = D_{1}chS_{3}\xi + D_{2}shS_{3}\xi + D_{3}\cos S_{4}\xi + D_{4}\sin S_{4}\xi,$$

$$S_{1,2} = \left(\sqrt{\frac{K_{1}^{4}}{4} + \Omega^{2}} \pm \frac{1}{2}K_{1}^{2}\right)^{\frac{1}{2}}, \quad S_{3,4} = \left(\sqrt{\frac{K_{2}^{2}}{4} + \Omega^{2}} \mp \frac{1}{2}K_{2}^{2}\right)^{\frac{1}{2}}.$$
(3.8)

Для симметричных форм колебаний и форм потери устойчивости помимо условий при $\xi = -\xi_1$ и $\xi = 0$ из (3.5) ставятся условия симметрии при $\xi = \xi_2 = 0.5 - \xi_1$

$$X' = X_2''' = 0$$
 при $\xi = \xi_2$ (3.10)

Тогда частоты должны быть определены из условия равенства нулю детерминанта

$$|a_{ij}| = 0$$

$$a_{11} = \left(S_2^2 + S_3^2\right) \left(S_1 + S_3 \text{th} S_1 \xi_1 \text{th} S_3 \xi_2\right),$$

$$a_{12} = \left(S_2^2 - S_4^2\right) \left(S_1 - S_4 \text{th} S_1 \xi_1 \text{tg} S_4 \xi_2\right),$$

$$a_{21} = \left(S_1^2 - S_3^2\right) \left(S_2 + S_3 \text{tg} S_2 \xi_1 \text{th} S_3 \xi_2\right),$$

$$a_{22} = \left(S_1^2 + S_4^2\right) \left(S_2 - S_4 \text{tg} S_2 \xi_1 \text{tg} S_4 \xi_2\right).$$
(3.11)

Для определения критической силы (статическая устойчивость) имеем уравнение $K_2 \operatorname{th} K_1 \xi_1 \operatorname{tg} K_2 (0, 5 - \xi_1) = K_1.$ (3.12)

Исследование задачи г) ничем не отличается от первых двух, поэтому приведем здесь только в окончательном виде уравнение для статической устойчивости – $K \text{ th} K \xi + K \text{ tg} K (1 - \xi) = 0$

$$K_{4} \text{til} K_{3}\zeta_{1} + K_{3} \text{tg} K_{4} (1 - \zeta_{1}) = 0,$$

$$K_{3}^{2} = \delta \pi^{2} (1 - \xi_{1}), \quad K_{4}^{2} = \delta \pi^{2} \xi_{1}.$$
(3.13)

В табл. 2 помещены значения критических сил $\delta_{\kappa p}$, определенных, соответственно, из (3.7), (3.12) и (3.13).

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Таблица 2
δ	Ι	II	III
ξ			
0,1	27,31	5,30	10,50
0,2	7,60	3,12	5,89
0,3	3,87	2,83	4,63
0,4	2,63	3,91	4,31
0,5	2,27	-	4,53

Как видно из табл.2, величины критических сил в случае а) в два раза меньше случая г).

В табл. 3 помещены значения квадрата Ω при различных ξ_1 и α . Коэффициент α характеризует долю статической критической силы для данного ξ_1 , например, $\alpha = 0,1$ значит, что взята $0,1 \cdot \delta_{\rm kp}$, а $\delta_{\rm kp}$ берется из табл.2. В каждой клетке помещены три цифры, по порядку они соответствуют рассмотренным задачам.

Таблица 3	3
-----------	---

α	0,02	0,04	0,1	0,2	0,95
ξ1					
	9,87	9,87	9,55	8,85	3,55
0,1	9,77	9,67	9,37	8,83	2,21
	9,77	9,67	9,37	8,84	2,22
	9,87	9,86	9,84	9,74	3,75
0,2	9,77	9,68	9,38	8,87	2,26
	9,78	9,69	9,41	8,92	2,29
	9,86	9,86	9,83	9,70	3,29
0,3	9,78	9,69	9,43	8,95	2,35
	9,80	9,73	9,50	9,07	2,43
	9,86	9,86	9,82	9,67	3,09
0,4	9,79	9,72	9,49	9,06	2,49
	9,83	9,78	9,63	9,34	2,66
	9,86	9,86	9,22	9,66	3,04
0,5	_	_	_	—	_
	9,86	9,86	9,82	9,66	3,03

Вторая задача при $\xi = 0,5$ не имеет смысла, поэтому в таблицах данные отсутствуют.

Как видно из табл. 2, критическая сила получается намного больше, если сила приложена в одной точке, чем делить ее на две части и приложить в двух точках. Конечно, из табл. 3 можно сделать вывод относительно скорости уменьшения относительной частоты, заметим только: во всех трех рассмотренных случаях она почти одинакова.

ЛИТЕРАТУРА

- 1. Мовсисян Л.А. Об устойчивости упругой балки при продольном ударе . //Докл. АН Арм. ССР. 1969. Т.49. №3. С.124-130.
- Болотин В.В. Динамическая устойчивость упругих систем. М.: Гостехиздат, 1956. 600 с.

Институт механики НАН Армении Поступила в редакцию 2.04.2007