2U3UUSULP @SN E3NRLLENP UGUSPL ULUUNEURUSE StNtulah,
W3BECTUSI HALIMOHAJIBHOM AKAJIEMUM HAYK APMEHUM

Uthuwtthlju 61, Ne3, 2008 Mexannka

YJK 539.3
THE STATE EQUATIONS FOR THE FIRST AND SECOND
FUNDAMENTAL PROBLEMS OF ELASTODYNAMICS
FOR A CRACKED MEDIUM.
Bardzokas D.I., Sfyris G.I.

KiiodeBble ciioBa: TeopHs YNpPYrocTd, nepBas M Bropas (yHIaMeHTalbHbIC
3a1a4d, cpefa C  TPEUIMHOW, OIpEeAeNSIOIINe YPaBHEHUS, KOMILICKCHBIC
IIOTCHIIUAJIbI.

Key words: theory of elasticity, first and second fundamental problems, cracked
medium, state equations, complex potentials.

1.b. Pupdnljuu, @.b. Uphphu
&wpm] Uhguruyplph hundwp fuunnghtinfhljugh mewght b tphpopy hputpup bmhphitph npnghy
hwjuuwpmdubpp
Unwdquljuunipjut qduyhtt wkunipjub pppwtwfjubpnid wpnwdynmd ku wpwehtt b kplpnpn
hhdtwpwp phtwdhjulwb punhputph npnphy hwjwuwpnidubpp fwpny dwpdhubph hwdwp, Epp
Swph withbph Jpu  wpws  Lu  jwpnudubph pununphsubpp, jud  wbknunjunieniatbph
pununphsubipp, hwdwywnwujpwbwpwp:

.M. Bapazokac, I'.'U. Cpupuc
Onpeaensilonue ypaBHeHusl ePBOii M BTOPOii pyHIaMeHTAIBLHBIX 32124
JIACTOAUHAMMKH JJIsl Cpe/l ¢ TPELHHOM

B pamkax nuHelWHOW Teopuu yNpyrocTu BBIBOJSATCS ONPEAECISAIOIINE YpaBHEHUS NEPBOH U
BTOpOH (PyHHZaMEHTANbHBIX JUHAMUYECKUX 3a7ad JUIA Tell ¢ TPEIIMHON, Korja Ha Oeperax TpEeHnHbI
3aJaHbl, COOTBETCTBEHHO, KOMIIOHEHTbI HANPSKCHUI MM CMELICHUI.

1. Introduction.

In our work we will derive the state equations the first and second fundamental
dynamical problems in the frame of linear elasticity. In the first fundamental dynamical
problem we will consider an infinite medium that contains a crack, on the lips of which, the
stresses are considered to be known. The second fundamental problem has the same
formulation, but in this case, the displacements on the crack lips are known. Beginning
from the equations of motion, Hooke’s law and the compatibility equations we will derive
the state equations for the above mentioned problems. The derivation of the equations will
be based on the Muskhelishvili method of the Complex Potentials, the use of the Sohotsky
— Plemely formulas and finally we will get two singular integral equations that are the state
equations for the problems. These equations may contribute to better and further study of
problems of seismic and fracture mechanics, composite, cracked or multiply connected
media. The work was based on [1,2,3,4].

The equations of motion for a continuous medium with density p may be written as:
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In equation (1) we have not taken into account the body forces. Hooke’s law may be written
as

G, =A0+2pe., o, =20+2pe,, o =A0+2ue_ 2)

o, = ZHSW, G _ =2ue_, C,. = ZMSW,

The components of the strains are connected with the vector of displacement # according
to:
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We replace (2) and (3) into (1) and we get:
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The relations above may be written in vector form
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If we take into consideration the following condition:
grad(divu) = rot(rotu) + Au (6)
And use it in Eq. (5) we find:
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The displacement field of the elastic medium may be analyzed in a transverse and a
longitudinal field. These two components of the displacement are propagating with
different speeds that are independent. So we get:
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the components if which satisfy the equations:
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Equation (7) based on (8) will result to
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where ¢, = , €, =, |— are the propagation speeds of the longitudinal (P) and
p P

the transverse (S) waves. In case when we consider the existence of body forces vector
equation (5) will become:

uV2u + (O + wgrad(divu) + pP = p%‘ 11
where ﬁ(X ,W,Z) is the vector of the body forces. If we write vector P as
P= grad® + rot¥ (12)
then we seek U as
u= gradd + rotﬁ (13)
and the following condition should be satisfied
divu = V¢ (14)

Vector equation (11) based on (12), (13) and (14) will become:
uV?(grado + rotﬁ) + (A +p)grad(V>¢) + pgrad®d + prot@ =
o * (15
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The form of Equation (16) shows that the vector expression (13) will be the solution of
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the motion equation if and only if functions ¢ and J are selected in a way that they
satisfy (be solutions of) the following equations
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Equation (17) is the non-homogenous wave equation with wave propagation velocity
¢, which demonstrates that the component of the total displacement that corresponds to the

gradient function @ is moving with ¢, speed. From (14) we get that the dilatation

A = divu satisfies the wave equation that corresponds to speed ¢, . In seismology this

wave is called primary or simply P-wave. This wave contributes to the changes in the
volume of the medium.
On the other hand Eq. (18) shows that the other component of the boundary

displacement, that corresponds to the vector function \ is moving with a smaller speed,

. . -1 -
namely ¢, . Using rotu =rot(roty) we come up with the fact that szrotu



satisfies the wave equation with speed ¢, . In seismology this wave is called secondary or
simply S-wave.

This type of wave (transverse) refers to the twisting of the element without changes in
its volume. In case when the shear modulus is zero then ¢, = 0. The above prove that

transverse waves can’t propagate in media with zero bending stiffness.
For our studies it would be useful to introduce the constant 3, that is defined by:
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this constant is independent of the density and the elasticity modulus of the medium.

2. The method of Complex Analysis for two dimensional (2-D) Dynamic Problems.

Next, we will examine the solution of the two dimensional boundary problem in
the frame of the dynamical theory of elasticity. We will limit the problem to the case of
plane strain, where the following equations are valid:
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Hooke’s Law (21) may be written as:
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The compatibility condition (22) based on (23) will become:
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Equation (25) based on the definition of the speed ¢, of the P-wave will become:
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If we differentiate equation (20;) with respect to x and (20,) with respect to y and then
subtracting one from the other we get:
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Based on the definition of the speed of the S-waves we will have:
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Adding the results of the differentiations of equations (20) we get
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Relation (27) will be identically satisfies if we introduce the following relations for
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and if we add them we will have:
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From the above it’s easy to understand that function U is the dynamic analogue of the
Airy function. So the problem focuses on relation (35). If we concentrate on problems
where the disturbance is propagating with speed c¢ parallel to axis X, we can use the

transformation:
=x—ct
{a (37)
n=vy
Of course the general case § = x & cl* &, n=vyzt c;t , may be examined.



Relation (35) with respect to the new coordinates (&) will be:
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where MT , H; are the solutions of the characteristic equation.
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Equations (31) and (32) through the new coordinates (& n) will become:
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The existence of two solutions forms two complex planes
z =&+um, z, =+ u,m (42)
Using Eq. (42) in Eq. the solution will be found in the same way as for the case of the
anisotropic medium:

U =F(z)+F(z)+F(z,)+ F,(z,) =2Re[F/(z) + F,(z,)] (43)

where F(z,) 1=1,2,3 are analytic functions with respect to complex variables z ;e

If we take into account relation (43), equations (43) and (41) will become:
0, =2Re|[2+al ~d} |F (2) 45 (14 a))F () | =
2 2 2
(44)
=-2 Re{[af + %(l + azz)jCD(zl) + %(1 +a; )‘P(zz)}

G,, =1+ Re[ F(2)+F (5,) | = (1+a))Re[®(z) + ¥(z,)]  (45)

G, +0,, =—2(a] —a;)Re(F (7)) = -2(a] —a;)Re®(z) (46)

Where F, (z,) = ®(z,) and F, (z,) = ¥(z,). Using the above in Hooke’s Law (21) or
(23) and integrating we will get:

" =—RG{E'(%H%(H@)E(ZZ)} =—Re[¢(z])+%(1+a§)w<zz)} @)

, 1+a> . 1+d?
= Im{alFl (zl>+a—§’25<zz)} - Im[alcb(zm a—fﬂu(zz)} 48)
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where F;I(Zl) =¢(z,) and F;(Zz) =y(z,).

Relation (215) based on the above equations will result to:
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. l+a; . 1+a’
G, =2Im| @ F (z) +— F,(z,) | = —2Re| i| a,®(z,) +—2W(z,) | | (49)
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Equations (44)-(49) gives us the components of the stress tensor and the displacement
vector, in any point of the medium. These relations play the same role as the Kolosov —
Muskhelisvili — Lechnitski relations.

3.General method of solution of the 1** fundamental dynamic problem of elasticity for
the cracked body.

For the first fundamental problem, we consider that the normal and tangential
stresses on both of the crack lips are known. If we take into account the next relation:

2(Gn +ic, ) = (Gm +0,, ) - [Gm -o,, +2ic,, ] (50)
and the expressions for the components of stresses (GH,GW,GW) with respect to

complex potentials ®,(z,) and W¥,(z,) when z >t €l, z, >, z, >, they will

become:
0, +0,, = (o~ )| O} (1) + O] (1) | 651)
.-G, = —(1+oc12)[(1)li(tl)+d)f(tl)}—(l+oc§)[‘Pf(tz)Jr‘Pf(tz)} (52)
‘ . (1+a§) . ]
Gy =-2Reqi a1d>;(t1)+T‘P5(t2) =
i (53)
=~ [ 107 (1)~ 0] )}—(Ha;)z W) -V |
1 1 1 1 1 4B2 L 2\"2 2\"2

and finally we will have:

2[of +iot | =—(a? —azz)[d)f(tl)+d)i—(tl)}+%{(l n af)(q>f(zl)+q>f(zl))+

(1+02)(¥3(6) + ¥5(1)) + 201, [i®f(f1)—iq’f(’l)]+(l%.?%)+

2

+ (1) - i\PE(tz)]}}, % _ 0
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ty= A
;o dt 2a,

|:(1 +a, )2 \Pj(tz) + (1+ az)Z\P;_r(tz):| -
(54)

_[_(af —azz)+%(1—a1)2}®f(q)+{—(af —a§)+%(l+al)2}®f(tl)

where f7(t) = 2(0: +ic, ) If we multiply (54) with dt/ dt and carry out the math

we will get:
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The conjugate expression of (55) becomes
di ch(zl)+2(1+a1)%q>f(tl)+(a2 —1)%[q>i(zl)+cpf(zl)}—

2(1-a)—
dt
‘Pf(tz)+ (1+a2 )(1+a2)
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20,
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We multiply relation (55) with and relation (56) with

20,
(1+0L2)(1—oc2)
8OL2(I+(12) l1-a, &4_2 1+aq, ﬁ_ﬁ_
(1_a§) (1+a) (1+a) dt (1-a,) dt

L G-l di a -l di | 24, ){2(1% dy | 2(1-a)d  (s7)

—— | D7 (1) + - —
(1+a,) dt (1—a2) dt | (1+a})| (1+a)" dt (1-a,) @

5~ and consequently we add the results to find:
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We multiply (57) with —————— and we have
8aL, (1 -~ o@)
(1) + AL, z)CD (t) l+B(z t)<I) (t) gf(t)ﬁ (58)
2 2 dtZ
where:

A(r,Z)—(l_az)z{ 1 [(l—al)”%(af—af)}

s(1+a) [(1+a,)
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1 2 dty 5, dt, dtlj
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B(t,f):(l_az)z{ ! 2[(1+a1)2+i(a22—a12)}+
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As we know the complex potentials that describe the cracked body may be expressed via
the Cauchy integrals, similarly with the case of the anisotropic medium:

D, (z )__J'(I)z(r)(

AU
(60)
W (z,) = [ 4
2mi ) Ty — 2,
Sohotsky — Plemely formulas when z — ¢ (z, = 1,2, —> 1, ) become:
O (1) = 500+ 5[5 )
)1, —t
T,
P (z,) = \p(t)+—IW(—td 62)
Ty
We subtract relations (58) and based on (61) and (62) we fﬁl
(t )+A(r Z)q)(z)ﬁus(t E)q)(t)ﬁ—x - (63)
ViL CI I e, T
where W(2,) =" (1,) =¥ (t;) and &, (1) = g (1) — &, (1)
The complex potential ¥ ,(z,) based on (63) will have the form:
1 A (T 1 ¢4 r,; T B(t,1)d(t,)—
Y, () = —— [ ' ] (7, D4( l)drl_ | (1, D4 D7 7, (64
2niY T, -z, 2niy, 1, -z, 2niy T, — 2,

Adding relations (58) based on (61), (62) and the expressions (64) we will have the next
singular integral equation:

¢(r,) dt, ¢(r)
A(”)(dt dtj jtl—t _B( )(dt dt] I tl
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where 4, (1) =[ g/ (t)+ & (1) ]
Singular integral equation (I) is the state equation of the first fundamental dynamic
problem for the cracked body in case when the stresses (Gf R G;‘r) are known for both the

crack lips.
4. The 2™ fundamental dynamic problem of elasticity for a cracked body.

For the second fundamental problem, we consider known the displacements on both
the crack lips. We have:

2“(“(2) + iV(Z)) = _[BI(I)I (z)+B,0,(z)+ B3\V2 (z,)+B, v, (2, )] (65)
where:B, =1+0a,,B, =1—0,, B = (1+a2)[ ]m (1+a2)[1—i].

@,
If we take the limiting values of expression (65) when z -t el (Z1 —)tli ,

z, > t2i ) and differentiate with respect to variable ¢ we get:

2n— d [ ug, +1vm}
dt

—_— (66)
%1®a>ml®a)mzwa>mzwaﬁ
2u dt d .
Btl dt, dt( @ W(_’)):
B B, B, d “
={m ;) + ST + T@)waﬁ

An analogous expression of (65) is the following:

2”(”(2) + iV(Z)) = _[Bz¢(z1) +B,0,(z)+Bw,(2,)+B; “Tzz)] (68)

For z — ¢ and consequently differentiation with respect to ¢ , we shall get after carrying
out the mathematics:

2p dt d .
B, dt dt (U (t))

B B, B )
={& la>m%@m>gawa>waﬁ

We subtract relation (69) from relation (67) and we get:

14



dt d (. .

(B3 _64)2!461:;5(“(;) _W(x)) = _{(5133 B4B2) a, QD )+
— (70)
di, 1,

+(B.Bs - BB4)d= L)+ (B3 - B4) W (1, >}

We multiply equation (70) with —Bdi and we result to:
dt B3 Bsd( 4Vt BiB; —B.B, d 1 ot
a0 { g

BBy BBy dt, =
—LDi (1) + ¥ (5,) ]
B3 B4 dr,
If we subtract equations (71) and taking into consideration the Sohotsky — Plemely
formulas we shall have:

d + - Lo+ B3 B4)
V() = =20 (0 =) =iy ”}(63 o "
B B3 B4B2 dtl BSBZ BB4 dtl
g a T g

We use the following notation:
. d B, -
(t):2,u—[ ut—u )+ilvi—v J - ()—
F0=2 ()il v A
So, the expression of the complex potential ‘¥, (Zz) based on relation (72) will become:

‘PZ(ZZ)_ J'W(Tz) _I&d - BB3 B4BzJ‘¢(Zl

L Ty — 2, 2niY T, — 2, T-2z,

(73)

B Bz B B, j ¢1(Tl
" T, — 2,
By addition of relatlons (71) and taking into consideration the limiting values of
the Sohotsky — Plemely formulas for the complex potentials @ ,(z,) and ¥',(z,) we will

get the following singular integral equation:

(B4Bz _BIB3)ﬁI¢1(TI)dT + BB, — BB, dt J'¢1(T1 d +

vl dt, st —t, T dt, 5 1, —t,
B4BZ B B3 J' (I)( dTl + BIB4 _‘B3BZ J. (I)l (Tl)d_l — (H)
)T, — 1, T ¢ T —h

_7‘*2@)_ Iﬂd
YT, 1L

where
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. d N _ dt
INGE 2p—[(u+ +u )+Z(V+ +v )J(B3 —B,)—
d dt,
Equation (II) is the State Equation for the second fundamental problem of elasticity.
5. Conclusions

In this work, we provided the equations that are reciprocal to the Muskhelisvili
equations (which are only effective for static problems) for the dynamic problem as
described in the begging. Consequently we deduced the State Equations for the first
(equation (I)) and second (equation (II)) fundamental problems.

The work was carried out in the framework of an agreement on scientific cooperation
between the National Technical University of Athens and the Institute of Mechanics,
National Academy of Sciences (NAS) of Armenia.
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