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Դ.Ի. Բարձոկաս, Մ.Լ. Ֆիլշտինսկի  

Մակերևույթային էլեկտրոդների համակարգի միջոցով թունելային անցքով պյեզոկերամիկ 
կիսատարածության մեջ ներդաշնակ տատանումների գրգռումը 

 
Հոդվածում ընդհանրացվում է նախկին [9] աշխատանքում հետազոտված թունելային անցքով 

էլեկտրոդավորված անսահմանափակ միջավայրի համար էլեկտրոառաձգականության խառը 
խնդիրը կիսատարածության դեպքում` եզրային մակերևույթի վրա տարբեր եզրային պայմանների 
համար: Բերվում է թվային օրինակ: 

 
Д.И. Бардзокас, М.Л. Фильштинский 

Возбужденные посредством системы поверхностных электродов  
гармонические колебания пьезокерамического полупространства   

с туннельным отверстием 
 

В данной статье обобщается ранее исследованная в [9] смешанная задача электроупругости для 
неограниченной среды с электродированной туннельной полостью на случай полупространства с 
отличными на его границе краевыми условиями. Приводится численный пример. 

 
An antiplane stationary dynamic problem of electroelasticity in a piezoceramic half-space weakened by a 

tunnel cavity with a system of active surface electrodes is studied. Two types of boundary conditions on the 
boundary of a half-space are considered: (1) a half-space boundary free of forces and bounded with vacuum; (2) a 
half-space boundary connected and covered by grounded electrodes. Applying the ideas of the method of images 
integral representations of the solutions which automatically satisfy the edge conditions on the boundary of a half-
space and also the conditions of radiation at infinity are constructed. Allowing for these representations the 
boundary problem of electroelasticity is reduced to a system  of singular integrodifferential equations of the second 
kind with explosive kernels. Results of parametric investigations characterizing the behaviour of the components 
of an electroelastic field on the boundary and in the area of a piecewise-homogeneous halfspace are given. 

 
1. Introduction 

 
In piezoelectric media with failures the interaction of electric and mechanical fields 

may be brought to electric, mechanical and mixed electromechanical breakages. The edges 
of the electrodes are the sources of concentration of the components of an electroelastic 
field and consequently, in these areas microcracks or break-downs may appear [1]. 
Recently, numerous attempts have been made to analyse a crack in piezoelectric materials. 
The first attempt to analyze the piezoelectric crack problems was made by [2], who  
analysed a slit crack in a piezoelectric solid. He assumed that the crack face was traction  
free, but that the cracks were permeable, i.e. that the electric potential and normal 
components of the electric displacement are continuous across the crack surface. As 
discussed by Suo [3] this assumption is not physically realistic as there will clearly be a 
potential drop across the lower capacitance crack. Pak [4] has also studied extensively the 
mode III crack problem in a piezoelectric solid and the electroelastic fields in and around a 
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circular piezoelectric inhomogenity subjected to antiplane loading. In the mode III 
problem, Pak [5] has employed a complex variable approach to solve the stress and electric 
field intensity factor for various electroelastic loading configurations. 

Assuming that the electrodes are weightless and have negligibly small rigidity many 
static and dynamic boundary problems of electroelasticity of piezoelectrics with surface 
electrodes were considered Kudryavtsev [6], Parton and Kudryavtsev [7], Bardzokas and 
Senik [8], Bardzokas [1].  

In the given article investigated by Bardzokas and Filshtinsky [9], a mixed antiplane 
problem of electroelasticity for an unbounded medium with an electroded tunnel cavity is 
generalized for a case of a halfspace at different edge conditions on its boundary. 
Numerical examples are given. 

 
2. Statement of a problem 

 
Referring to Cartesian coordinates Ox x x1 2 3 , let the piezoceramic half-space be 

weakened by a tunnel along the symmetry axis of material x3  opening, the cross-section of 
which is limited by an arbitrary (in some way) smooth contour C  (Fig.1a). On a surface 
which is free from mechanical stress, there are positioned 2n  infinite (in the direction of 
the axis x3 ) thin electrodes with given differences of electric potentials and the 
unelectroded areas of the opening are conjugated with vacuum (air). The boundaries of the 

k -th electrode are determined by quantities α2 1k −  and ( )α2 1 2k k n= ,  and the electric 

potential on it is prescribed by quantity ( )φ ω
k k

i te∗ ∗ −= Re Φ . It is assumed that the cross-

section of the cavity is symmetrical to the axis x2  and the electrodes are weightless and 
have negligibly small rigidity. The disposition of the electrodes cannot be quite arbitrary; 
the conditions of matching will be given below. 

In quasistatic approximation the system of equations of an antiplane boundary 
problem  of electroelasticity is reduced to differential equations with respect to 

displacement ( )u U e i t
3 3= −Re ω  and electric potential ( )φ ω= −Re Φe i t  Parton and 

Kufdryavtsev [7]. 
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Here c eE S
44 11 15, ,ε  and ρ  are the shear modulus measured at constant electric field, the 

dielectric permeability measured at constant deformation, the piezoelectric constant and the 
mass density of the material, respectively, t  is time. 
From system (2.1) the following relations follow 
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where c  is the shear wave velocity in a piezoelectric medium, k15  is the factor of an 
electromechanical connection. 
The components of the electroelastic field are expressed by functions u3  and F  according 
to the formulas 
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Here σij  are stresses of longitudinal shear, Dj  and Ej  are the components of the vector 

induction and strengths of the electric field, respectively. 
Mechanical and electric boundary conditions on the surface of the cavity allowing for 

(2.2), (2.3) may be represented in the form 
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Here Cφ  is a part of the contour C  corresponding to the electrodized surface of the cavity; 

differential operator ∂ ∂n  designates a derivative along the normal to the contour C . 
Equations (2.2) recorded  for the peak  values of functions u3  and F  obtain the form 
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 (2.5) 

where γ  is the wave number. 

Consider two types of boundary conditions on the boundary of a half-space ( )x2 0=  

a)  a half-space is fixed rigidly and covered by grounded electrodes along the boundary 
 3 0 , 0u = φ =  (2.6) 

b)  a halfspace is free from forces and is bounded with vacuum 
 23 20, 0Dσ = =  (2.7) 

Hence, the edge problem of electroelasticity is reduced to the definition of functions U3  

and F∗  from differential equations of Helmholtz and Laplace (2.5) and boundary 
conditions (2.4), (2.6) or (2.7). 
 

3. Singular Integrodifferential Equations of a Boundary Value Problem 
 
To solve this problem it is necessary to have integral representations of the solutions which 
satisfy conditions (2.6) or (2.7) and also conditions of radiation at infinity automatically. 
Using the conception of the method of images More and Feshbah [9] we represent the 
sought-for functions in the form 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
3 1 2 0 0 1

44

1, E
C

U x x p H r AH r ds
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⎡ ⎤= ζ γ − γ⎣ ⎦∫  (3.1) 
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Here ( ) ( )H xν
1  is the Hankel-function of the first kind of order ν , ds  is an element of the 

arc length of contour C ; value A = −1 corresponds to a halfspace free from force and 
bounded with vacuum; A =1 corresponds to a connected halfspace which is covered by  
grounded electrodes. At A =0  we have an unlimited space with a tunnel cavity. 
Substituting the limiting values of functions (3.1) at z C→ ∈ζ0  in boundary conditions 
(2.4) and using the procedure of integrating by parts of divergency integrals we come to the 
system of singular integrodifferential equations of the second kind  
 ( ) ( ) ( ) ( ) ( ){ } ( )0 1 0 2 0 1 02 , ,

C

ip p g f g ds N′ζ + ζ ζ ζ + ζ ζ ζ = ζ∫  (3.2) 
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C
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where kernels ( )g mm =1 2 5, ,...,  and the right parts are determined by expressions 
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Here ψ  is the angle between the normal to contour C  and axis x1,  ( )Φ∗ ζ0  is the 
piecewise constant function determining the values of electric potentials on the system of 

electrodes. Kernels ( )g2 0ζ ζ, , ( )g5 0ζ ζ,  are singular, the other kernels due to the 
assumption of smoothness of contour C  may possess not more than slight singularities. 
Calculating functions ( )p ζ  and  ( )f ζ  from system (3.2) by formulas (2.3) and 
introducing integral representations (3.1) it is possible to define all the components of the 
electroelastic field in the area of the halfspace. 
 

4. Definition of components of an electroelastic field in a halfspace 
 
Let us find an expression for the amplitude of density distribution of electric charges 

( )qk β  on k -th electrode. Introducing the parametrization of contour C  with the help of 

equality ( ) ( )ζ ζ β β π= ≤ ≤0 2  and allowing for the fact that the opening surface is 
bounded with vacuum we write down 
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 ( ) ( ) ( ) 2 1 2,k
k n k kq D −β = β α < β < α  (4.1) 

Here ( ) ( )Dn
k β  represents the amplitude of the normal  component of the electric induction 

vector on the corresponding electroded area of contour C . 
Due to (2.3), (3.1), (4.1) we find 
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where C
kφ

 is a part of contour C  which k -th electrode is located on. 

Integrating expression (4.2) by variable β0  in the limits from α2 1k −  to α2k  we obtain the 
peak value of total charge Qk  of k -th electrode referring to the unit of its length. The 
current flowing through the given electrode and equal to the conduction current in the 
generator circuit may be defined by formula 
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By analogy we find the expressions for the peak values of the other mechanical and electric 
quantities in the area of a piecewise-homogeneous halfspace. We have 
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 ( ) ( )1arg , arg ,z z Cα = ζ − α = ζ − ζ∈  

 
5. A direct piezoelectric effect in a halfspace (space) with an electroded tunnel 

cavity 
 
Let us apply the above described approach to a situation where a fixed and grounded along 
boundary 2 0x =  piezoceramic halfspace with a tunnel opening is used as a generator of 
electric energy. In this case as mechanical exciters are considered two flat monochromatic 
shear waves which propagate in positive and negative directions of axis 1x  and have the 

following values of displacement amplitude 3u  and electric potential φ , respectively 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 11 2
3 1 3 2

15
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11

,
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i x i x i x i x

j j
S

U e Ae U e Ae

e
U j

− −= − = −

Φ = =

γ γ γ γτ τ

ε

 (5.1) 

Here value 1A =  corresponds to the fixed halfspace with zero potential on the boundary, 
value 0A =  corresponds to space. 
For definiteness, assume that the cross-section of the cavity has vertical and horizontal axes 
of symmetry and on its surface there are two symmetrically located infinitely long 
electrodes (Fig. 1b). To obtain potential differences ( )2V t  in the process of the medium 

deformation there should appear electric charges of different signs on the electroded 
platings which require matching of displacement amplitude in monochromatic waves. 
Therefore in (5.1) it is necessary 1 2τ = −τ = τ . 
The generating energy is used in the external electric circuit closing the electrodes and in 
the form of a model it may be represented by losses on an element with conductivity Y  
(Fig. 1b). In this case the value of the potential difference on electrodes ( )2V t  and the 

current in circuit ( )I t  are unknowns. To obtain the electric boundary condition of the 

considered problem it is necessary to involve Ohm’s law for external circuit [10]. 
 ( ) ( )2I t YV t=  (5.2) 

Construction of the solution of the boundary problem consists of assignment of unknown 
electric potential differences ( )2V t  on the electrodes, i.e. in application of boundary 

conditions (2.4) under the action of harmonic waves. Thus from equalities (4.2), (4.3) and 
(5.2) we can define unknown potential amplitude ( )V t  on the electrode  
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Here functions ( ) ( )1, 2mf mζ =  represent “standard” solutions of system (3.2) 

according to the right parts 

 ( ) ( ) ( )1
1 0 44 0 102 1 cos cos ,EN i c Aζ = γ + ψ γξ  ( ) ( ) ( )1 15

2 0 10
11

2
1 sinS

e
N i Aζ = + γξ

ε
(5.4) 

 ( ) ( )2
1 0 0 ,N ζ =     ( ) ( )2 1 0 2

2 0 0 10 20
3 0 4

1, ,
1, ,

N i C
α < β < α⎧

ζ = ζ = ξ + ξ ∈⎨− α < β < α⎩
 

where quantities ( )1, 4k kα =  assign the location of the electrodes. 

From formula (5.3) we obtain two cases for interrupted circuit ( )0Y =  and short circuit 

( )Y →∞ . In the first case the total charge on the electrodes do not change in the process 

of the medium deformation, and in the second it is obvious that ( )V t =0. 
 

6.  Results of a numerical investigation 
 
As an example of the first case consider a halfspace from ceramic 4PZT −  Berlincourt 
[11] with circular opening [ ]( )Re 0,2i ihβζ = + β∈ π  excited by two electrodes with the 

amplitude difference of electric potentials 2 ∗Φ   located symmetrically to axis 2x  

( )1 2 3 47, 7, 6 7, 8 7α = −π α = π α = π α = π . Solution of the system of 

integrodifferential equations (3.2) was carried out by the scheme of the quadrature method 
(see Appendix A). 

For the considered case in Fig. 2 the changes of quantity ( )1 11
SQ Q∗ ∗= ε Φ   are shown, 

characterizing the amplitude of total electric charge 1Q  on the electrode as a function of 

the normalized wave number Rγ  for different variants of boundary conditions on the 

boundary halfspace ( )2.5h R = . It is seen that in case of restrained halfspace ( )1A =  

quantity Q∗  may exceed its static analogue by 26% . Influence of the inertial effect in the 
space is hardly seen. 

The behaviour of quantity ( ) ( )2 11
Sq ∗µ = β ε Φ  on the electrodes at 

1.5, 1h R R= γ =   for various values of the boundary condition identificator A  is 
represented in Fig. 3. As it follows from the last singular equation in (3.2) and expression 
(4.2), the intensity of the charge distribution (a normal component of the electric induction 
vector) has singularities of root type on the edge electrodes which are confirmed by curves 
in Fig. 3. 
Fig. 4 illustrates the level line of the module of displacement amplitude 3U  in the area 

covering the opening for different conditions on boundary 2 0x =  at 

1, 7.5R h Rγ = = . The lighter  zones conform to the maximum values of quantity 3U . 

Fig. a,b and c are given for values of parameter 0,1A =  and 1− , respectively. 
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Distribution of the moduli of stress amplitude 13
∗σ  and 23

∗σ   in the nearest and 

furtherest zones at 1Rγ = , 7.5h R =  for values 0,1A =  and 1−  is represented in 

Fig. 5 and 6, respectively. It should be noted here that in statics ( )0ω =  the electric 

loading of the medium in the condition of antiplane deformation does not cause any 
mechanical stress in it. 
Now consider a case of excitation of conjugated fields by four electrodes, the disposition of 

which is fixed by the values ( ) ( )α πk k k= − =2 1 8 18, .  

In Figs. 7a and 7b the behaviour of quantities ( )Q Q VS
1 1 11
∗ = ε , ( )Q Q VS

3 3 11
∗ = ε at the 

most remote and nearest electrodes on the boundary of a halfspace is given, respectively, as 
a function ofγ R  for various variants of edge conditions for boundary halfspace 

( )h R =2 5. . On the electrodes the potentials were assigned as followsΦ1
∗ =V ,  

Φ2
∗ = −V ,  Φ3

∗ =V ,  Φ4
∗ = −V . 

Results of the investigation of the distribution of the level lines of quantities U3 , σ13
∗  

and σ23
∗  in the vicinity of the circular opening are given in Fig. 8,9 and 10, respectively. 

In calculations we supposed γ R =1, h R =7 5. , Φ1
∗ =V , Φ2

∗ = −V , Φ3
∗ =V , 

Φ4
∗ = −V . Fig. 11 illustrates the level lines of quantities σ13

∗  and σ63
∗  for a free 

halfspace in case of Φ1
∗ =V , Φ2

∗ = −V , Φ3
∗ = −V , Φ4

∗ =V  at γ R =1. 
The graphs of the amplitude module changing, relating to electrical potential 

V V eS∗ ∗= ε τ11 15  on the electrode, as a function of γ R  , under the action of harmonic 
waves type (5.1) are given for the values of parameter A =0  and 1 , respectively, in Figs. 

12a and 12b ( )h R =2 5. . Calculations were fulfilled by formula (5.3) for the mode of  
“idle running” (disconnected electrodes). Curves 1-3 conform to the following variants of 
disposition of the electrodes α π1 7= − , α π2 7= , α π3 6 7= , α π4 8 7= ; 
α π1 4= − , α π2 4= , α π3 3 4= , α π4 5 4=  and α π1 3= − , α π2 3= , 
α π3 2 3= , α π4 5 3= . 
Analysis of the results show that more efficient electroacustic transformation of energy is 
observed at the smallest area of electroded plating and it must be mentioned here that in a 
halfspace it is much more higher than in a space.  
 

7. Concluding Remarks 
 
From the given results it follows that in the conditions of reverse piezoelectric effect the 
pictures of distribution of mechanical quantities in a halfspace substantially change 
according to the type of edge conditions on the boundary of a halfspace and the assigned 
electrical potentials on the system of  electrodes. In case of antiplane deformation the 
stresses of longitudinal shear on a free from mechanical loading surface do  not have 
singularities on the edges of electrodes Bardzokas [1]. The numerical investigation based 
on the constructed here algorithm confirms it. 
It is necessary to note that as the reflected from the boundary of a halfspace conjugated 
wave field introduces appearance of additional charges on pair (connected to a separate 
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generator) electrodes, the latter should be located symmetrically to the axis x2  (a case 
when the centres of the electrodes lie on this axis is obviously excluded). Otherwise the 
system of integral equations (3.2) becomes unsolvable. 
The constructed algorithm may be generalized in case of n  tunnel openings 

( )C m nm = 1,  with cross-section of canonical form if their symmetry centers are located 

on axis x2 . For this in (3.2) it should be assumed ( ) ( ){ }p p Cm mζ ζ ζ= ∈, , 

( ) ( ){ }f f Cm mζ ζ ζ= ∈, , C Cm
m

n

=
=1
U . 

Appendix A 
Let us consider one of the numerical realization of the system (3.2). Let us build the 
interpolating Lagrange polynomial for the sought-for functions ( )p ζ  and ( )′f ζ  in the 

nodes ( ) ( )β πj j N j N= − =2 1 1, . Such polynomial has the form (Ivanov, 1968) 

 { } { } ( )0 0

1

1, ; , sin cosec
2 2

N
j j

N j j
j

N
L p f p f

N∗ ∗
=

β −β β −β
′ β =⎡ ⎤⎣ ⎦ ∑  (A1) 

 ( ) ( ) ( ) ( ) ( ) ( )0 0, , ,j j j jp p p p f f f f∗ ∗ ∗ ∗′ζ = β = β ζ = β = β  

It must be mentioned here that the formulas (A1) are valid for odd numbers of the node 
division of the contour C . 
Integration of the formula (A1) for function ( )′∗f β  using the equation Prudnikov [13] 

 
( )sin
sin

sin2 1
2

2
21

m x
x

dx
kx

k
x

k

m+
= +∫ ∑

=
 

brings to the following expression for the function ( )f∗ β  

( ) ( )0

1

1;
N

N j j
j

M f f A
N∗

=

β β = Ω β +⎡ ⎤⎣ ⎦ ∑   

( ) ( )
1

2

1

sin sin
2

N

j j
j

k

k k
k

−

=

β −β − β
Ω β = − +β∑  (A2) 

Constant A  appearing here must be determined from the conditions of the periodicity of 
the function ( )f∗ β  which due to (A2) has the following form 

 0

1

0
N

j
j

f
=

=∑  (A3) 

Applying (A2) we also find the quadrature formula 

 ( ) ( ) ( ) ( )
2

0
2

1 1 10

2 2, , ,
N N N

j jm m m
j m m

f G d f G A G
N N

π
∗ ∗ ∗

∗
= = =

π π
β β β β = Ω β β + β β∑ ∑ ∑∫  (A4) 

where ( )Ω Ωjm j m= β . In the node collocations ( ) ( )β πl l l∗ = − =2 1 1N N,  the 

polynomial (A1) has the following value at odd value of N  

 ( ) ( ) ( )0

1

1; 1 cosec 1,
2

N
j j

N j
j

L p p N
N

∗
+∗

∗
=

β −β
⎡ ⎤β β = − =⎣ ⎦ ∑ l l

l l  (A5) 
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For the singular integral in (3.2) the formula analogous to the formula of calculating 
regular integrals Panasyuk [14] appears 

 ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
002

0

10 0 0

2Im Im
ii N

j j j
j j

e ef s d f s
N

∗ψ βπ ψ

∗ ∗ ∗
=

π′ ′ ′β β β = β
ζ β −ζ β ζ β − ζ β

∑∫
l

l l

(A6) 

Now, substituting the integrals in (3.2) by finite sums of the formulas (A.4), (A.6) and 
using the equalities (A.2), (A.3) and (A.5) we come to the system 2 1N +  of algebraic 
equations related to the values of functions ( )p ζ  and ( )′f ζ  in the nodes of interpolation 

( )βj j N= 1,  and constant A . 
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