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Abstract

An antiplane stationary dynamic problem of electroelasticity for a piezoceramic layer weakened by a tunnel
cavity with a system of active surface electrodes is studied. Using Green's function for a homogeneous
piezoceramic layer integral representations of the solutions automatically satisfying the boundary conditions on its
bases and also the conditions of radiation at infinity are constructed. Allowing for these representations the
boundary problem of electroelasticity is reduced to a system of singular integrodifferential equations of the second
kind with resolvent kernels. Results of parametric investigations characterizing the behaviour of the components of
the electroelastic field on the cavity surface in the area of a piecewise-homogeneous layer are given.

An antiplane stationary dynamic problem of electroelasticity for a piezoceramic layer weakened by a tunnel
cavity with a system of active surface electrodes is studied. Using Green's function for a homogeneous
piezoceramic layer integral representations of the solutions automatically satisfying the boundary conditions on its
bases and aso the conditions of radiation at infinity are constructed. Allowing for these representations the
boundary problem of electroelasticity is reduced to a system of singular integrodifferential equations of the second
kind with resolvent kernels. Results of parametric investigations characterizing the behaviour of the components of
the electroelastic field on the cavity surface in the area of a piecewise-homogeneous layer are given.

1. Introduction

Many actual scientific and technological problems of modern engineering are
connected with the investigations of the process of propagation of waves in piezoelectrics
and with the definition of dynamic strength in the vicinity of inhomogeneities of various
types. To solve these problems it is necessary to use modern mathematical means and, in
particular, methods and approaches of the dynamic theory of elasticity. Development of
these methods is reflected in monographs [1-5] which appeared during the last decades.

In piezoelectric media with inhomogeneities the interchange of electric and
mechanical fields may bring to electric, mechanical or mixed electromechanical fracture.
The edges of the electrodes are the sources of concentration of the components of the
electrodlastic field and, hence in these areas there may emerge microcracks or a break-
down (Bardzokas et a. [6]). Some aspects of the mechanics of fracture of piezoceramic
bodies are considered in [7,8].
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In the given article an algorithm for investigation of harmonic oscillations of a layer
with a partially electrodized tunnel cavity during the electric oscillation of a conjugated
electrodlagtic field is constructed. Numerical examples are given.

2. Statement of the problem

In Cartesan coordinates Ox;x,x; consider a piezoceramic layer
(0<x, <a,—0<x, <w,—00<x; <o) weakened by a tunnel dong axis x,

opening, the cross-section of which is limited by smooth contour C' (Fig. 1a). Assume that
the bases of the layer are free of forces and bounded with vacuum (the direction of

polarization of the ceramicsis parallel to axis x;). On the surface of the opening free from

mechanical stresses 2n infinite in the direction of axis x, thin electrodes with prescribed

differences of the electric potential are located, and the non-electroded areas of the opening
are bounded with vacuum (air). The boundaries of % -th electrode are determined by

quantities B,, , and 3,, (k =1 2n), and the electric potential on it is given by quantity

o, = Re(@Ze”"’”) (¢ is the time, ® is the circular frequency). Location of the

electrodes and configuration of the cavity cannot be fully arbitrary; the demanded
regquirements will be given below.

X,

Fig. 1a
In the given conditions in a piecewise-homogeneous layer an electroelastic field
corresponding to the state of antiplane deformation occurs. The full system of differential
equations in a quasistatic approximation includes the following relations [5] eguations of
movement
2
i, 6 -2 1)
ot Ox.

1

0,013+ 0,0, =

45



constitutive equations of the medium

Gm3 = ciamMB - elSEm ! Dm = el5amu3 + aflEm (m = 1’ 2) (22)
and equations of electrostatics
divD=0, E=-grad¢ (2.3

In (2.1)-(2.3) ©,, are the components of the stress tensor, u, is the component of the
displacement vector in the direction of axis x,; E and D are the vectors of strength and

induction of the electric field; ¢ is the electrical potential; c;,, e, and >;; is the shear

modulus measured at the constant value of the electric field; piezoelectric constant and
dielectric permittivity measured at fixed deformations, respectively; p is the mass density

of the material.
The system of equations (2.1)-(2.3) must be reduced to differential equations referring

to displacements u, and electric potential ¢ :
e Viu,— 3% V=0 (2.4)

From (2.4) we have the equivalent set of equations
2
0°u,
ot’

Viu, —c? =0,V?F =0

E 2
e Caa (1+ le) e
Ob=—2u,+F, c=,|———=, ky=—7—=—
& E ¢
1 p NI
where ¢ isthe velocity of a shear wave in a piezoceramic medium, k. isthe factor of an

electro-mechanical coupling [4].
Mechanica and electric quantities allowing for (2.2), (2.3) and (2.5 may be

expressed through functions u; and F' by formulas

(2.5)

G5 —IC,, = 2%[@’1‘; (1+ kfs)u3 + elSF} : (2.6)

oF 0 e
D, —iD, =-25;, —, E,—iE, =—2—| F+—=u, |, z=x,+ix,
0z 0z €
Assuming u, = Re(u3e_i“”), o= Re(CDe_i‘”’) and F = Re(e_i“’tF*) we will
write down equations (2.5) referring to the amplitude quantities as follows
. e . o
VU, +vy°U, =0, V’F =0, ®=2U,+F, y=— 2.7)
9 c
where v isthe wave number.

Mechanical and electric boundary conditions on the surface of the cavity allowing for
(2.5), (2.6) we represent in the following form

ai{ci (1+k125)u3 +815F} =0 on C
n

O=F+22u=¢"(G1), CeC, 28)

€
11

46



D =—3§12—::0 on C\C,

n

Here C¢ is the part of contour C corresponding to the electrodized surface of the cavity;

operator 0/dn designates the derivative over normal to contour C .

Mechanical and electric boundary conditions on the bases of the layer may formally
be represented as

06;=0, D,=0 (x,=0,a) (29

Thus, the boundary problem of electroelasticity is reduced to the determinations of

functions U, and F" from differential equations of Helmholtz and Laplace (2.7),
boundary conditions (2.8), (2.9) and conditions at infinity.

3. Green'sfunction for a piezoceramic layer

To solve the stated problem it is expedient to have integral representations of the
solution automatically satisfying the boundary conditions (2.9), and the conditions of
rediation at infinity. To this purpose let us construct a Green's function for a homogeneous
piezoceramic layer.

Boundary problems (2.7), (2.9) allowing for relations (2.6) may be written down as
follows

VU, +y?U, =0; 0,U,=0 (x,=0,a) (3.1)
VF=0, F =0 (x,=0,a) (32
We find Green' s function corresponding to problems (3.1), (3.2) in the form of [16]:

G(C.z)= ibv (x, —&,)cosa, &, cosa, x,

v=0
Zd —&,)cosa, & cosa, x;

VG+y2G 8(xl €1 X, — &2) =7W

a
V’E = 8( -&,x, - §2)=5(x1 ) ( 2)
z=x +ix,, =& +iE, (33)
where 5(x) IS 2a periodical Dirac O -function.
Applying the representation

8(x, —&) ——+ ZCOSOL g, cosa, x,; (34)
v=1
dividing the variables in equatlons (3.1), (3.2) and then using the procedure of
determination of the fundamental solution of a common differential equation we find that
1 - 1
bV:_ ekv(z‘gz(’ b0= ‘
ah Ziay

A%

eiY‘Xzfiz‘
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- JoZ =7 v <a,
d=——"—e "™, d,=0, A, =
aa, —i\y* —a’,y>a,

The series for functions E(C,z) in (3.3) alowing for (3.5) may be easily summed

(v=12..) (35

up by using equation [10]
w _—m]
2= cosmy :%—%ln[Z(Chx—COSy)] (3.6)
and has the following form
E(Cz)= b =&l +Linlasin n(&-z ) sin n(c+2)
2a 2n 2a 2a ‘
Z =X, —ix, (3.7)

To separate the main part of function G(g“ ,z) we will write down Green's

function G, of the prime operator in Helmholtz equation (3.1). Summing up the
corresponding series and using (3.6) we obtain

:__Za (2,8, ) e _ g +Lin 4Sinn(€_z)sinn(g+z)|
o 2a 2n 2a 2a |
am ('xli 51) — Cosam§l Cosam (38)
Dueto (3.3), (3.5), (3.8) we represent function G(é’,z) initsfina form
G(C.z)=G,+G,, G, = Tiyemzaz _%;C’” (x, — &, ) cosaL, &, cosaL, x, (3.9)
1 el _ L el
—G)=—e " ——e "7 =12..).
¢, (x,-&,) . e o e (m=12,..)

Thus, function E(C,z) and G(&,z) determined by formulas (3.7)-(3.9) are

Green's functions of boundary problem (3.1), (3.2) for a piezoceramic layer. The
conditions of radiation in problem (3.1) and damping in problem (3.2) are satisfied. After
separation of the main singularity in (3.3) the common term of series in (3.9) decays at

point z = as m™>.
4. Singular Integrodifferential Equations of a Boundary Value Problem

Applying the above constructed Green's functions we will write down the integral
representations of the solutions in the following form

s (x,x,) Ip G (&.z)ds, F*(x,x,) jf )ds eC@4l)

Here ds isthe element of the arc length of contour C . Repreﬁentatlons (4.1) satisfy
differential equations (2.7), boundary conditions (2.9) on the bases of the layer and the
conditions of radiation at infinity.



Allowing for expressions (3.7) the representation for function F~ (xl,xz) is
transformed into the form

xl’xz J-f C Z)dS

siny 1 » n(C—z) n(C+72)
K(¢, z)_z—asgn( §2)+4—aRe{e {ctg oy +Ctg » (4.2)

Here v = w(é’ ) is the angle between the normal to contour C and axis Ox;, at point

SeC.
Expanding into simple fractions [10]

0

Ctgnx——+—z >

m=1X - m
and using Sohotsky-Plemmelj formulas [11] we find the expressions for the limiting values
of theintegrals with akernel of Hilbert typeat z — C, € C appearingin (4.2).

{If £)ctg— C)dC} = T2iaf (&) jf cthdc

- _ + (4.3
)l %5
jf C)ctg gy ==2iaf (Go)+[ () Ctg4dq.
Differentiating function F* (xl,xz) in(4.1) wefind
- If { ¥ sec® —R(C—z) — e sec? n(g +Z)}ds,
oz 1647 2a 2a
- - — (4.9)
oF __w T (S . (S
oz _16a2£f(c) e

At z = C, € C theintegralsin (4.4) become divergent. In order to regulate them it
is necessary to carry out the integration by parts allowing for the conditions of periodicity

of function f'(&).
Substituting the limiting values of functions (4.1) and their derivatives at
z = £, € C into boundary conditions (2.8) allowing for (4.3) we come to the system of

singular integrodifferential equatl ons of the second kind

Co J-p €)g CQO dS+J-f gz ng)ds_ 1(@0)

‘af (6o)+ [{P(6)€a(5.C0) + /(8) &a (6.Go)}ds = N, (Go), G €€, (45)
[£1(0)gs (G.Go)ds =0,¢, € C\C,

C
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wherekernels g, (m :12,...,5) and the right parts are determined by expressions

L TR e ) SR
2e,.
g5 (C’Co)— Ci(“klzs)gs(c,(;o)
e [t 1 |, ow(e-C)  #(6+G)
gs(QCo)—ag o +2nln 4sin " sin » ‘+

11

1 .. 1
+ elYlE,.zo &2l __Zcm (azo — E_)Z)COS(Xmal COSam&_,]_O}

2iay anr
(¢ ) n(C+zo)] JrSin\u

1 ; -G .
g4(C’Co)=ERe e Ctho+Ctg p g sgn(&zo‘&z)

i - T E+Co
gs(C’Co)=4_];l|m e dg¥+dg%

R=S—2(dy=iB,), P,=-S—(4y+iB,)

S = _].-Sign(az & )(1— oM tal )

2ia
4y = Zﬂlkak cosa, &SN &y, By = ZBOk Sign(azo - iz)COSOLkﬁl cosa, &,
k=1 k=1

B - 1 e—ak‘éz—izo‘ _ie—kk‘iz—im‘
mk

m m
o Ay

c, (&20 _ &2) — }\’ie—kmﬁzo—&ﬂ _ ie‘amﬁzo—iﬂ Nl (QO) =0, N2 (CO) =o* (CO)

m m

v=v(C), wo=v(5) GG eC

Here @° (CO) is the piecewise-constant function determining the value of the electric

potential on the system of electrodes. Kemels g,(C,C,). g5(&.&,) are singular

(Hilbert type), the remaining kernels may have not more than light singularities on the

assumption that contour C' is smooth.
It should be noted here that originating in the process of oscillation reflected from

boundary x; =0 and x; = a shear waves cause the appearance of additional charges on

active electrodes. Therefore the configuration of the cavity cross-section, its location and
also position of pair electrodes (supplied from a separate generator) should have a certain
symmetry in relation to the bases of the layer, i.e. the brought on the given electrodes
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charges by an absolute quantity were similar. If this requirement is not satisfied system
(4.5) becomes unsolvable.

Calculating functions p((;) and f (C) out of system (4.5) by formulas (2.6) using

integral representations (4.1) it is possible to determine all the components of the
eectrodlagtic field in the layer.
Let us find the expression for the amplitude of density distribution of electric charges

q, (B) on k -th electrode. Introducing the parameterization of contour C with the help of

equation § = £(B) (0< B < 21) and taking into account the fact that the surface of the
opening is in contact with vacuum we write

4, (B) =D\ (B) . Bys <B <Py (k=12n) (46)
Here D,ﬁ“ (B) is the amplitude of the normal component of the vector of electric

induction on k -th electrode.
Dueto (2.6), (4.1), (4.6) wefind

TC(EJ’_CO)
2a

qk(Bo)z—Z—%jf'(C)lm Vo ctgn(gz;co)ﬁLCtg ds,CoeCm 4.7)

where C¢k isapart of contour C' onwhich k& -th electrode is located.
Integrating expression (4.7) on the variable 3, in the limits from f,, , to B, , we

obtain the amplitude value of summed charge O, of k -th electrode referring to the unit of

its length. The current flowing through the given electrode and equal to the conduction
current in the generator circuit may be determined by the formula

Bax
1,(1) = ReJioe™ | q, (Bo)s'(Bo)dBoy s'(ﬁo):j%. 48)
Bara 0

5. A direct piezoelectric effect in alayer with a partially electrodized tunnel cavity

Let us use the above described approach to the situation when a piezoceramic layer with a
tunnel opening is used as a generator of electric energy. In this case consider as mechanical
excitation two plane monochromic shear waves propagating in positive and negative

directions of axis x, and accordingly having the following values of displacement
amplitude u, and electric potential ¢

. . . e .
Uél) — Tleﬂ}/xz ’ U§2) — Tzet;/xz’ q)(/) — %Uéj) (] — l 2) (5.1)

11
For definiteness assume that the cross-section of the cavity has a vertical axis of
symmetry and on its surface two symmetrically located continuous electrodes (Fig. 1b) are
placed. To obtain the difference of electrical potentias 2V(t) in the process of the

medium deformation it is necessary to have electric charges of different signs on the
electrode platings which require the matching of displacement amplitudes in

monochromatic waves. Thereforein (5.1) it is necessary to assume 7, = —7, = 7 .

The generating energy is used in the outer electric circuit closing the electrodes and as
amodel may be represented by losses on an element with conductivity Y (Fig. 1b). In this
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case the unknowns are the values of the potential differences on electrodes 2V(t) and, the
current in circuit / (t) aswell. To obtain the electric boundary condition of the considered
problem it is necessary to apply Ohm’s law to the outer circuit

X2 l Shear wave

N

I Shear wave

Fig. 1b

1(t) =2YV(t). (5.2)
Here solution of the boundary problem consists of prescribing on the electrodes the
difference of electric potentials 2V(t) , i.e. invoking of boundary conditions (2.8) under
the action of harmonic waves. Thus, from equations (4.7), (4.8) and (5.2)we may determine
the unknown amplitude of potential V(t) on the electrode
it 3}, B

i
(@)= s B Bm=leAm(Bo)s (Bo)dBo (m=12) (53

n(c—z;o)+ctgn(5+co) N
2a

1
=2 ;

4av.

[ (E)Imee™ | ctg

Here function f,, (§) (m =1,2) isthe “standard” solution of system (4.5) according to
the right parts

. 2i )
Nl(l) (Co) = 4iyCcoSyE,, SNy, Nf) (Co) = ;?5 SINYEy, (5.4)
11
LB, <Bo <B .
Nl(z)(go)zo’ N£2)(C0):{_l53<go<é Co=Cpt+iypeC
4

where quantities 3, (k =1 4) prescribe the location of the electrodes.
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From formulas (5.3) we have two limiting cases for interrupted (Y = 0) and short

(Y - oo) circuit, respectively. In the first case the summed charge on the electrodes is

not changed in the process of the medium deformation and in the second case it is obvious
that V(1) =0.

6. Examples of calculations
As afirst example we consider a layer from ceramics PZT — 4 [12] with circular
radius R excited by two electrodes, the centers of which are located on its vertical

dianeter (4 =57/14, , =97/14, 4 =197/14, 4, =237/14). The sysem of

integrodifferential equations (4.5) was solved numerically by the scheme of the method of
quadratures (see Appendix A). The number of interpolation nodes on the cross-section
contour of the opening was assumed to be N =151,201 and 251 ; the further increase of

4.4

9

3.3

Ya

2.2

parameter N practically did not influence the accuracy of the obtained results.
Fig. 2.

For the considered case in Fig. 2 the change of quantity Q° = ‘Q/(ail <I)*)‘ which

characterizes the amplitude of summed electric charge 0 on the electrode with respect to

normalized wave number ya (2" isthe difference of the amplitude of electric potential
on the electrodes) is shown. Curve 1 corresponds to the opening displaced from the
symmetry axis of the layer at a distance of 0.1a ; curve 2 is to be constructed symmetrical

located opening (R/a = O.l) . It is seen that in the first case due to the inertial effect the
quantity Q" may exceed its static analogue by 16% . It should be noted now that by
continuing the wave number y across values o, = mn/a (m =1, 2,...) , an instability

of the solution due to the emergency of a new running wave moving the energy along the
waveguide from inhomogeneity to infinity is observed. This circumstance ensures a

53



characteristic “beskwise” form of the curves in the vicinity of points y=m and
y=2n(a=1).

If the centers of two active electrodes lie on the lateral diameter of symmetricaly
located openings (B, =—n/7,B, = n/7,B, =67/7,B, =8n/7) we have a quite

different picture. Here (Fig. 3) the phenomenon of resonance is observed. The values of
normalized wave numbers corresponding to the first and second natural frequencies of

oscillations are equal: vy a ~ 2.95 and Vi@~ 8.69. The antiresonance frequency,
when the current in the generator circuit is equal to zero, is ya)a ~ 3.1. In the process of

calculationswe assumed R/a =0.1.

K

Fig. 3.

The analysis of the results shows that more effective el ectroacoustic transformation of
energy in the considered frequency interval is observed when the area of the electroded
plating is smaller.

7. Concluding Remarks

The represented approach to the solution of the mixed stationary dynamic problem of
electrodasticity permits to investigate the influence of the inertia effect on the behaviour
of the components of an electric field in a layer with an opening of rather arbitrary
configuration for different number of electrodes and their disposition. For the numerical
solution of the system of integrodifferential equations (4.5) by the prescribed scheme of the
method of quadratures due to the fact that some of its kernels undergo fractures, and the
densities have root singularities on the edges of electrodes, in order to reach the satisfactory
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accuracy it is necessary to use a considerable number of the nodes subdivision of the cavity
contour section which yields an increase of the computation time. Nevertheless, the
considered seems to be universal, permitting to investigate various variants of electric
excitation of conjugated fields without any basic change of the algorithm.

From the given results it follows that in the condition of the inverse piezoelectric
effect the distribution of the displacement in a layer considerably depends on the frequency
of harmonic loading, the configuration of the transverse section of the tunnel cavity, and
the prescribed in the system of electric potentials electrodes. In case of an antiplane
deformation the stresses of a longitudinal shear on a surface free from mechanical loading
do not have singularities on the edges of the electrodes [6]. The numerical investigation
proceeding from the presently constructed algorithm, confirms it.

System (4.5) may be generalized to the case of several tunnel openings C,
(m=1n).if weasume p(C)={p,(¢).C<C,}, f(8)={£(6).6<C,}.
C= LnJCm . The configuration of the openings, their location and the position of the pair
surfaceiel ectrodes warrant its solvability.

Appendix A

Consider one of the methods of numerical implementation of the system (4.5). Let us build

the interpolating Lagrange polynomial for the sought-for functions p(¢) and f”(C) in

of the nodes BJ = 2n(j—1)/N (j :].,_N) . Such a polynomial has the form [13]

N N(B - o
Ly[{p..f}:B]== Z{ }sm (B’Z B)cosecB"ZB (A1)

p(Q)=r.(8).2) =p.(B;) ./ (&)= £.(B) .1 = £(B,)
It must be mentioned here that formulas (A1) are valid for odd numbers of the node

division of the contour C.
Integration of the formula (A1) for function f,' () using the equation [19]

5|n(2m+1 sin 2kx
—d =2
I sinx kzi‘ b

leads to the following expression for the function £, ([3)

M, [f*(B);B}%iﬁ’Qj (p)+ 4

28 inkp,
3 nk (B, ]t:) LI o
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The constant 4 must be determined from the conditions of the periodicity of the function
/. (B) which dueto (A2) has the following form

N
> =0 (A3)
j=1

Applying (A2) we aso find the quadrature formula

[ L (B)G(BB)dp =223 12320, 6(p,.8') + 4223 G(p, ) a9

m=1

where Q= (B,,). In the node collocations B} = n(2¢ -1)/N (E =l,_N) the

jm

polynomial (A1) has the following value at odd values of N

L [p* (B),B’;:I :in? (_1)/f+_1' COSGCB[ ;B/

N (6 - J,_N) . (A5)

For the singular integral in (4.5) the formula is analogous to the formula for
calculating regular integrals [14]

Tﬁ'(ﬁj ) 'm{e’% cth}dB _

) 2
[5(B,)-5o(B:)] (A9
2a

on & (e T
:sz;flolm eWO(Pt)Ctg
J=

Now, substituting the integralsin (4.5) by finite sums of the formulas (A.4), (A.6) and
using the equalities (A.2), (A.3) and (A.5) we arrive to a system 2N +1 of the algebraic

equations related to the values of the functions p(é’ ) and f ’(é’ ) at the nodes of the

interpolation ﬂj( j= ﬁ) and the constant A .

The work was carried out in the framework of an agreement on scientific cooperation
between the National Technical University of Athens and the Institute of Mechanics,
National Academy of Sciences (NAS) of Armenia.
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