2U3UUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

60, №2, 2007

Механика

УДК 539.3.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ ОРТОТРОПНОЙ ПЛАСТИНКИ ПРИ НАЛИЧИИ ВЯЗКОГО СОПРОТИВЛЕНИЯ Азатян Г.Л.

Ключевые слова: вязкое сопротивление, вынужденные колебания, упругость, анизотропия, резонанс, амплитуда, асимптотический метод.

Keywords: viscous resistance, forced vibrations, elasticity, anisotropic, resonance, asymptotic method, amplitude.

Գ. Լ. Ազատյան

Օրթոտրոպ սալի հարկադրական տատանումները մածուցիկ դիմադրության առկայության դեպքում

Ասիմպտոտիկ մեթոդով լուծված է օրթոտրոպ սալի հարկադրական տատանումների վերաբերյալ առաձգականության տեսության եռաչափ դինամիկական խնդիրը, երբ սալում առկա է մածուցիկ դիմադրություն։ Դիմային նիստերից մեկը կոշտ ամրակցված է, իսկ մյուս նիստի վրա ազդում է ժամանակի ընթացքում հարմոնիկ ձևով փոփոխվող բեռ։ Հաստատված է լարումների թենզորի և տեղափոխման վեկտորի բաղադրիչների ասիմպտոտիկան, կառուցված է իտերացիոն պրոցես անհայտ մեծությունները որոշելու համար։ Որոշված են տատանման ամպլիտուդները, մասնավոր դասի խնդիրների համար ստացված են փակ լուծումներ։ Նշված են ռեզոնանսի առաջացման պայմանները։

G.L. Azatyan

The Forced Vibrations of Orthotropic Plate in the Presence of Viscous Resistance

The three-dimensional dynamic problem of the elasticity theory on forced vibrations of orthotropic plate in the presence of viscous resistance was solved. The asymptotic form of the stress tensor components and displacement vector are found. An iterative process for determination of sought quantities is developed. The resonance arising conditions are determined. The closed solution for particular type of problems is found.

Решена трехмерная динамическая задача теории упругости о вынужденных колебаниях ортотропной пластинки при наличии вязкого сопротивления. Нижняя грань пластинки жестко закреплена, а на верхней приложены гармонически изменяющиеся напряжения. Найдены асимптотики для компонент тензора напряжений и вектора перемещения. Построен итерационный процесс для определения искомых величин. Установлены условия возникновения резонанса. Для частного типа задач получено замкнутое решение.

1. Для определения и анализа напряженно-деформированных состояний тонких тел в последние десятилетия широко используется асимптотический метод. Статические краевые задачи изотропных и анизотропных тонких тел асимптотическим методом рассмотрены в [1,2]. Для решения неклассических краевых задач этот метод оказался особенно эффективным [2]. Асимптотический метод также эффективен для решения динамических задач, в частности, для определения решений о собственных и вынужденных колебаниях балок и пластин

[3-9]. Собственные колебания однослойной, двухслойной и трёхслойной ортотропных пластинок рассмотрены в [6-8].

В работе рассматривается задача о вынужденных колебаниях ортотропной пластинки $D = \{(x, y, z): (x, y) \in D_0, -h \le z \le h, h << l \}$ при наличии вязкого сопротивления (фиг.1).

 $D_0-{\rm срединная}$ поверхность пластинки, $l-{\rm ee}$ характерный тангенциальный размер.

Имеем следующие граничные условия:

$$u = v = w = 0 \text{ при } z = -h$$

$$\sigma_{xz} (z = h) = \tau^+_{xz} (\xi, \eta) \sin \Omega t$$

$$\sigma_{yz} (z = h) = \tau^+_{yz} (\xi, \eta) \sin \Omega t$$

$$\sigma_{zz} (z = h) = \tau^+_{zz} (\xi, \eta) \sin \Omega t$$
(1.2)

$$\sigma_{zz} (z = h) = \tau_{zz}^{+} (\xi, \eta) \sin \Omega$$

$$\xi = x/l, \qquad \eta = y/l$$

Требуется найти ненулевое решение системы динамических уравнений пространственной задачи теории упругости анизотропного тела для ортотропных сред:

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} - k_1 \frac{\partial u}{\partial t} = \rho \frac{\partial^2 u}{\partial t^2} \quad (x, y, z; u, v, w)$$

$$\frac{\partial u}{\partial x} = a_{11} \sigma_{xx} + a_{12} \sigma_{yy} + a_{13} \sigma_{zz} , \quad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = a_{66} \sigma_{xy}$$

$$\frac{\partial v}{\partial y} = a_{12} \sigma_{xx} + a_{22} \sigma_{yy} + a_{23} \sigma_{zz} , \quad \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = a_{55} \sigma_{xz} \qquad (1.3)$$

$$\frac{\partial w}{\partial z} = a_{13} \sigma_{xx} + a_{23} \sigma_{yy} + a_{33} \sigma_{zz} , \quad \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} = a_{44} \sigma_{yz}$$

при граничных условиях (1.1),(1.2), где $\vec{R} = -k_1 \vec{V}$ – вязкое сопротивление.

Для этого класса задач граничными условиями на боковой поверхности обусловлено появление динамического пограничного слоя. Эти условия не влияют на решение внутренней задачи [3,5], поэтому их конкретизировать не будем.

2. Решение системы уравнений (1.3) при граничных условиях (1.1) и (1.2) будем искать в виде:

$$Q(x, y, z, t) = Q_{I}(x, y, z) \sin \Omega t + Q_{II}(x, y, z) \cos \Omega t$$
(2.1)

где Q– любое из напряжений и перемещений, Ω –частота вынуждающего воздействия.

Затем перейдем к безразмерным координатам и безразмерным компонентам вектора перемещения:

$$\xi = x/l, \qquad \eta = y/l, \qquad \zeta = z/h U_{I} = u_{I}/l, \qquad V_{I} = v_{I}/l, \qquad W_{I} = w_{I}/l \qquad (I, II)$$
(2.2)

Подставив (2.1) в преобразованные уравнения (1.3), получим следующую сингулярно-возмущенную малым параметром $\varepsilon = h/l$ систему:

$$\begin{split} \frac{\partial \sigma_{xxll}}{\partial \xi} &+ \frac{\partial \sigma_{xyl}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{xxl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 U_1 + 2K\varepsilon^{-2}\Omega_*U_1 = 0 \\ \frac{\partial \sigma_{xxll}}{\partial \xi} &+ \frac{\partial \sigma_{xyll}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{xzll}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 U_{11} - 2K\varepsilon^{-2}\Omega_*U_1 = 0 \\ \frac{\partial \sigma_{xyl}}{\partial \xi} &+ \frac{\partial \sigma_{yyl}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{yzl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 V_1 + 2K\varepsilon^{-2}\Omega_*V_{11} = 0 \\ \frac{\partial \sigma_{xyll}}{\partial \xi} &+ \frac{\partial \sigma_{yyll}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{yzll}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 V_{11} - 2K\varepsilon^{-2}\Omega_*V_{11} = 0 \\ \frac{\partial \sigma_{xxll}}{\partial \xi} &+ \frac{\partial \sigma_{yzl}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{zzl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 W_1 - 2K\varepsilon^{-2}\Omega_*W_1 = 0 \\ \frac{\partial \sigma_{xzll}}{\partial \xi} &+ \frac{\partial \sigma_{yzll}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{zzl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 W_1 - 2K\varepsilon^{-2}\Omega_*W_1 = 0 \\ \frac{\partial \sigma_{xzll}}{\partial \xi} &+ \frac{\partial \sigma_{yzll}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{zzl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 W_{11} - 2K\varepsilon^{-2}\Omega_*W_1 = 0 \\ \frac{\partial \sigma_{xzll}}{\partial \xi} &+ \frac{\partial \sigma_{yzll}}{\partial \eta} + \varepsilon^{-1} \frac{\partial \sigma_{zzl}}{\partial \zeta} + \varepsilon^{-2} \left(\Omega_*\right)^2 W_{11} - 2K\varepsilon^{-2}\Omega_*W_1 = 0 \\ \frac{\partial \sigma_{xzll}}{\partial \xi} &= a_{11}\sigma_{xxl} + a_{12}\sigma_{yyl} + a_{13}\sigma_{zzl} , \frac{\partial U_1}{\partial \eta} + \frac{\partial V_1}{\partial \xi} = a_{66}\sigma_{xyl} \\ \frac{\partial V_1}{\partial \eta} &= a_{12}\sigma_{xxl} + a_{22}\sigma_{yyl} + a_{23}\sigma_{zzl} , \frac{\partial W_1}{\partial \xi} + \varepsilon^{-1} \frac{\partial U_1}{\partial \zeta} = a_{55}\sigma_{xzl} , (I, II) \\ \varepsilon^{-1} \frac{\partial W_1}{\partial \zeta} &= a_{13}\sigma_{xxl} + a_{23}\sigma_{yyl} + a_{33}\sigma_{zzl} , \frac{\partial W_1}{\partial \eta} + \varepsilon^{-1} \frac{\partial V_1}{\partial \zeta} = a_{44}\sigma_{yzl} \\ \Omega_*^2 &= \rho h^2 \Omega^2 , 2K = \frac{k_1 h}{\sqrt{\rho}} \end{split}$$

Решение этой сингулярно-возмущенной системы будем искать в виде следующего асимптотического разложения:

$$\sigma_{\alpha\beta j} = \varepsilon^{-1+s} \sigma_{\alpha\beta j}^{(s)}, \qquad \alpha, \beta = x, y, z; \quad s = \overline{0, N}$$

$$(U_j, V_j, W_j) = \varepsilon^s (U_j^{(s)}, V_j^{(s)}, W_j^{(s)}), \qquad j = I, II$$
(2.4)

Обозначение $s = \overline{0, N}$ означает, что по немому (повторяющемуся) индексу *s* происходит суммирование от 0 до числа приближений *N*.

Подставив (2.4) в (2.3), получим рекуррентную систему для определения $\,\sigma_{\alpha\beta j}\,,$

 U_j, V_j, W_j . В этой системе все $\sigma_{\alpha\beta j}^{(s)}$ можно выразить через $U_j^{(s)}, V_j^{(s)}, W_j^{(s)}$ по формулам:

$$\sigma_{xyj}^{(s)} = -A_{23} \frac{\partial W_j^{(s)}}{\partial \zeta} + A_{22} \frac{\partial U_j^{(s-1)}}{\partial \xi} - A_{12} \frac{\partial V_j^{(s-1)}}{\partial \eta}$$

$$\sigma_{yyj}^{(s)} = -A_{13} \frac{\partial W_j^{(s)}}{\partial \zeta} - A_{12} \frac{\partial U_j^{(s-1)}}{\partial \xi} + A_{33} \frac{\partial V_j^{(s-1)}}{\partial \eta}$$

$$\sigma_{zzj}^{(s)} = A_{11} \frac{\partial W_j^{(s)}}{\partial \zeta} - A_{23} \frac{\partial U_j^{(s-1)}}{\partial \xi} - A_{13} \frac{\partial V_j^{(s-1)}}{\partial \eta}$$

$$\sigma_{xyj}^{(s)} = \frac{1}{a_{66}} \left[\frac{\partial U_j^{(s-1)}}{\partial \eta} + \frac{\partial V_j^{(s-1)}}{\partial \xi} \right], \ \sigma_{xzj}^{(s)} = \frac{1}{a_{55}} \left[\frac{\partial U_j^{(s)}}{\partial \zeta} + \frac{\partial W_j^{(s-1)}}{\partial \xi} \right]$$

$$\sigma_{yzj}^{(s)} = \frac{1}{a_{44}} \left[\frac{\partial V_j^{(s)}}{\partial \zeta} + \frac{\partial W_j^{(s-1)}}{\partial \eta} \right], \quad j = I, II$$

где

$$A_{11} = \frac{a_{11}a_{22} - a_{12}^2}{\Delta}, \quad A_{22} = \frac{a_{22}a_{33} - a_{23}^2}{\Delta}, \quad A_{33} = \frac{a_{11}a_{33} - a_{13}^2}{\Delta}$$
$$A_{12} = \frac{a_{33}a_{12} - a_{13}a_{23}}{\Delta}, \quad A_{13} = \frac{a_{11}a_{23} - a_{12}a_{13}}{\Delta}, \quad A_{23} = \frac{a_{22}a_{13} - a_{12}a_{23}}{\Delta}$$
$$\Delta = a_{11}a_{22}a_{33} + 2a_{12}a_{13}a_{23} - a_{22}a_{13}^2 - a_{11}a_{23}^2 - a_{33}a_{12}^2$$

Для определения функций $U_{\rm I}^{(s)}, V_{\rm I}^{(s)}, W_{\rm I}^{(s)}$, (I, II) получаются уравнения:

$$\frac{\partial^{2} U_{I}^{(s)}}{\partial \zeta^{2}} + a_{55} \left((\Omega_{*})^{2} U_{I}^{(s)} + 2K\Omega_{*} U_{II}^{(s)} \right) = R_{UI}^{(s)}
\frac{\partial^{2} U_{II}^{(s)}}{\partial \zeta^{2}} + a_{55} \left((\Omega_{*})^{2} U_{II}^{(s)} - 2K\Omega_{*} U_{I}^{(s)} \right) = R_{UII}^{(s)}
\frac{\partial^{2} V_{I}^{(s)}}{\partial \zeta^{2}} + a_{44} \left((\Omega_{*})^{2} V_{I}^{(s)} + 2K\Omega_{*} V_{II}^{(s)} \right) = R_{VII}^{(s)}
\frac{\partial^{2} V_{II}^{(s)}}{\partial \zeta^{2}} + a_{44} \left((\Omega_{*})^{2} V_{II}^{(s)} - 2K\Omega_{*} V_{I}^{(s)} \right) = R_{VII}^{(s)}$$
(2.6)

32

$$A_{11} \frac{\partial^2 W_{\rm I}^{(s)}}{\partial \zeta^2} + (\Omega_*)^2 W_{\rm I}^{(s)} + 2K\Omega_* W_{\rm II}^{(s)} = R_{W\rm I}^{(s)}$$
$$A_{11} \frac{\partial^2 W_{\rm II}^{(s)}}{\partial \zeta^2} + (\Omega_*)^2 W_{\rm II}^{(s)} - 2K\Omega_* W_{\rm I}^{(s)} = R_{W\rm II}^{(s)}$$

где

$$R_{Uj}^{(s)} = -\frac{\partial^2 W_j^{(s-1)}}{\partial \xi \partial \zeta} - a_{55} \left[\frac{\partial \sigma_{xxj}^{(s-1)}}{\partial \xi} + \frac{\partial \sigma_{xyj}^{(s-1)}}{\partial \eta} \right]$$

$$R_{Vj}^{(s)} = -\frac{\partial^2 W_j^{(s-1)}}{\partial \eta \partial \zeta} - a_{44} \left[\frac{\partial \sigma_{xyj}^{(s-1)}}{\partial \xi} + \frac{\partial \sigma_{yyj}^{(s-1)}}{\partial \eta} \right]$$

$$2^2 U_j^{(s-1)} = 2^2 V_j^{(s-1)} - 2 \sigma_{xyj}^{(s-1)} - 2 \sigma_{xyj}^{(s-1)}$$

$$R_{Wj}^{(s)} = A_{23} \frac{\partial^2 U_j^{(s-1)}}{\partial \xi \partial \zeta} + A_{13} \frac{\partial^2 V_j^{(s-1)}}{\partial \eta \partial \zeta} - \frac{\partial \sigma_{xzj}^{(s-1)}}{\partial \xi} - \frac{\partial \sigma_{yzj}^{(s-1)}}{\partial \eta} , \quad j = I, II$$

Очевидно, что $R_{U1}^{(0)} = R_{V1}^{(0)} = R_{W1}^{(0)} = 0$; (I, II). Из (2.6) следуют

$$U_{II}^{(s)} = -\frac{1}{2K\Omega_* a_{55}} \left(\frac{\partial^2 U_{I}^{(s)}}{\partial \zeta^2} + a_{55} (\Omega_*)^2 U_{I}^{(s)} - R_{UI}^{(s)} \right)$$

$$V_{II}^{(s)} = -\frac{1}{2K\Omega_* a_{44}} \left(\frac{\partial^2 V_{I}^{(s)}}{\partial \zeta^2} + a_{44} (\Omega_*)^2 V_{I}^{(s)} - R_{VI}^{(s)} \right)$$

$$W_{II}^{(s)} = -\frac{1}{2K\Omega_*} \left(A_{11} \frac{\partial^2 W_{I}^{(s)}}{\partial \zeta^2} + (\Omega_*)^2 W_{I}^{(s)} - R_{WI}^{(s)} \right)$$
(2.8)

а также уравнения

$$\frac{\partial^{4} U_{I}^{(s)}}{\partial \zeta^{4}} + 2a_{55}(\Omega_{*})^{2} \frac{\partial^{2} U_{I}^{(s)}}{\partial \zeta^{2}} + a_{55}^{2} \left((\Omega_{*})^{2} + 4K^{2}\right) (\Omega_{*})^{2} U_{I}^{(s)} =
= \frac{\partial^{2} R_{UI}^{(s)}}{\partial \zeta^{2}} + a_{55}(\Omega_{*})^{2} R_{UI}^{(s)} - 2Ka_{55}\Omega_{*}R_{UII}^{(s)}
\frac{\partial^{4} V_{I}^{(s)}}{\partial \zeta^{4}} + 2a_{44}(\Omega_{*})^{2} \frac{\partial^{2} V_{I}^{(s)}}{\partial \zeta^{2}} + a_{44}^{2} \left((\Omega_{*})^{2} + 4K^{2}\right) (\Omega_{*})^{2} V_{I}^{(s)} =
= \frac{\partial^{2} R_{VI}^{(s)}}{\partial \zeta^{2}} + a_{44}(\Omega_{*})^{2} R_{VI}^{(s)} - 2Ka_{44}\Omega_{*}R_{VII}^{(s)}
\frac{\partial^{4} W_{I}^{(s)}}{\partial \zeta^{2}} + a_{44}(\Omega_{*})^{2} R_{VI}^{(s)} - 2Ka_{44}\Omega_{*}R_{VII}^{(s)}
\frac{\partial^{4} W_{I}^{(s)}}{\partial \zeta^{4}} + 2\frac{(\Omega_{*})^{2}}{A_{11}} \frac{\partial^{2} W_{I}^{(s)}}{\partial \zeta^{2}} + \frac{1}{A_{11}^{2}} \left((\Omega_{*})^{2} + 4K^{2}\right) (\Omega_{*})^{2} W_{I}^{(s)} =
= \frac{1}{A_{11}} \frac{\partial^{2} R_{WI}^{(s)}}{\partial \zeta^{2}} + \frac{(\Omega_{*})^{2}}{A_{11}^{2}} R_{WI}^{(s)} - \frac{2K\Omega_{*}}{A_{11}^{2}} R_{WII}^{(s)}$$
(2.9)

Решениями уравнений (2.9) являются:

$$U_{\rm I}^{(s)} = U_{\rm Io}^{(s)}\left(\xi,\eta,\zeta\right) + U_{\rm Iu}^{(s)}\left(\xi,\eta,\zeta\right) \quad \left(U,V,W\right) \tag{2.10}$$

где величины с индексом "o"– решения однородных, а с индексом " 4" – частные решения неоднородных уравнений (2.9).

Решениями однородных уравнений являются: $U_{Io}^{(s)}\left(\xi,\eta,\zeta\right) = C_{U\ 1}^{(s)}\left(\xi,\eta\right)\varphi_{1U} + C_{U\ 2}^{(s)}\left(\xi,\eta\right)\varphi_{2U} + C_{U\ 3}^{(s)}\left(\xi,\eta\right)\varphi_{3U} + C_{U\ 4}^{(s)}\left(\xi,\eta\right)\varphi_{4U}$ $V_{Io}^{(s)}\left(\xi,\eta,\zeta\right) = C_{V\ 1}^{(s)}\left(\xi,\eta\right)\varphi_{1V} + C_{V\ 2}^{(s)}\left(\xi,\eta\right)\varphi_{2V} + C_{V\ 3}^{(s)}\left(\xi,\eta\right)\varphi_{3V} + C_{V\ 4}^{(s)}\left(\xi,\eta\right)\varphi_{4V}$ $W_{Io}^{(s)}\left(\xi,\eta,\zeta\right) = C_{W\ 1}^{(s)}\left(\xi,\eta\right)\varphi_{1W} + C_{W\ 2}^{(s)}\left(\xi,\eta\right)\varphi_{2W} + C_{W\ 3}^{(s)}\left(\xi,\eta\right)\varphi_{3W} + C_{W\ 4}^{(s)}\left(\xi,\eta\right)\varphi_{4W}$ rge

$$\begin{aligned} \varphi_{1U} &= \operatorname{ch} \gamma_{U} \zeta \cos \delta_{U} \zeta , \quad \varphi_{2U} = \operatorname{sh} \gamma_{U} \zeta \sin \delta_{U} \zeta \\ \varphi_{3U} &= \operatorname{ch} \gamma_{U} \zeta \sin \delta_{U} \zeta , \quad \varphi_{4U} = \operatorname{sh} \gamma_{U} \zeta \cos \delta_{U} \zeta \end{aligned}$$

$$\gamma_{U} &= \sqrt{\frac{a_{55} \Omega_{*}}{2} \left(\sqrt{(\Omega_{*})^{2} + 4K^{2}} - \Omega_{*} \right)} , \quad \delta_{U} = \sqrt{\frac{a_{55} \Omega_{*}}{2} \left(\sqrt{(\Omega_{*})^{2} + 4K^{2}} + \Omega_{*} \right)}$$

$$\left(U, V, W, a_{55}, a_{44}, 1/A_{11} \right) \end{aligned}$$

$$(2.12)$$

Одновременно имеем

$$U_{\rm II}^{(s)} = U_{\rm IIo}^{(s)} \left(\xi, \eta, \zeta\right) + U_{\rm II4}^{(s)} \left(\xi, \eta, \zeta\right) \qquad (U, V, W)$$
(2.13)

$$U_{IIo}^{(s)}(\xi,\eta,\zeta) = -C_{U1}^{(s)}(\xi,\eta)\phi_{2U} + C_{U2}^{(s)}(\xi,\eta)\phi_{IU} + C_{U3}^{(s)}(\xi,\eta)\phi_{4U} - C_{U4}^{(s)}(\xi,\eta)\phi_{3U} \quad (2.14)$$

$$\sigma_{xzI}^{(s)} = \frac{1}{a_{55}} \Big[C_{U1}^{(s)} \left(\gamma_U \phi_{4U} - \delta_U \phi_{3U} \right) + C_{U2}^{(s)} \left(\gamma_U \phi_{3U} + \delta_U \phi_{4U} \right) +$$

$$(2.15)$$

$$+C_{U3}^{(s)} (\gamma_{U} \varphi_{2U} + \delta_{U} \varphi_{1U}) + C_{U4}^{(s)} (\gamma_{U} \varphi_{1U} - \delta_{U} \varphi_{2U})] + \delta_{xz14}^{(s)} (\xi, \eta, \zeta)$$

$$\sigma_{xz11}^{(s)} = \frac{1}{a_{55}} \Big[-C_{U1}^{(s)} (\gamma_{U} \varphi_{3U} + \delta_{U} \varphi_{4U}) + C_{U2}^{(s)} (\gamma_{U} \varphi_{4U} - \delta_{U} \varphi_{3U}) + C_{U3}^{(s)} (\gamma_{U} \varphi_{1U} - \delta_{U} \varphi_{2U}) - C_{U4}^{(s)} (\gamma_{U} \varphi_{2U} + \delta_{U} \varphi_{1U}) \Big] + \sigma_{xz14}^{(s)} (\xi, \eta, \zeta)$$

$$(x, y, z, U, V, W, a_{55}, a_{44}, 1/A_{11})$$

где

$$U_{II_{4}}^{(s)}(\xi,\eta,\zeta) = -\frac{1}{2K\Omega_{*}a_{55}} \left(\frac{\partial^{2}U_{I_{4}}^{(s)}}{\partial\zeta^{2}} + a_{55}(\Omega_{*})^{2}U_{I_{4}}^{(s)} - R_{UI}^{(s)} \right)$$
(2.16)
$$\sigma_{xzI_{4}}^{(s)} = \frac{1}{a_{55}} \left[\frac{\partial U_{I_{4}}^{(s)}}{\partial\zeta} + \frac{\partial W_{I}^{(s-1)}}{\partial\xi} \right], (I, II)$$

3. Удовлетворив граничным условиям (1.1) и (1.2), получим три алгебраические системы относительно неизвестных функций $C_{Ui}^{(s)}(\xi,\eta), C_{Vi}^{(s)}(\xi,\eta), C_{Wi}^{(s)}(\xi,\eta), i = 1, 2, 3, 4:$ $C_{U1}^{(s)}\varphi_{U}(\zeta = -1) + C_{U2}^{(s)}\varphi_{2U}(\zeta = -1) + C_{U3}^{(s)}\varphi_{3U}(\zeta = -1) + C_{U4}^{(s)}\varphi_{4U}(\zeta = -1) = -U_{I4}^{(s)}(\zeta = -1)$ $-C_{U1}^{(s)}\varphi_{2U}(\zeta = -1) + C_{U2}^{(s)}\varphi_{U}(\zeta = -1) + C_{U3}^{(s)}\varphi_{4U}(\zeta = -1) - C_{U4}^{(s)}\varphi_{3U}(\zeta = -1) = -U_{II4}^{(s)}(\zeta = -1)$

$$\begin{bmatrix} C_{U1}^{(s)} \left(\gamma_U \varphi_{4U} - \delta_U \varphi_{3U} \right) + C_{U2}^{(s)} \left(\gamma_U \varphi_{3U} + \delta_U \varphi_{4U} \right) + C_{U3}^{(s)} \left(\gamma_U \varphi_{2U} + \delta_U \varphi_{1U} \right) + \\ + C_{U4}^{(s)} \left(\gamma_U \varphi_{1U} - \delta_U \varphi_{2U} \right) \end{bmatrix} (\zeta = 1) = a_{55} \begin{bmatrix} \sigma_{xz1}^{+(s)} - \sigma_{xz4I}^{(s)} \left(\zeta = 1 \right) \end{bmatrix}$$

$$\begin{bmatrix} -C_{U1}^{(s)} \left(\gamma_U \varphi_{3U} + \delta_U \varphi_{4U} \right) + C_{U2}^{(s)} \left(\gamma_U \varphi_{4U} - \delta_U \varphi_{3U} \right) + C_{U3}^{(s)} \left(\gamma_U \varphi_{1U} - \delta_U \varphi_{2U} \right) - \\ - C_{U4}^{(s)} \left(\gamma_U \varphi_{2U} + \delta_U \varphi_{1U} \right) \end{bmatrix} (\zeta = 1) = -a_{55} \sigma_{xz4I}^{(s)} \left(\zeta = 1 \right) \\ \left(U, V, W; x, y, z \right)$$

$$(3.1)$$

где

$$\sigma_{xzI}^{+(0)} = \varepsilon \tau_{xz}^{+} , \ \sigma_{yzI}^{+(0)} = \varepsilon \tau_{yz}^{+} , \ \sigma_{zzI}^{+(0)} = \varepsilon \tau_{zz}^{+} \sigma_{xzI}^{+(s)} = 0, \ \sigma_{yzI}^{+(s)} = 0 , \ \sigma_{zzI}^{+(s)} = 0 , \ s > 0$$
(3.2)

Решив систему (3.1) и подставив значения $C_{Ui}^{(s)}(\xi,\eta)$, $C_{Vi}^{(s)}(\xi,\eta)$, $C_{Wi}^{(s)}(\xi,\eta)$, $C_{Wi}^{(s)}(\xi,\eta)$ в (2.13), получим:

$$U_{1}^{(s)} = \frac{1}{\Delta_{U}} \Big[f_{U1}^{(s)} \varphi_{1U} + f_{U2}^{(s)} \varphi_{2U} + f_{U3}^{(s)} \varphi_{3U} + f_{U4}^{(s)} \varphi_{4U} \Big] + U_{14}^{(k,s)}$$
$$U_{11}^{(s)} = \frac{1}{\Delta_{U}} \Big[f_{U2}^{(s)} \varphi_{1U} - f_{U1}^{(s)} \varphi_{2U} - f_{U4}^{(s)} \varphi_{3U} + f_{U3}^{(s)} \varphi_{4U} \Big] + U_{114}^{(k,s)} (3.3)$$
$$(U,V,W)$$

(U, V, W)где $f_{Ui}^{(s)}(\xi, \eta), i = 1, 2, 3, 4$ получаются из определителя Δ_U системы (3.1) заменой соответственных столбцов столбцом из свободных членов.

$$\Delta_U = -\frac{1}{2} \left(\gamma_U^2 + \delta_U^2 \right) \left(\operatorname{ch}[4\gamma_U] + \cos[4\delta_U] \right), \left(U, V, W \right)$$
(3.4)

Решения (3.3) будут конечными, если

$$\Delta_U \neq 0, \ \Delta_V \neq 0, \ \Delta_W \neq 0 \tag{3.5}$$

Условия (3.5) будут выполнены, если Ω не является частотой собственных колебаний [4], в противном случае будет возникать резонанс. Можно определить все компоненты тензора напряжений и вектора перемещения с заранее заданной асимптотической точностью.

4. Рассмотрим частный случай, пусть:

$$\tau_{xz}^+(\xi,\eta) = \text{const}, \tau_{yz}^+(\xi,\eta) = \text{const}, \tau_{zz}^+(\xi,\eta) = \text{const}$$
(4.1)

При *s*= 0 будем иметь:

$$\begin{split} U_{\mathrm{I}}^{(0)} &= \frac{1}{\Delta_{U}} \Big[f_{U1}^{(0)} \varphi_{1U} + f_{U2}^{(0)} \varphi_{2U} + f_{U3}^{(0)} \varphi_{3U} + f_{U4}^{(0)} \varphi_{4U} \Big] \\ U_{\mathrm{II}}^{(0)} &= \frac{1}{\Delta_{U}} \Big[f_{U2}^{(0)} \varphi_{1U} - f_{U1}^{(0)} \varphi_{2U} - f_{U4}^{(0)} \varphi_{3U} + f_{U3}^{(0)} \varphi_{4U} \Big] \\ \sigma_{xz\mathrm{I}}^{(0)} &= \frac{1}{a_{55} \Delta_{U}} \Big[f_{U1}^{(0)} \left(\gamma_{U} \varphi_{4U} - \delta_{U} \varphi_{3U} \right) + f_{U2}^{(0)} \left(\gamma_{U} \varphi_{3U} + \delta_{U} \varphi_{4U} \right) + \\ &+ f_{U3}^{(0)} \left(\gamma_{U} \varphi_{2U} + \delta_{U} \varphi_{1U} \right) + f_{U4}^{(0)} \left(\gamma_{U} \varphi_{1U} - \delta_{U} \varphi_{2U} \right) \Big] \end{split}$$

35

$$\begin{split} \sigma_{xz11}^{(0)} &= \frac{1}{a_{55}\Delta_{U}} \left[-f_{U1}^{(0)} \left(\gamma_{U}\phi_{3U} + \delta_{U}\phi_{4U} \right) + f_{U2}^{(0)} \left(\gamma_{U}\phi_{4U} - \delta_{U}\phi_{3U} \right) + \right. \\ &+ f_{U3}^{(0)} \left(\gamma_{U}\phi_{1U} - \delta_{U}\phi_{2U} \right) - f_{U4}^{(0)} \left(\gamma_{U}\phi_{2U} + \delta_{U}\phi_{1U} \right) \right] \\ &\left. \left(U, V, W; \sigma_{xz}^{(0)}, \sigma_{yz}^{(0)}, \sigma_{zz}^{(0)}; a_{55}, a_{44}, 1/A_{11} \right) \right. \end{split}$$
(4.2)
$$\sigma_{xx1}^{(0)} &= -\frac{A_{23}}{\Delta_{W}} \left[f_{W1}^{(0)} \left(\gamma_{W}\phi_{4W} - \delta_{W}\phi_{3W} \right) + f_{W2}^{(0)} \left(\gamma_{W}\phi_{3W} + \delta_{W}\phi_{4W} \right) + \right. \\ &+ f_{W3}^{(0)} \left(\gamma_{W}\phi_{2W} + \delta_{W}\phi_{1W} \right) + f_{W4}^{(0)} \left(\gamma_{W}\phi_{1W} - \delta_{W}\phi_{2W} \right) \right] \\ \sigma_{xx11}^{(0)} &= -\frac{A_{23}}{\Delta_{W}} \left[f_{W1}^{(0)} \left(\gamma_{W}\phi_{3W} - \delta_{W}\phi_{4W} \right) + f_{W2}^{(0)} \left(\gamma_{W}\phi_{4W} - \delta_{W}\phi_{3W} \right) + \right. \\ &+ f_{W3}^{(0)} \left(\gamma_{W}\phi_{1W} + \delta_{W}\phi_{2W} \right) - f_{W4}^{(0)} \left(\gamma_{W}\phi_{2W} - \delta_{W}\phi_{1W} \right) \right] \\ \sigma_{yy1}^{(0)} &= -\frac{A_{13}}{\Delta_{W}} \left[f_{W1}^{(0)} \left(\gamma_{W}\phi_{4W} - \delta_{W}\phi_{3W} \right) + f_{W2}^{(0)} \left(\gamma_{W}\phi_{3W} + \delta_{W}\phi_{4W} \right) + \right. \\ &+ f_{W3}^{(0)} \left(\gamma_{W}\phi_{2W} + \delta_{W}\phi_{1W} \right) + f_{W4}^{(0)} \left(\gamma_{W}\phi_{1W} - \delta_{W}\phi_{2W} \right) \right] \\ \sigma_{yy11}^{(0)} &= -\frac{A_{13}}{\Delta_{W}} \left[-f_{W1}^{(0)} \left(\gamma_{W}\phi_{3W} + \delta_{W}\phi_{4W} \right) + f_{W2}^{(0)} \left(\gamma_{W}\phi_{4W} - \delta_{W}\phi_{3W} \right) + \\ &+ f_{W3}^{(0)} \left(\gamma_{W}\phi_{1W} - \delta_{W}\phi_{2W} \right) - f_{W4}^{(0)} \left(\gamma_{W}\phi_{2W} + \delta_{W}\phi_{2W} \right) \right] \\ \sigma_{xy11}^{(0)} &= -\frac{A_{13}}{\Delta_{W}} \left[-f_{W1}^{(0)} \left(\gamma_{W}\phi_{3W} + \delta_{W}\phi_{4W} \right) + f_{W2}^{(0)} \left(\gamma_{W}\phi_{4W} - \delta_{W}\phi_{3W} \right) + \\ &+ f_{W3}^{(0)} \left(\gamma_{W}\phi_{1W} - \delta_{W}\phi_{2W} \right) - f_{W4}^{(0)} \left(\gamma_{W}\phi_{2W} + \delta_{W}\phi_{1W} \right) \right] \\ \sigma_{xy1}^{(0)} &= \sigma_{xy11}^{(0)} = 0 \end{aligned}$$

где

$$\begin{split} f_{U1}^{(0)} &= \frac{a_{55}\sigma_{xz1}^{+(0)}}{2} \Big(\delta_U \operatorname{ch} 3\gamma_U \sin \delta_U - \delta_U \operatorname{ch} \gamma_U \sin 3\delta_U + \gamma_U \operatorname{sh} \gamma_U \cos 3\delta_U - \gamma_U \operatorname{sh} 3\gamma_U \cos \delta_U \Big) \\ f_{U2}^{(0)} &= \frac{a_{55}\sigma_{xz1}^{+(0)}}{2} \Big(-\gamma_U \operatorname{ch} 3\gamma_U \sin \delta_U + \gamma_U \operatorname{ch} \gamma_U \sin 3\delta_U + \delta_U \operatorname{sh} \gamma_U \cos 3\delta_U - \delta_U \operatorname{sh} 3\gamma_U \cos \delta_U \Big) \\ f_{U3}^{(0)} &= -\frac{a_{55}\sigma_{xz1}^{+(0)}}{2} \Big(\delta_U \operatorname{ch} \gamma_U \cos 3\delta_U + \delta_U \operatorname{ch} 3\gamma_U \cos \delta_U + \gamma_U \operatorname{sh} \gamma_U \sin 3\delta_U + \gamma_U \operatorname{sh} 3\gamma_U \sin \delta_U \Big) \\ f_{U4}^{(0)} &= \frac{a_{55}\sigma_{xz1}^{+(0)}}{2} \Big(-\gamma_U \operatorname{ch} \gamma_U \cos 3\delta_U - \gamma_U \operatorname{ch} 3\gamma_U \cos \delta_U + \delta_U \operatorname{sh} \gamma_U \sin 3\delta_U + \delta_U \operatorname{sh} 3\gamma_U \sin \delta_U \Big) \\ \Big(U, V, W; \sigma_{xz1}^{+(0)}, \sigma_{yz1}^{+(0)}, \sigma_{zz1}^{+(0)}; a_{55}, a_{44}, 1/A_{11} \Big) \\ &= \varepsilon \tau_{xz}^{+}, \ \sigma_{yz1}^{+(0)} = \varepsilon \tau_{yz}^{+}, \ \sigma_{zz1}^{+(0)} = \varepsilon \tau_{zz}^{+} \end{split}$$

 $\sigma_{xzI}^{+,zy} = \varepsilon \tau_{xz}^{+}$, $\sigma_{yzI}^{+,yy}$ Несложно убедиться, что при s>0

$$U_{I}^{(s)} = V_{I}^{(s)} = W_{I}^{(s)} = 0$$

$$\sigma_{\alpha\beta I}^{(s)} = 0, \ \alpha, \beta = x, y, z; \ (I,II)$$
(4.4)

поэтому приближению s=0 соответствует точное решение $u = l \left(U_{\text{I}}^{(0)} \sin \Omega t + U_{\text{II}}^{(0)} \cos \Omega t \right)$

$$\sigma_{\alpha\beta} = \varepsilon^{-1} \left(\sigma_{\alpha\beta I}^{(0)} \sin \Omega t + \sigma_{\alpha\beta II}^{(0)} \cos \Omega t \right)$$

$$(u, v, w; U, V, W), \ \alpha, \beta = x, y, z;$$

$$(4.5)$$

В качестве иллюстрации приведем некоторые численные и графические результаты. Рассмотрим пластинку, состоящую из резины (E=6.96Ч10⁵ Па, G=2.4Ч10⁵ Па, ρ =1100 кг/м³), стеклопластика АСТТ и СВАМ, характеристики упругости которых приведены в [2] или бетона (E=3.0262Ч10¹⁰ Па, G=1.0435Ч10¹⁰ Па, ρ =2300 кг/м³) с толщиной h=1м. Графики амплитуд колебаний по толщине пластинки соответственно приведены на фиг. 2-5.

Фиг.4.

Приведем графики напряжений при разных значениях времени (t=1,3,5,7сек.), когда пластинка состоит из резины. Этому будут соответствовать фиг.6-9.

Из приведённых графиков видно, что амплитуды колебаний уменьшаются при удалении от верхней грани и в итоге затухают, достигая нижней грани пластинки. Когда пластинка состоит из более мягкого материала (например, резины), амплитуды колебаний по сравнению с колебаниями пластины из более жесткого материала увеличиваются. Из графиков видно также, что напряжения затухают с течением времени. Наличие вязкого сопротивления приводит к уменьшению амплитуд колебаний по сравнению с амплитудами без учета сопротивления.

ЛИТЕРАТУРА

- 1. Гольденвейзер А. Л. Теория упругих тонких оболочек. М.: Наука, 1976. 510с.
- Агаловян Л. А. Асимптотическая теория анизотропных пластин и оболочек. М.: Наука, 1997. 415с.
- 3. Агаловян Л. А. Асимптотика решений классических и неклассических краевых задач статики и динамики тонких тел. // Международн. научн. журнал Прикл. механика. 2002. Т. 38. №7. С. 3-24.
- Агаловян Л. А. Об одном классе задач о вынужденных колебаниях анизотропных пластин. // Проблемы механики тонких деформируемых тел. Ереван. Изд-во "Гитутюн" НАН РА, 2002. С. 9-19.
- Агаловян М.Л. О решении пограничного слоя в задаче на собственные колебания полосы. // В сб. конф.: Современные вопросы оптимального управления, прочности и устойчивости систем. Ереван. Изд-во ЕГУ. 1997. С.132-135.
- 6. Агаловян Л. А., Оганесян Р. Ж. Собственные колебания ортотропных пластин при смешанных краевых условиях на лицевых поверхностях. // Изв. НАН РА. Механика. 2003. Т 56. №4. С. 18-28.
- Оганесян Р. Ж. Собственные колебания двухслойной ортотропной пластинки при смешанных краевых условиях. // Изв. НАН РА. Механика. 2005. Т 58. №4. С.33-44.
- Агаловян Л. А., Оганесян Р. Ж. Асимптотика собственных колебаний трёхслойной ортотропной пластинки при смешанных краевых условиях. // V Международная конференция "Проблемы динамики взаимодействия деформируемых сред." Ереван. Изд-во "Гитутюн" НАН РА, 2005. С. 14-22.
- 9. Агаловян Л. А., Погосян А. М. Вынужденные колебания двухслойной ортотропной пластинки при кулоновом трении между слоями. // Изв. НАН РА. Механика. 2005. Т 58. №3. С. 36-47.

Институт механики НАН Армении Поступила в редакцию 16.02.2006