### 2USUUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

60, Nº4, 2007

Механика

УДК 539.3

## УЧЕТ МЕЖЭЛЕМЕНТНОЙ НЕПРЕРЫВНОСТИ ПЕРЕМЕЩЕНИЙ ПРИ РЕШЕНИИ ПЛОСКИХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Геворкян Г. А., Севян С. Л.

Ключевые слова: конечные элементы, узловые перемещения, квадратичное программирование, плоская задача теории упругости.

**Keywords**: finite elements, junction transferences, quadratic programming, problems of plane elasticity.

#### Գ. Ա. Գևորգյան, Մ. Լ.Մևյան

Միջտարրային տեղափոխությունների անընդհատության հաշվառումը վերջավոր տարրերի մեթոդով առաձգականության տեսության հարթ խնդիրների լուծման ժամանակ

Առաջարկվում է առաձգականության տեսության հարթ խնդիրների լուծման միջտարրային տեղափոխությունների անընդհատություն հաշվառումով ուղղանկյունաձև վերջավոր տարրերի մեթոդի ձևափոխված տարբերակ։

#### G. A.Gevorgyan, S. L.Sevyan

# Taking into account intereiemental uninterruptedness of displacements in solving the problems of plane elasticity by finite-element method

A modification of rectangular finite-element method for solving problems of plane elasticity is proposed when interelemental continuousness of displacements is taking into account.

Предлагается модификация метода прямоугольных конечных элементов для решения плоской задачи теории упругости с учетом межэлементной непрерывности перемещений.

При использовании метода конечных элементов для решения плоской задачи теории упругости вид аппроксимирующих полиномов функции перемещений не является единственным [1]. При этом, в зависимости от выбора вида этих полиномов возникают разного рода неувязки. Так, если перемещения изменяются линейно вдоль сторон элемента, то выбранное поле перемещений внутри элемента и при переходе через границы элементов непрерывно, но условия равновесия элемента не выполняются. Если же перемещения изменяются по квадратичному закону вдоль сторон элемента, то поле перемещений не удовлетворяют требованиям, обеспечивающим межэлементную непрерывность перемещений, но выполняются условия равновесия элемента.

Здесь предлагается модификация метода конечных элементов прямоугольной формы, при которой решения плоской задачи теории упругости с учетом межэлементной непрерывности перемещений сводятся к задачам квадратичного программирования. Данный подход дает возможность включить в ограничения квадратичного программирования условия непрерывности перемещений по всей линии контакта между смежными элементами и, тем самым, устранить неувязку.

Рассмотрим двумерную область, которая разделена на  $s \in \overline{N} = \{1, 2, ..., \overline{n}\}$  конечных элементов прямоугольной формы. Прямоугольный элемент имеет узлы лишь в четырех точках (фиг. 1).

Обозначим через  $R_s = (R_{1,x}^s, R_{1,y}^s, R_{2,x}^s, R_{2,y}^s, \dots, R_{4,x}^s, R_{4,y}^s)^T$  – вектор узловых усилий,  $q_s = (u_1^s, v_1^s, u_2^s, v_2^s, \dots, u_4^s, v_4^s)^T$  – вектор узловых перемещений,

 $k_s = \frac{Eh}{4ab(1-v^2)} \|k_{ij}^s\|$  – матрица жесткости, E – модуль упругости, h – толщина

пластины, *v* – коэффициент Пуассона.



Фиг. 1. Прямоугольный плоско-напряженный элемент. Узловые силы и перемещения.

Предположив, что в пределах конечного элемента нормальные напряжения изменяются линейно, а касательные напряжения постоянны, в [2] для компонентов перемещений точек элемента получены следующие выражения:

$$u = (1 - \xi)(1 - \eta)u_1 + \xi(1 - \eta)u_2 + \xi\eta u_3 + (1 - \xi)\eta u_4 + + \frac{1}{2} \left[v\frac{a}{b}(\xi - \xi^2) + \frac{b}{a}(\eta - \eta^2)\right](v_1 - v_2 + v_3 - v_4) v = (1 - \xi)(1 - \eta)v_1 + \xi(1 - \eta)v_2 + \xi\eta v_3 + (1 - \xi)\eta v_4 + + \frac{1}{2} \left[\frac{a}{b}(\xi - \xi^2) + v\frac{b}{a}(\eta - \eta^2)\right](u_1 - u_2 + u_3 - u_4)$$
(1)

где  $\xi = x/a$ ,  $\eta = y/b$ .

Пусть  $q = (u_1, v_1, u_2, v_2, ..., u_n, v_n)^T$  – вектор узловых перемещений,  $R = (R_{1,x}, R_{1,y}, R_{2,x}, R_{2,y}, ..., R_{n,x}, R_{n,y})^T$  – вектор узловых нагрузок, n – общее число узлов пластины,  $K = \frac{Eh}{4ab(1-v^2)} \|K_{ij}\|$  – матрица жесткости для всей

пластины. Выражения компонентов матрицы жесткости приведены в [1,2]. Обозначим

$$u_{1} + K_{12}^{(0)}v_{1} + K_{13}^{(0)}u_{1} + K_{14}^{(0)}v_{2} + \dots + K_{1(2n-1)}^{(0)}u_{n} + K_{1(2n)}^{(0)}v_{n} = -r_{1}$$

$$v_{1} + K_{23}^{(1)}u_{2} + K_{24}^{(1)}v_{2} + \dots + K_{2(2n-1)}^{(1)}u_{n} + K_{2(2n)}^{(1)}v_{n} = -r_{2}$$

$$\dots$$

$$u_{n} + K_{(2n-1)(2n)}^{(2n-2)}v_{n} = -r_{2n-1}$$
(2)

в котором

$$r = (r_1, r_2, ..., r_{2n-1})^T; \quad d_{(2n)2n} = K_{(2n)2n}^{(0)} - \sum_{i=1}^{2n-1} (K_{i(2n)}^{(2n)})^2$$

99

$$\begin{split} K_{ii}^{(0)} &= -K_{ii}, i \in M = \{1, 2, ..., 2n\}; \quad K_{1j}^{(0)} = -K_{1j}, \ j \in \{2, 3, ..., 2n\} \\ K_{ij}^{(r)} &= -K_{ij}^{(r-1)} - K_{i(j-1)}^{(r-1)} K_{ij}^{(r-1)}, r \in \{1, 2, ..., 2n-1\}, i \in \{r, ..., 2n\}, \ j \in \{r+1, ..., 2n\} \\ d_{ii} &= K_{ii}^{(0)} - \sum_{s=1}^{i-1} (K_{si}^{(s)})^2 - 1, \quad i \in \{1, 2, ..., 2n-1\} \end{split}$$

Принимая во внимание, что r является вектором дополнительных переменных и исходя из принципа минимума потенциальной энергии системы, для определения искомых векторов q получим следующую задачу квадратичного программирования:

$$\min\{0, 5q^T Dq + C^T q \mid Aq < 0, \text{ условие совместности перемещений,} краевые условия \}$$
(3)

3десь  $D = \frac{Eh}{4ab(1-v^2)} \|d_{ij}\|$  – диагональная матрица порядка 2n, C = -R –

вектор-столбец порядка 2n,  $A = (A_1, A_2, ..., A_{2n})$  – матрица коэффициентов обозначений (2),  $A_j = (a_{1j}, a_{2j}, ..., a_{2n-1,j})^T$ ,  $j \in \{1, 2, ..., 2n\}$ .

Вдоль сторон *s*-го элемента перемещения (1) изменяются по квадратичному закону. Так как для определения компонентов перемещения на каждой стороне имеется лишь два угловых смещения, то поле перемещений не удовлетворяет требованиям, обеспечивающим межэлементную непрерывность перемещений.

Для обеспечения непрерывности на границах разделов элементов, сходящихся в i-ом узле (фиг.2), введем дополнительные точки и напишем условия непрерывности перемещений в смежном сечении вдоль границы разделов соответствующих конечных элементов в этих точках, имеем

$$u^{s}(a, \frac{b}{2}) = u^{s+1}(0, \frac{b}{2}); \quad v^{s}(\frac{a}{2}, b) = v^{s+1}(\frac{a}{2}, 0)$$
 (4)

$$u^{s}(\frac{a}{2},b) = u^{s+2}(\frac{a}{2},0); \quad v^{s}(\frac{a}{2},b) = v^{s+2}(\frac{a}{2},0)$$
(5)

$$u^{s+2}(a, \frac{b}{2}) = u^{s+3}(0, \frac{b}{2}); \quad v^{s+2}(\frac{a}{2}, b) = v^{s+3}(\frac{a}{2}, 0)$$
 (6)

$$u^{s+1}(\frac{a}{2},b) = u^{s+3}(\frac{a}{2},0); \quad v^{s+1}(\frac{a}{2},b) = v^{s+3}(\frac{a}{2},0)$$
(7)



Фиг. 2. *i*-й узел

С учетом формул (1) условия (4)-(7) перепишем в виде:

$$\mathbf{v}^{j-1} - 2\mathbf{v}^{i-1} + \mathbf{v}^{k-1} = \mathbf{v}^j - 2\mathbf{v}^i + \mathbf{v}^k \tag{8}$$

$$\mathbf{v}^{i-1} - 2\mathbf{v}^{i} + \mathbf{v}^{i+1} = \mathbf{v}^{j-1} - 2\mathbf{v}^{j} + \mathbf{v}^{j+1}$$
(9)

$$u^{j-1} - 2u^{i-1} + u^{k-1} = u^{j} - 2u^{i} + u^{k}$$
(10)

$$u^{i-1} - 2u^{i} + u^{i+1} = u^{j-1} - 2u^{j} + u^{j+1}$$
(11)

$$\mathbf{v}^{i} - 2\mathbf{v}^{i} + \mathbf{v}^{i} = \mathbf{v}^{i+1} - 2\mathbf{v}^{i+1} + \mathbf{v}^{i+1}$$
(12)

$$\mathbf{v}^{i} - 2\mathbf{v}^{i} + \mathbf{v}^{k} = \mathbf{v}^{i+1} - 2\mathbf{v}^{k} + \mathbf{v}^{k+1}$$
(13)

$$u^{j} - 2u^{i} + u^{k} = u^{j+1} - 2u^{k+1} + u^{k+1}$$
(14)

$$u^{t-1} - 2u^{t} + u^{t+1} = u^{\kappa-1} - 2u^{\kappa} + u^{\kappa+1}$$
(15)

Исключая из (8) и (9), (10) и (11), соответственно,  $v^i$  и  $u^i$ , находим

$$-\mathbf{v}^{i-1} + \mathbf{v}^{k-1} + \mathbf{v}^{j} - \mathbf{v}^{k} + \mathbf{v}^{i+1} - \mathbf{v}^{j+1} = 0$$
(16)

$$-u^{i-1} + u^{k-1} + u^{j} - u^{k} + u^{i+1} - u^{j+1} = 0$$
(17)

Отметим, что при исключении из условий (12) и (13), (14) и (15) v' и u', также получаются связи (16) и (17).

Аналогично, исключая  $v^i$  и  $u^i$  из (8) и (13), (9) и (11), (10) и (15), (11) и (14), имеем:

$$-\mathbf{v}^{i-1} + \mathbf{v}^{j-1} + \mathbf{v}^{j} - \mathbf{v}^{k} + \mathbf{v}^{i+1} - \mathbf{v}^{k+1} = 0$$
(18)

$$-u^{i-1} + u^{j-1} + u^{j} - u^{k} + u^{i+1} - u^{k+1} = 0$$
<sup>(19)</sup>

Таким образом, для обеспечения непрерывности на всех границах разделов элементов, сходящихся в i-м узле, взамен условий (8)–(15) достаточно выполнения равенств (16) и (17) или (18) и (19).

Перепишем все необходимые условия непрерывности перемещений заданными соотношениями (16) и (17), (18) и (19) или (8) – (15) в виде системы уравнений

$$Hq = 0 \tag{20}$$

где H – матрица порядка  $n \times 2(\hat{n} + 1)$ ,  $\hat{n}$  – количество внутренних узлов.

С учетом равенств (22) задача (3) примет вид

$$\min\{0, 5q^{T} Dq + C^{T} q \mid Aq < 0, Hq = 0, \text{ краевые условия}\}$$
(21)



Фиг. 3. Балка-стенка. Сетка 6 х 3.

**Пример.** Рассмотрим задачу об определении деформированного состояния балки-стенки (фиг.3), защемленной по своей нижней грани, и к верхней грани которой приложены нагрузки в виде сочетания сосредоточенных нагрузок. Балкастенка имеет размеры 6х3м (фиг.3), толщину h = 15см, изготовлена из материала с модулем упругости 3000000 тс/м<sup>2</sup> и коэффициентом Пуассона 0,2. Заданы нагрузки P = 1тс. Для выявления эффекта учета непрерывности перемещений произведены расчеты без учета непрерывности перемещений для сеток 6 х 3 и 12 х 6 и с учетом непрерывности перемещений для сетки 6 х 3. Результаты расчетов приведены в таблице. Отметим, что при проведения расчетов с учетом непрерывности перемещений использованы: для узлов 2,3,9,10 – формулы (18) и (19), для узлов 5, 6, 12, 13 – формулы (18) и (19), а для узлов 4, 11, 18 – формулы (12) и (14).

Таблица значений перемещений

| Узел | без учета непрерыв-<br>ности перемещений, |           | без учета непрерывности перемещений, сетка 12х6 |           | с учетом непрерывности перемещений, сетка 6 х 3 |           |
|------|-------------------------------------------|-----------|-------------------------------------------------|-----------|-------------------------------------------------|-----------|
|      |                                           |           |                                                 |           |                                                 |           |
|      | сетка 6 х3                                |           |                                                 |           |                                                 |           |
|      | <i>U</i> (мм)                             | V (мм)    | <i>U</i> (мм)                                   | V (мм)    | <i>U</i> (мм)                                   | V (мм)    |
| 1    | -0.017439                                 | -0.049862 | -0.017255                                       | -0.049703 | -0.013506                                       | -0.049094 |
| 2    | -0.008551                                 | -0.042692 | -0.009181                                       | -0.043365 | -0.007553                                       | -0.043032 |
| 3    | -0.003768                                 | -0.04157  | -0.004010                                       | -0.041728 | -0.004258                                       | -0.041546 |
| 4    | 0                                         | -0.041101 | 0                                               | -0.041310 | 0                                               | -0.041288 |
| 5    | 0.003768                                  | -0.04157  | 0.004010                                        | -0.041728 | 0.004258                                        | -0.041546 |
| 6    | 0.008551                                  | -0.042692 | 0.009181                                        | -0.043365 | 0.007553                                        | -0.043032 |
| 7    | 0.017439                                  | -0.049862 | 0.017255                                        | -0.049703 | 0.013506                                        | -0.049094 |
| 8    | -0.024002                                 | -0.093511 | -0.024031                                       | -0.093194 | -0.023763                                       | -0.094508 |
| 9    | -0.015492                                 | -0.088246 | -0.015318                                       | -0.088311 | -0.014515                                       | -0.086959 |
| 10   | -0.007176                                 | -0.084865 | -0.007295                                       | -0.085355 | -0.006987                                       | -0.085217 |
| 11   | 0                                         | -0.084042 | 0                                               | -0.084489 | 0                                               | -0.084703 |
| 12   | 0.007176                                  | -0.084865 | 0.007295                                        | -0.085355 | 0.006987                                        | -0.085217 |
| 13   | 0.015492                                  | -0.088246 | 0.015318                                        | -0.088311 | 0.014515                                        | -0.086959 |
| 14   | 0.024002                                  | -0.093511 | 0.024031                                        | -0.093194 | 0.023763                                        | -0.094508 |
| 15   | -0.028975                                 | -0.137603 | -0.028488                                       | -0.137335 | -0.032655                                       | -0.13902  |
| 16   | -0.019665                                 | -0.132912 | -0.019329                                       | -0.132914 | -0.019174                                       | -0.131338 |
| 17   | -0.009966                                 | -0.129407 | -0.009634                                       | -0.129766 | -0.008952                                       | -0.12934  |
| 18   | 0                                         | -0.128131 | 0                                               | -0.128753 | 0                                               | -0.129121 |
| 19   | 0.009966                                  | -0.129407 | 0.009634                                        | -0.129766 | 0.008952                                        | -0.12934  |
| 20   | 0.019665                                  | -0.132912 | 0.019329                                        | -0.132914 | 0.019174                                        | -0.131338 |
| 21   | 0.028975                                  | -0.137603 | 0.028488                                        | -0.137335 | 0.032655                                        | -0.13902  |

Исходя из этой таблицы, легко заметить, что значения перемещений балкистенки без учета непрерывности перемещений для сетки 12х6 даже менее точны, чем с учетом непрерывности перемещений для сетки 6 х 3, т.е. значения последней наиболее близки к точному решению. При этом, первая задача сводится к решению системы линейных уравнений с 84 неизвестными, а вторая задача сводится к решению задачи квадратичного программирования с 42 неизвестными и 63 ограничениями (41 из ограничений – неравенство).

#### ЛИТЕРАТУРА

- 1. Галлагер Р. Г. Метод конечных элементов. Основы. М.: Мир, 1984. 428 с.
- 2. Turner M. J., Glough R. W., Martin H. C., Topp L. J. Stiffnes and Deflection Analysis of Complex Structures. //J. Aero. Sci., Sept. 1956. 23. № №23, 9. P. 805-824.

Ереванский государственный университет архитектуры и строительства

Поступила в редакцию 4.04.2007