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J.H. Bapazokac, IM..]I. fImemeuchniﬂ
Bo30ysk1eHHbIE TOCPEICTBOM CHCTEMbI TOBEPXHOCTHBIX 3JIEKTPO/I0B
rapMoHMYecKHe KoJ/ie0aHus Nbe30KePaMHYecKoro noIynpocTpaHcTBa
¢ TYHHeJILHBIM OTBepcTHEM

B nmanHoii crathe 00oOLIaeTcss paHee McciemoBaHHas B [9] cMemraHHas 3aava dNEKTPOYHPYTOCTH UL
HEOTPAaHUUYEHHOI cpefbl € 9JIEKTPOAMPOBAHHOM TYHHENBHOW MOJOCTHIO Ha Clydail MOJyNpOCTpaHCTBA C
OTJIMYHBIMU Ha €TI0 IPAHHIIEe KPaeBBIMH yCIOBHAMU. [IpUBOAUTCS YHCIICHHBIN IPHUMED.

An antiplane stationary dynamic problem of electroelasticity in a piezoceramic half-space weakened by a
tunnel cavity with a system of active surface electrodes is studied. Two types of boundary conditions on the
boundary of a half-space are considered: (1) a half-space boundary free of forces and bounded with vacuum; (2) a
half-space boundary connected and covered by grounded electrodes. Applying the ideas of the method of images
integral representations of the solutions which automatically satisfy the edge conditions on the boundary of a half-
space and also the conditions of radiation at infinity are constructed. Allowing for these representations the
boundary problem of electroelasticity is reduced to a system of singular integrodifferential equations of the second
kind with explosive kernels. Results of parametric investigations characterizing the behaviour of the components
of an electroelastic field on the boundary and in the area of a piecewise-homogeneous halfspace are given.

1. Introduction

In piezoelectric media with failures the interaction of electric and mechanical fields
may be brought to electric, mechanical and mixed electromechanical breakages. The edges
of the electrodes are the sources of concentration of the components of an electroelastic
field and consequently, in these areas microcracks or break-downs may appear [1].
Recently, numerous attempts have been made to analyse a crack in piezoelectric materials.
The first attempt to analyze the piezoelectric crack problems was made by [2], who
analysed a slit crack in a piezoelectric solid. He assumed that the crack face was traction
free, but that the cracks were permeable, i.e. that the electric potential and normal
components of the electric displacement are continuous across the crack surface. As
discussed by Suo [3] this assumption is not physically realistic as there will clearly be a
potential drop across the lower capacitance crack. Pak [4] has also studied extensively the
mode III crack problem in a piezoelectric solid and the electroelastic fields in and around a
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circular piezoelectric inhomogenity subjected to antiplane loading. In the mode III
problem, Pak [5] has employed a complex variable approach to solve the stress and electric
field intensity factor for various electroelastic loading configurations.

Assuming that the electrodes are weightless and have negligibly small rigidity many
static and dynamic boundary problems of electroelasticity of piezoelectrics with surface
electrodes were considered Kudryavtsev [6], Parton and Kudryavtsev [7], Bardzokas and
Senik [8], Bardzokas [1].

In the given article investigated by Bardzokas and Filshtinsky [9], a mixed antiplane
problem of electroelasticity for an unbounded medium with an electroded tunnel cavity is
generalized for a case of a halfspace at different edge conditions on its boundary.
Numerical examples are given.

2. Statement of a problem

Referring to Cartesian coordinates OX1X2X3, let the piezoceramic half-space be
weakened by a tunnel along the symmetry axis of material X, opening, the cross-section of

which is limited by an arbitrary (in some way) smooth contour C (Fig.1a). On a surface
which is free from mechanical stress, there are positioned 2N infinite (in the direction of
the axis X;) thin electrodes with given differences of electric potentials and the
unelectroded areas of the opening are conjugated with vacuum (air). The boundaries of the

K -th electrode are determined by quantities ¢, , and &, (k = 1,2n) and the electric

potential on it is prescribed by quantity ﬂf = Re(CD’;e‘i”“) . It is assumed that the cross-

section of the cavity is symmetrical to the axis X, and the electrodes are weightless and

have negligibly small rigidity. The disposition of the electrodes cannot be quite arbitrary;
the conditions of matching will be given below.

In quasistatic approximation the system of equations of an antiplane boundary
problem  of electroelasticity is reduced to differential equations with respect to

—iot

displacement U, = Re(U3e ) and electric potential ¢ = Re((I)e‘“‘") Parton and

Kufdryavtsev [7].
2

o°u
c,Vu,+e.Vg=p &t; , 8.VUu, —&> V=0 2.1

Here CAE‘,SISI,G15 and p are the shear modulus measured at constant electric field, the

dielectric permeability measured at constant deformation, the piezoelectric constant and the
mass density of the material, respectively, { is time.

From system (2.1) the following relations follow
2

ou
V2U3 —C_ZaT;ZO,VZF =0

Siad LY/ L - S 22)
E_sS
VG

where C is the shear wave velocity in a piezoelectric medium, k15 is the factor of an

electromechanical connection.
The components of the electroelastic field are expressed by functions U, and F according
to the formulas
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G, —i0,; = 2%[054 (14K uy + elSF] 2.3)

D, —iD, =—2s“a—';, E -iE, :-2%@: +e‘—s5u3],z: X, +iX,
11

Here 0;; are stresses of longitudinal shear, Dj and E j are the components of the vector

induction and strengths of the electric field, respectively.
Mechanical and electric boundary conditions on the surface of the cavity allowing for
(2.2), (2.3) may be represented in the form

%{Cﬁ(l-ﬁ- kfs)u3 + qSF} =0 on C

d=F+32u =¢"(¢1).CeC,

11

s OF
—6‘”%:0 on C\C, (2.4)

Here C¢ is a part of the contour C corresponding to the electrodized surface of the cavity;

D, =

differential operator é’/ ON designates a derivative along the normal to the contour C .

Equations (2.2) recorded for the peak values of functions U, and F obtain the form

* * ®
VU, +7U,=0, V°F :0=®=§—§U3+F =2 2.5)
1
where ¥ is the wave number.

Consider two types of boundary conditions on the boundary of a half-space (X2 =0)
a) a half-space is fixed rigidly and covered by grounded electrodes along the boundary

b) a halfspace is free from forces and is bounded with vacuum
6,=0,D,=0 @.7)

Hence, the edge problem of electroelasticity is reduced to the definition of functions U3

and F* from differential equations of Helmholtz and Laplace (2.5) and boundary
conditions (2.4), (2.6) or (2.7).

3. Singular Integrodifferential Equations of a Boundary Value Problem

To solve this problem it is necessary to have integral representations of the solutions which
satisfy conditions (2.6) or (2.7) and also conditions of radiation at infinity automatically.
Using the conception of the method of images More and Feshbah [9] we represent the
sought-for functions in the form

U3(X1’X2):CL5J- p(C)[HSI)(Yf)—AHél)(Yn)}dS G.1)
F*(prz):,'. f (C)ain(lnr—Alnl’l)dS, r =|C—Z N =‘Z—z ,LeC

c G
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Here H m(X) is the Hankel-function of the first kind of order v, dS is an element of the

14
arc length of contour C; value A= —1 corresponds to a halfspace free from force and
bounded with vacuum; A =1 corresponds to a connected halfspace which is covered by
grounded electrodes. At A =0 we have an unlimited space with a tunnel cavity.

Substituting the limiting values of functions (3.1) at Z— ¢, € C in boundary conditions

(2.4) and using the procedure of integrating by parts of divergency integrals we come to the
system of singular integrodifferential equations of the second kind

2ip(f;o)+j{ P(£)9,(5.8,)+ /(€) 9, (5., )jds= N, (¢,) (3.2)
—nf (G,)+ [{P(£) 85 (6.0)+ ()9, (6.6, )Jds=N,(5,) &, €C,
jf £)9;(5.5,)ds=0,¢,€C\C,

where kernels 0, (m =1,2, ...,5) and the right parts are determined by expressions

g, (gaCo) = _\2 +V[H1 (Yro)cos(‘l’o _ao)_ AH1(1) (Vrlo)cos(\VO _alo)]

i 1
kz 0 (6:6,).0,(6.6) = [ H (11,) - AHP (1) |
v A-

[H ()
g4(€a€o):Re{ e i }’f’(C):%
A

9: (6:Go) =1

C o Co C - Co
ei\llo
gS(C,CO)=Im{ += }
C - Co C - Co
Nl(é,()) =0, Nz(go) = (I)*(é’o) , Y= \V(C) sWo = \V(Co) ,6,C,€C
Ty =(C_Co( » Uy =arg(C_Co) > Tho =(C_Co( » Uy =arg(C—C0)

Here W is the angle between the normal to contour C and axis X, @*(g)) is the
piecewise constant function determining the values of electric potentials on the system of
electrodes. Kernels 0, (é’ ,g]) , O (é’ ,g]) are singular, the other kernels due to the
assumption of smoothness of contour C may possess not more than slight singularities.
Calculating functions p(é’ ) and f (é’ ) from system (3.2) by formulas (2.3) and

introducing integral representations (3.1) it is possible to define all the components of the
electroelastic field in the area of the halfspace.

4. Definition of components of an electroelastic field in a halfspace

Let us find an expression for the amplitude of density distribution of electric charges

qk( ﬂ) on K-th electrode. Introducing the parametrization of contour C with the help of

equality ¢ = 4 ﬂ) (OS p SZﬂ') and allowing for the fact that the opening surface is

bounded with vacuum we write down
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k
Ok (B): Dr(1 )(B)’azk—l <P <y, (4.1)
Here Dr(]k)( ﬂ) represents the amplitude of the normal component of the electric induction

vector on the corresponding electroded area of contour C.
Due to (2.3), (3.1), (4.1) we find

eiWo Aei‘Vn
= f += ds,,C 4.2)
“I { -G c—co} T

where C¢k is a part of contour C which K -th electrode is located on.

Integrating expression (4.2) by variable ﬂ) in the limits from @,,_, to @,, we obtain the
peak value of total charge Qk of K-th electrode referring to the unit of its length. The

current flowing through the given electrode and equal to the conduction current in the
generator circuit may be defined by formula

Aok

lk(t)=Re{lwe'“’t j qk(Bo)S'(Bo)dBo} s(B,)= dBo (43)

%2k-1
By analogy we find the expressions for the peak values of the other mechanical and electric
quantities in the area of a piecewise homogeneous halfspace. We have

013— 1+k2 J. { (yr)cosa — AH()(yrl)cosal}dS+

+e15jf'(cj)ImL;1_Z+ Eéz}ds

23=(1+k125)yj p(Q){Hfl)(yr)smoa AHY (. )smoc}ds+

, 1 A
+els£f (§)Re{§_z+5_z}ds (4.4)
E =- k‘éyj. p(g){Hl(l) (yr)cosa—AHl(l) (yrl)cosocl}dS—
, 1 A
_g[f ({)Im{§_2+5_z}d8
E; __k1257J' p(C){Hl(l) (yr)smoc—AH()(yr )smoc }dS—
, 1 A
—E[f (g)ReL"—ZJFE—Z}dS
* S ! 1 A
D1 :—811.([1: (C)Im|:a+a:|ds
% s ' 1 A
D2 ——811.£f (C)Re|:§_z+aj|ds
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a=arg(C-2),q :arg(z—z),Z;EC

5. A direct piezoelectric effect in a halfspace (space) with an electroded tunnel
cavity

Let us apply the above described approach to a situation where a fixed and grounded along
boundary X, =0 piezoceramic halfspace with a tunnel opening is used as a generator of
electric energy. In this case as mechanical exciters are considered two flat monochromatic

shear waves which propagate in positive and negative directions of axis X, and have the

following values of displacement amplitude U, and electric potential ¢ , respectively

U =7, (e —Ae™), U =7, (e — Ae™" )

. . 5.1)
& - (
o) =—§U3(J) (] :1,2)
11

Here value A =1 corresponds to the fixed halfspace with zero potential on the boundary,
value A= 0 corresponds to space.

For definiteness, assume that the cross-section of the cavity has vertical and horizontal axes
of symmetry and on its surface there are two symmetrically located infinitely long

electrodes (Fig. 1b). To obtain potential differences 2V (t) in the process of the medium

deformation there should appear electric charges of different signs on the electroded
platings which require matching of displacement amplitude in monochromatic waves.

Therefore in (5.1) it is necessary T, = —T, = T.
The generating energy is used in the external electric circuit closing the electrodes and in
the form of a model it may be represented by losses on an element with conductivity Y

(Fig. 1b). In this case the value of the potential difference on electrodes 2V (t) and the
current in circuit | (t) are unknowns. To obtain the electric boundary condition of the
considered problem it is necessary to involve Ohm’s law for external circuit [10].

I(t) =2V (1) (5.2)
Construction of the solution of the boundary problem consists of assignment of unknown
electric potential differences 2V (t) on the electrodes, i.e. in application of boundary

conditions (2.4) under the action of harmonic waves. Thus from equalities (4.2), (4.3) and

(5.2) we can define unknown potential amplitude V (t) on the electrode

V' (0) = itwe B
2Y —iwe’ B,

IAn By)s'(B,)dB, (M=1,2)

'[ f { iWo _A\ei‘VO }ds
C=C GC-G

(5.3)
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Here functions f | (C) (m =1, 2) represent “standard” solutions of system (3.2)
according to the right parts
. 2e. . )
N (Cy) =2ivcy, (1+ A)cosy, cosyg,, , N (C)= %I (1+ A)sinyg,, (5.4)
1

Lo, <B, <a,,

Nl(Z)(Co):OJ Néz)(Co):{ Co =§10+i§20 eC

where quantities oL, (k =1, 4) assign the location of the electrodes.

-Lo, <B, <a,,

From formula (5.3) we obtain two cases for interrupted circuit (Y = 0) and short circuit
(Y - OO) . In the first case the total charge on the electrodes do not change in the process

of the medium deformation, and in the second it is obvious that V(t) =0.
6. Results of a numerical investigation

As an example of the first case consider a halfspace from ceramic PZT —4 Berlincourt

[11] with circular opening § = Re' + ih(B € [0, 2n]) excited by two electrodes with the

amplitude difference of electric potentials 2"  located symmetrically to axis X,
(OL1 =-n/7,a, =7/7, o, =61/7, 0, = 8TE/7). Solution of the system of

integrodifferential equations (3.2) was carried out by the scheme of the quadrature method

(see Appendix A).
Q/(e5e’)

characterizing the amplitude of total electric charge Q, on the electrode as a function of

For the considered case in Fig. 2 the changes of quantity Q" = are shown,

the normalized wave number YR for different variants of boundary conditions on the

boundary halfspace (h/ R= 2.5). It is seen that in case of restrained halfspace (A = l)

quantity Q" may exceed its static analogue by 26% . Influence of the inertial effect in the

o (B)/(en@")

h/R=1.5,yR=1 for various values of the boundary condition identificator A is

space is hardly seen.

on the electrodes at

The ©behaviour of quantity L=

represented in Fig. 3. As it follows from the last singular equation in (3.2) and expression
(4.2), the intensity of the charge distribution (a normal component of the electric induction
vector) has singularities of root type on the edge electrodes which are confirmed by curves
in Fig. 3.

Fig. 4 illustrates the level line of the module of displacement amplitude |U3| in the area
covering the opening for different conditions on boundary X, = 0 at
YR=1, h/ R =7.5. The lighter zones conform to the maximum values of quantity |U 3 | .

Fig. a,b and c are given for values of parameter A= 0,1 and —1, respectively.
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Distribution of the moduli of stress amplitude ‘G;‘ and ‘023‘ in the nearest and

furtherest zones at YR=1, h/R=7.5 for values A=0,1 and —1 is represented in

Fig. 5 and 6, respectively. It should be noted here that in statics ((x) = 0) the electric

loading of the medium in the condition of antiplane deformation does not cause any
mechanical stress in it.
Now consider a case of excitation of conjugated fields by four electrodes, the disposition of

which is fixed by the values &, = (2k —1)72'/8 (k = 1,_8) .

In Figs. 7a and 7b the behaviour of quantities Ql* = ‘Ql/( EISIV)‘ , Q; = ‘Q3/( f,‘lsl\/)‘ at the

most remote and nearest electrodes on the boundary of a halfspace is given, respectively, as
a function of ¥ R for various variants of edge conditions for boundary halfspace

(h/ R=2.5). On the electrodes the potentials were assigned as follows®; =V,
O =-V, ©;=V, O, =-V.

Results of the investigation of the distribution of the level lines of quantities ‘U3‘ , ‘0'1*3

and ‘0'2*3‘ in the vicinity of the circular opening are given in Fig. 8,9 and 10, respectively.

In calculations we supposed ¥ R=1, h/R=7.5, Q)i‘ =V, CD; ==V, CD; =V,

@, =-V . Fig. 11 illustrates the level lines of quantities ‘(71*3‘ and ‘0'6*3 for a free

halfspace in case of @] =V, @, =V, ®;=-V, ®, =V at yR=1.
The graphs of the amplitude module changing, relating to electrical potential
<V*> = ‘gfl’\/* / Tels‘ on the electrode, as a function of ¥ R , under the action of harmonic

waves type (5.1) are given for the values of parameter A =0 and 1, respectively, in Figs.

12a and 12b (h/ R=2.5). Calculations were fulfilled by formula (5.3) for the mode of
“idle running” (disconnected electrodes). Curves 1-3 conform to the following variants of
disposition of the electrodes &, =—7/7, o, =n/7, o =677, a,=87/7;
o =-7l4, o=n/4, a,=37/4, a,=57/4 and o =-7/3, o, =7/3,
o, =273, a, =57/3.

Analysis of the results show that more efficient electroacustic transformation of energy is

observed at the smallest area of electroded plating and it must be mentioned here that in a
halfspace it is much more higher than in a space.

7. Concluding Remarks

From the given results it follows that in the conditions of reverse piezoelectric effect the
pictures of distribution of mechanical quantities in a halfspace substantially change
according to the type of edge conditions on the boundary of a halfspace and the assigned
electrical potentials on the system of electrodes. In case of antiplane deformation the
stresses of longitudinal shear on a free from mechanical loading surface do not have
singularities on the edges of electrodes Bardzokas [1]. The numerical investigation based
on the constructed here algorithm confirms it.

It is necessary to note that as the reflected from the boundary of a halfspace conjugated
wave field introduces appearance of additional charges on pair (connected to a separate
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generator) electrodes, the latter should be located symmetrically to the axis X, (a case

when the centres of the electrodes lie on this axis is obviously excluded). Otherwise the
system of integral equations (3.2) becomes unsolvable.
The constructed algorithm may be generalized in case of N tunnel openings

Cm (m = l,n) with cross-section of canonical form if their symmetry centers are located

on axis X,. For this in (3.2) it should be assumed p(§)={pm(§),§ecm},

F(¢)={fu(¢)-£ €Cuf- ngcm.

Appendix A
Let us consider one of the numerical realization of the system (3.2). Let us build the

interpolating Lagrange polynomial for the sought-for functions p(§ ) and f '(é’ ) in the
nodes ﬂj = 27[(] —1)/N (] =1, N) . Such polynomial has the form (Ivanov, 1968)

L[ £158] = {Pp '}SinN(B{B)COSGCBJ;B (AD
p(¢)=p.(B).p) = p*(B,-),f (&)="1.(B).f=1/(B;)

It must be mentioned here that the formulas (A1) are valid for odd numbers of the node
division of the contour C.

Integration of the formula (A1) for function f '( ,3) using the equation Prudnikov [13]

sin(2m+1)x i 2kx
j ( Z sin
sin X — 2k

brings to the following expression for the function f ( )

1 &,
My [f*(B);ﬁJZ—Z 0, (B)+A
N-1
-3
k=1
Constant A appearing here must be determined from the conditions of the periodicity of
the function f*( ,3) which due to (A2) has the following form

N
> =0 (A3)
j=1

Applying (A2) we also find the quadrature formula
2n

[L(B)G(BB)dB=253" 175 0,6 (Bl )+ AT G(B,57) a0

0

nk(B, [3) sin kB, .

(A2)

where Q= Qj(ﬂm). In the node collocations 3 = z(2¢—1)/N (€ =1, N) the
polynomial (A1) has the following value at odd value of N

LN[p*(B);BZ]zﬁZN) p?(—l)"”cosecB’ i (/=1,N) (AS)
j=1
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For the singular integral in (3.2) the formula analogous to the formula of calculating
regular integrals Panasyuk [14] appears

ein(B?)
B i ) - Co (B(/
Now, substituting the integrals in (3.2) by finite sums of the formulas (A.4), (A.6) and
using the equalities (A.2), (A.3) and (A.5) we come to the system 2N +1 of algebraic

2n

f/(B. )1 e g d :Z—TENf.OI
R e AR LA A

0

() o

equations related to the values of functions p(g” ) and f '(é’ ) in the nodes of interpolation
ﬂJ(J =1, N) and constant A.

The work was carried out in the framework of an agreement on scientific cooperation
between the National Technical University of Athens and the Institute of Mechanics,
National Academy of Sciences (NAS) of Armenia.
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