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В данной статье строится алгоритм исследования гармонических колебаний слоя с частично 

электродированной туннельной полостью во время электрических колебаний сопряженного 
электроупругого поля. Приводится численный пример. 

 
Abstract 

An antiplane stationary dynamic problem of electroelasticity for a piezoceramic layer weakened by a tunnel 
cavity with a system of active surface electrodes is studied. Using Green’s function for a homogeneous 
piezoceramic layer integral representations of the solutions automatically satisfying the boundary conditions on its 
bases and also the conditions of radiation at infinity are constructed. Allowing for these representations the 
boundary problem of electroelasticity is reduced to a system of singular integrodifferential equations of the second 
kind with resolvent kernels. Results of parametric investigations characterizing the behaviour of the components of 
the electroelastic field on the cavity surface in the area of a piecewise-homogeneous layer are given. 

An antiplane stationary dynamic problem of electroelasticity for a piezoceramic layer weakened by a tunnel 
cavity with a system of active surface electrodes is studied. Using Green’s function for a homogeneous 
piezoceramic layer integral representations of the solutions automatically satisfying the boundary conditions on its 
bases and also the conditions of radiation at infinity are constructed. Allowing for these representations the 
boundary problem of electroelasticity is reduced to a system of singular integrodifferential equations of the second 
kind with resolvent kernels. Results of parametric investigations characterizing the behaviour of the components of 
the electroelastic field on the cavity surface in the area of a piecewise-homogeneous layer are given. 
 

1. Introduction 
Many actual scientific and technological problems of modern engineering are 

connected with the investigations of the process of propagation of waves in piezoelectrics 
and with the definition of dynamic strength in the vicinity of inhomogeneities of various 
types. To solve these problems it is necessary to use modern mathematical means and, in 
particular, methods and approaches of the dynamic theory of elasticity. Development of 
these methods is reflected in monographs [1-5] which appeared during the last decades. 

In piezoelectric media with inhomogeneities the interchange of electric and 
mechanical fields may bring to electric, mechanical or mixed electromechanical fracture. 
The edges of the electrodes are the sources of concentration of the components of the 
electroelastic field and, hence in these areas there may emerge microcracks or  a break-
down (Bardzokas et al. [6]). Some aspects of the mechanics of fracture of piezoceramic 
bodies are considered in [7,8]. 
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In the given article an algorithm for investigation of harmonic oscillations of a layer 
with a partially electrodized tunnel cavity during the electric oscillation of a conjugated 
electroelastic field is constructed. Numerical examples are given. 
 

2. Statement of the problem 
 

In Cartesian coordinates 1 2 3Ox x x  consider a piezoceramic layer 

( )1 2 30 , ,x a x x≤ ≤ −∞ < < ∞ −∞ < < ∞  weakened by a tunnel along axis 3x  

opening, the cross-section of which is limited by smooth contour C  (Fig. 1a). Assume that 
the bases of the layer are free of forces and bounded with vacuum (the direction of 
polarization of the ceramics is parallel to axis 3x ). On the surface of the opening  free from 

mechanical stresses 2n  infinite in the direction of axis 3x  thin electrodes with prescribed 
differences of the electric potential are located, and the non-electroded areas of the opening 
are  bounded with vacuum (air). The boundaries of  k -th electrode are determined by 

quantities 2 1k−β  and 2kβ  ( )1, 2k n= , and the electric potential on it is given by quantity 

( )Re i t
k k e
∗ ∗ − ωφ = Φ  ( t  is the time, ω  is the circular frequency). Location of the 

electrodes and configuration of the cavity cannot be fully arbitrary; the demanded 
requirements will be given below. 

Fig. 1a 
In the given conditions in a piecewise-homogeneous layer an electroelastic field 
corresponding to the state of antiplane deformation occurs. The full system of differential 
equations in a quasistatic approximation includes the following relations [5] equations of 
movement 
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constitutive equations of the medium 

 3 44 3 15 ,E
m m mc u e Eσ = ∂ −      ( )15 3 11 1, 2m m mD e u э E mε= ∂ + =  (2.2) 

and equations of electrostatics  

 div 0=D ,     grad= − φE   (2.3) 

In (2.1)-(2.3) 3mσ  are the components of the stress tensor, 3u  is the component of the 

displacement vector in the direction of axis 3x ; E  and D  are the vectors of strength and 

induction of the electric field; φ   is the electrical potential; 44 15,Ec e  and 11
ε∋  is the shear 

modulus measured at the constant value of the electric field; piezoelectric constant and 
dielectric permittivity measured at fixed deformations, respectively; ρ  is the mass density 
of the material. 

The system of equations (2.1)-(2.3) must be reduced to differential equations referring 
to displacements 3u  and electric potential φ : 

 
2 2

15 3 11 0e u ε∇ − ∋ ∇ φ =  (2.4) 
From (2.4) we have the equivalent set of equations 
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where c  is the velocity of a shear wave in a piezoceramic medium, 15k  is the factor of an 
electro-mechanical coupling [4]. 

Mechanical and electric quantities allowing for (2.2), (2.3) and (2.5) may be 
expressed through functions 3u  and F  by formulas  

 
( )2

13 23 44 15 3 152 1 ,Ei c k u e F
z
∂ ⎡ ⎤σ − σ = + +⎣ ⎦∂  

(2.6) 
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1 2 11 1 2 3 1 2

11

2 , 2 ,S

eFD iD E iE F u z x ix
z z

ε ⎛ ⎞∂ ∂
− = − ∋ − = − + = +⎜ ⎟∂ ∂ ε⎝ ⎠

 

Assuming ( )3 3Re i tu u e− ω= , ( )Re i te− ωφ = Φ  and ( )Re i tF e F− ω ∗=  we will 

write down equations (2.5) referring to the amplitude quantities as follows 

 

2 2 2 * *15
3 3 3

11

0, 0, ,
e

U U F U F
cэε
ω

∇ + γ = ∇ = Φ = + γ =

 

(2.7) 

where γ  is the wave number. 
Mechanical and electric boundary conditions on the surface of the cavity allowing for 

(2.5), (2.6) we represent in the following form 
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11 0n
FD
n

ε ∂
= − ∋ =

∂
  on  \C Cφ  

Here Cφ  is the part of contour C  corresponding to the electrodized surface of the cavity; 

operator n∂ ∂  designates the derivative over normal to contour C . 
Mechanical and electric boundary conditions on the bases of the layer may formally 

be represented as  
 ( )13 1 10 , 0 0,D x aσ = = =  (2.9) 

Thus, the boundary problem of electroelasticity is reduced to the determinations of 
functions U3  and F ∗  from differential equations of Helmholtz and Laplace (2.7), 
boundary conditions (2.8), (2.9) and conditions at infinity. 
 

3. Green’s function for a piezoceramic layer 
 

To solve the stated problem it is expedient to have integral representations of the 
solution automatically satisfying the boundary conditions (2.9), and the conditions of 
radiation at infinity. To this purpose let us construct a Green’s function for a homogeneous 
piezoceramic layer. 

Boundary problems (2.7), (2.9) allowing for relations (2.6) may be written down as 
follows 
 ( )2 2

3 3 1 3 10 ; 0 0,U U U x a∇ + γ = ∂ = =  (3.1) 

 ( )2
1 10; 0 0,F F x a∗∇ = = =∂  (3.2) 

We find Green’s function corresponding to problems (3.1), (3.2) in the form of [16]: 
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E x x x x
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πν
∇ + γ = δ − ξ − ξ α =

∇ = δ − ξ − ξ = δ − ξ δ − ξ
 

 1 2 1 2,z x ix i= + ζ = ξ + ξ  (3.3) 

where ( )  is 2x aδ periodical Dirac δ -function. 

Applying the representation 

 ( )1 1 1 1
1

1 2 cos cosx x
a a

∞

ν ν
ν=

δ − ξ = + α ξ α∑  (3.4) 

dividing the variables in equations (3.1), (3.2) and then using the procedure of 
determination of the fundamental solution of a common differential equation we find that 

 ( ( 2 22 2
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1 1,
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i xxb e b e
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ν γ −ξ−λ −ξ
ν

ν

= − =
λ γ

      



 48 

( ( ( )2 2

2 2

0 2 2

,1 , 0, 1,2,...
,

xd e d
a i

ν ν ν−α −ξ
ν ν

ν ν ν

⎧ α − γ γ < α⎪= − = λ = ν =⎨α − γ − α γ > α⎪⎩
 (3.5) 

The series for functions ( ),E zζ  in (3.3) allowing for (3.5) may be easily summed 

up by using equation [10] 

 ( )
1

1cos ln 2 ch cos
2 2

m x

m

xe my x y
m

−∞

=

= − −⎡ ⎤⎣ ⎦∑  (3.6) 

and has the following form 

 ( ) ( ) ( )2 2 1, ln 4sin sin
2 2 2 2

x z z
E z

a a a
− ξ π ζ − π ζ +

ζ = − +
π

 

 1 2z x ix= −  (3.7) 

To separate the main part of function ( )G zζ ,  we will write down Green’s 

function G0  of the prime operator in Helmholtz equation (3.1). Summing up the 
corresponding series and using (3.6) we obtain 

( ) ( ) ( )
2 2 2 2

0 1 1
1

1 1, ln 4sin sin
2 2 2 2

m x
m

m

x z z
G a x e

a a a a

∞
−α −ξ

=

− ξ π ζ − π ζ +
= − ξ = − +

π∑  

 1 1
1 1

cos cos( , ) .m m
m

m

xa x α ξ αξ
α

=  (3.8) 

Due to (3.3), (3.5), (3.8) we represent function ( )G zζ ,  in its final form 

 ( ) ( )2 2
0 1 1 2 2 1 1

1

1 1, , cos cos
2

i x
m m m

m

G z G G G e c x x
ia a

∞
γ −ξ

=

ζ = + = − − ξ α ξ α
γ ∑  (3.9) 

 ( ) ( )2 2 2 2
2 2

1 1 1,2,... .m mx x
m

m m

c x e e m−λ −ξ −α −ξ− ξ = − =
λ α

 

Thus, function ( ),E zζ  and ( ),G zζ  determined by formulas (3.7)-(3.9) are 

Green’s functions of boundary problem (3.1), (3.2) for a piezoceramic layer. The 
conditions of radiation in problem (3.1) and damping in problem (3.2) are satisfied. After 
separation of the main singularity in (3.3) the common term of series in (3.9) decays  at 
point z = ζ  as m−3 . 

  
4. Singular Integrodifferential Equations of a Boundary Value Problem 

 
Applying the above constructed Green’s functions we will write down the integral 
representations of the solutions in the following form  

 ( ) ( ) ( )3 1 2, , ,
C

U x x p G z ds= ζ ζ∫  ( ) ( ) ( )
1 2

,
, ,

C

E z
F x x f ds C

dn
∗

ζ

∂ ζ
= ζ ζ∈∫ (4.1) 

Here ds  is the element of the arc length of contour C . Representations (4.1) satisfy 
differential equations (2.7), boundary conditions (2.9) on the bases of the layer and the 
conditions of radiation at infinity. 
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Allowing for expressions (3.7) the representation for function ( )1 2,F x x∗  is 

transformed into the form 
 ( ) ( ) ( )1 2, ,

C

F x x f K z ds∗ = ζ ζ∫  

 ( ) ( ) ( ) ( )
2 2

sin 1, sign Re ctg ctg
2 4 2 2

i z z
K z x e

a a a a
ψ

⎧ ⎫π ζ − π ζ +⎡ ⎤ψ ⎪ ⎪ζ = − ξ + +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (4.2) 

Here ( )ψ ψ ζ=  is the angle between the normal to contour C  and axis Ox1 , at point 

Cζ ∈ . 
Expanding into simple fractions [10] 

 2 2
1

1 2 1ctg
m

xx
x x m

∞

=

π = +
π π −∑  

and using Sohotsky-Plemmelj formulas [11] we find the expressions for the limiting values 
of the integrals  with a kernel of Hilbert type at 0z C→ ζ ∈  appearing in (4.2). 
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f d iaf f d

a a

z
f d iaf f d

a a

±

±

π − ζ π ζ − ζ⎧ ⎫
ζ ζ = ζ + ζ ζ⎨ ⎬

⎩ ⎭

⎧ ⎫π − ζ π ζ − ζ⎪ ⎪ζ ζ = ± ζ + ζ ζ⎨ ⎬
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∫ ∫

∫ ∫

m

 (4.3) 

Differentiating function ( )1 2,F x x∗  in (4.1) we find 

 

( ) ( ) ( )

( )
( ) ( )

2 2
2

2 2
2

sec sec ,
2 216

sec sec .
2 216

i i

C

i i

C

zzF f e e ds
z a aa

z zF f e e ds
a aaz

∗
ψ − ψ

∗
− ψ ψ

⎧ ⎫π ζ +π ζ −∂ π ⎪ ⎪= ζ −⎨ ⎬∂ ⎪ ⎪⎩ ⎭
⎧ ⎫π ζ − π ζ +∂ π ⎪ ⎪= ζ −⎨ ⎬

∂ ⎪ ⎪⎩ ⎭

∫

∫
 (4.4) 

At 0z C→ ζ ∈  the integrals in (4.4) become divergent. In order to regulate them it 
is necessary to carry out the integration by parts allowing for the conditions of periodicity 
of function ( )f ζ . 

Substituting the limiting values of functions (4.1) and their derivatives at 

0z C→ ζ ∈  into boundary conditions (2.8) allowing for (4.3) we come to the system of 
singular integrodifferential equations of the second kind 
 ( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 0 1 0, ,

C C

p p g ds f g ds N′ζ + ζ ζ ζ + ζ ζ ζ = ζ∫ ∫  

 ( ) ( ) ( ) ( ) ( ){ } ( )0 3 0 4 0 2 0
1 , , ,
2 C

f p g f g ds N Cφ− ζ + ζ ζ ζ + ζ ζ ζ = ζ ζ∈∫  (4.5) 

 ( ) ( )5 0 0, 0, \
C

f g ds C Cφ′ ζ ζ ζ = ζ ∈∫  
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where kernels ( )g mm =1 2 5, ,...,  and the right parts are determined by expressions 

( ) ( ) ( )
0 0 0

00
1 0 1 2

1, Re ctg ctg
2 2 2

i i ig e Pe P e
a a a

ψ ψ − ψ
⎧ ⎫⎡ ⎤π ζ + ζπ ζ − ζ⎪ ⎪⎢ ⎥ζ ζ = + + +⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
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1 1,P S A iB P S A iB
a a

= − − = − − +   
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 2 20 2 201 1k k
mk m m

k k

e e−α ξ −ξ −λ ξ −ξβ = −
α λ

 

( ) 20 2 20 2| | | |
20 2

1 1
m m

m
m m

c e e−λ ξ −ξ −α ξ −ξξ − ξ = −
λ α

 ( ) ( ) ( )1 0 2 0 00,N N ∗ζ = ζ = Φ ζ  

 ( ) ( )0 0 0, , , Cψ = ψ ζ ψ = ψ ζ ζ ζ ∈  

Here ( )0
∗Φ ζ  is the piecewise-constant function determining the value of the electric 

potential on the system of electrodes. Kernels ( )2 0,g ζ ζ , ( )5 0,g ζ ζ  are singular 

(Hilbert type), the remaining  kernels may have not more than light singularities on the 
assumption that contour C  is smooth. 

It should be noted here that originating in the process of oscillation reflected from 
boundary 1 0x =  and 1x a=  shear waves cause the appearance of additional charges on 
active electrodes. Therefore the configuration of the cavity cross-section, its location and 
also position of pair electrodes (supplied from a separate generator) should have a certain 
symmetry in relation to the bases of the layer, i.e. the brought on the given electrodes 
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charges by an absolute quantity were similar. If  this requirement is not satisfied system 
(4.5) becomes unsolvable. 

Calculating functions ( )p ζ  and ( )f ζ  out of system (4.5) by formulas (2.6) using 

integral representations (4.1) it is possible to determine all the components of the 
electroelastic field in the layer. 

Let us find the expression for the amplitude of density distribution of electric charges 
( )kq β  on k -th electrode. Introducing the parameterization of contour C  with the help of 

equation ( ) ( )0 2ζ = ζ β ≤ β ≤ π  and taking into account the fact that the surface of the 

opening is in contact with vacuum we write 

 ( ) ( ) ( ) ( )2 1 2, 1, 2k
k n k kq D k n−β = β β < β < β =  (4.6) 

Here ( ) ( )k
nD β  is the amplitude of the normal component of the vector of electric 

induction on k -th electrode. 
Due to (2.6), (4.1), (4.6) we find 

 ( ) ( ) ( ) ( )
0

0011
0 0Im ctg ctg ,

4 2 2 k

i
k

C

q f e ds C
a a a

ε
ψ

φ

⎧ ⎫⎡ ⎤π ζ + ζπ ζ − ζ∋ ⎪ ⎪⎢ ⎥′β = − ζ + ζ ∈⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫  (4.7) 

where 
k

Cφ  is a part of contour C  on which k -th electrode is located. 

Integrating expression (4.7) on the variable 0β  in the limits from 2 1k−β  to 2kβ , we 

obtain the amplitude value of summed charge kQ  of k -th electrode referring to the unit of 
its length. The current flowing through the given electrode and equal to the conduction 
current  in the generator circuit may be determined by the formula 

 ( ) ( ) ( ) ( )
2

2 1

0 0 0 0
0

Re , .
k

k

i t
k k

dsI t i e q s d s
d

−

β
− ω

β

⎧ ⎫⎪ ⎪′ ′= ω β β β β =⎨ ⎬ β⎪ ⎪⎩ ⎭
∫  (4.8) 

5. A direct piezoelectric effect in a layer with a partially electrodized tunnel cavity 
 
Let us use the above described approach to the situation when a piezoceramic layer with a 
tunnel opening is used as a generator of electric energy. In this case consider as mechanical 
excitation two plane monochromic shear waves propagating in positive and negative 
directions of axis x2  and accordingly having the following values of displacement 
amplitude u3  and electric potential φ  

 ( ) ( ) ( ) ( ) ( )2 21 2 15
3 1 3 2 3

11

, , 1, 2j ji x i x e
U e U e U j−= = Φ = =

∋
γ γ

ετ τ  (5.1) 

For definiteness assume that the cross-section of the cavity has a vertical axis of 
symmetry and on its surface two symmetrically located continuous electrodes (Fig. 1b) are 
placed. To obtain the difference of electrical potentials ( )2V t  in the process of the 
medium deformation it is necessary to have electric charges of different signs on the 
electrode platings which require the matching of displacement amplitudes in 
monochromatic waves. Therefore in (5.1) it is necessary to assume τ τ τ1 2= − = . 

The generating energy is used in the outer electric circuit closing the electrodes and as 
a model  may be represented by losses on an element with conductivity Y  (Fig. 1b). In this 
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case the unknowns are the values of the potential differences on electrodes ( )2V t  and, the 

current in circuit ( )I t  as well. To obtain the electric boundary condition of the considered 

problem it is necessary to apply Ohm’s law to the outer circuit  

 ( ) ( )I t YV t=2 .  (5.2) 
Here solution of the boundary problem consists of prescribing  on the electrodes the 
difference of electric potentials ( )2V t , i.e. invoking of boundary conditions (2.8) under 
the action of harmonic waves. Thus, from equations (4.7), (4.8) and (5.2)we may determine  
the unknown amplitude of potential ( )V t  on the electrode  

 ( ) 11 1

11 2

,
2
i B

V
Y i B

ε
∗

ε

τω ∋
ω =

− ω ∋
   ( ) ( ) ( )

2

1

0 0 0 1, 2m mB A s d m
β

β

′= β β β =∫  (5.3) 

 ( ) ( ) ( ) ( )
0

00
0

1 Im ctg ctg
4 2 2

i
m m

C

A f e ds
a a a

ψ
⎧ ⎫⎡ ⎤π ζ + ζπ ζ − ζ⎪ ⎪⎢ ⎥′β = − ζ +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

Here function ( ) ( )1, 2mf mζ =  is the  “standard” solution of system (4.5) according to 

the right parts 

 ( ) ( )1
1 0 20 04 cos sin ,N iζ = γ γξ ψ  ( ) ( )2 15

2 0 20
11

2
sin

ie
N εζ = γξ

∋
 (5.4) 

 ( ) ( )2
1 0 0,N ζ =    ( ) ( )2 1 0 2

2 0 0 10 20
3 0 4

1,
1,

N i C
β < β < β⎧

ζ = ζ = ξ + ξ ∈⎨− β < β < β⎩
 

where quantities ( )1, 4k kβ =  prescribe the location of the electrodes. 
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y 

Shear wave 

Shear wave 

X2 

Y 

Fig. 1b 
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From formulas (5.3) we have two limiting cases for interrupted ( )0Y =  and short 

( )Y →∞  circuit, respectively. In the first case the summed charge on the electrodes is 

not changed in the process of the medium deformation and in the second case it is obvious 
that ( ) 0V t = . 

 
6. Examples of calculations  
As a first example we  consider a layer from ceramics 4PZT −  [12] with circular 

radius R   excited by two electrodes, the centers of which are located on its vertical 
diameter ( )β π β π β π β π1 2 3 45 14 9 14 19 14 23 14= = = =, , , . The system of 
integrodifferential equations (4.5) was solved numerically by the scheme of the method of 
quadratures  (see Appendix A). The number of interpolation nodes on the cross-section 
contour of the opening was assumed to be N =151 201,  and 251; the further increase of 

parameter N  practically did not influence the accuracy of the obtained results. 
 Fig. 2. 

For the considered case in Fig. 2 the change of quantity ( )11Q Q∗ ε ∗= ∋ Φ , which 

characterizes the amplitude of summed electric charge Q  on the electrode with respect to  

normalized wave number aγ  ( 2 ∗Φ  is the difference of the amplitude of electric potential 
on the electrodes) is shown. Curve 1 corresponds to the opening displaced from the 
symmetry axis of the layer at a distance of 0.1a ; curve 2 is to be constructed symmetrical 
located opening ( )0.1R a = . It is seen that in the first case due to the inertial effect the 

quantity Q∗  may exceed its static analogue by 16% . It should be noted now that by 

continuing the wave number γ  across values m m aα = π  ( )1, 2,...m = , an instability 

of the solution due to the emergency of a new running wave moving the energy along the 
waveguide from inhomogeneity to infinity is observed. This circumstance ensures a 

0 4 8
2.2

3.3

4.4

γa

Q*

1
2
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characteristic “beakwise” form of the curves in the vicinity of points γ = π  and 

( )2 1aγ = π = . 

If the centers of two active electrodes lie on the lateral diameter of symmetrically 
located openings ( )1 2 3 47, 7, 6 7, 8 7β = −π β = π β = π β = π  we have a quite 

different picture. Here (Fig. 3) the phenomenon of resonance is observed.  The values of 
normalized wave numbers corresponding to the first and second natural frequencies of 
oscillations are equal: ( )1 2.95aγ ≈  and ( )2 8.69aγ ≈ . The antiresonance frequency, 

when the current in the generator circuit is equal to zero, is ( )1 3.1a∗γ ≈ . In the process of  

calculations we assumed  0.1R a = . 

 Fig. 3. 

The analysis of the results shows that more effective electroacoustic transformation of 
energy in the considered frequency interval is observed when the area of the  electroded 
plating is smaller. 

 
7. Concluding Remarks 

 
The represented approach to the solution of the mixed stationary dynamic problem of 

electroelasticity permits to investigate the influence of the inertial effect on the behaviour 
of the components of an electric field in a layer with an opening of rather arbitrary 
configuration for different number of electrodes and their disposition. For the numerical 
solution of the system of integrodifferential equations (4.5) by the prescribed scheme of the 
method of quadratures due to the fact that some of its kernels undergo fractures, and the 
densities have root singularities on the edges of electrodes, in order to reach the satisfactory 

0 6 12

γa

Q*

0

3
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accuracy it is necessary to use a considerable number of the nodes subdivision of the cavity 
contour section which yields an increase of the computation time. Nevertheless, the 
considered seems to be universal, permitting to investigate various variants of electric 
excitation of conjugated fields without any basic change of the algorithm. 

From the given results it follows that in the condition of the inverse piezoelectric 
effect the distribution of the displacement in a layer considerably depends on the frequency 
of harmonic loading, the configuration of the transverse section of the tunnel cavity, and 
the prescribed in the system of electric potentials electrodes. In case of an antiplane 
deformation the stresses of a longitudinal shear on a surface free from mechanical loading 
do not have singularities on the edges of the electrodes [6]. The numerical investigation 
proceeding from the presently constructed algorithm, confirms it. 

System (4.5) may be generalized to the case of several tunnel openings mC  

( )1,m n= , if we assume  ( ) ( ){ },m mp p Cζ = ζ ζ ∈ , ( ) ( ){ },m mf f Cζ = ζ ζ∈ , 

1

n

m
m

C C
=

=U .  The configuration of the openings, their location and the position of the pair 

surface electrodes warrant its solvability. 

Appendix A 

Consider one of the methods of numerical implementation of the system (4.5). Let us build 

the interpolating Lagrange polynomial for the sought-for functions ( )p ζ  and ( )f ′ ζ  in 

of the nodes ( )2 1j j Nβ = π −   ( )1,j N= . Such a polynomial has the form [13] 

 { } { } ( )0 0

1

1, ; , sin cosec
2 2

N
j j

N j j
j

N
L p f p f

N∗ ∗
=

β −β β −β
′ β =⎡ ⎤⎣ ⎦ ∑  (A1) 

 ( ) ( ) ( ) ( ) ( ) ( )0 0, , ,j j j jp p p p f f f f∗ ∗ ∗ ∗′ζ = β = β ζ = β = β  

It must be mentioned here that formulas (A1) are valid for odd numbers of the node 
division of the contour C . 

Integration of the formula (A1) for function ( )f∗′ β  using the equation [19] 

 
( )

1

sin 2 1 sin 22
sin 2

m

k

m x kxdx x
x k=

+
= +∑∫  

leads to the following expression for the function ( )f∗ β  

 ( ) ( )0

1

1;
N

N j j
j

M f f A
N∗

=

β β = Ω β +⎡ ⎤⎣ ⎦ ∑  

 ( )
( )

1
2

1

sin sin
2

N

j j
j

k

k k

k

−

=

β −β − β
Ω β = − + β∑  (A2) 
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The constant A  must be determined from the conditions of the periodicity of the function 

( )f∗ β  which due to (A2) has the following form 

 0

1
0

N

j
j
f

=

=∑  (A3) 

Applying (A2) we also find the quadrature formula 

( ) ( ) ( ) ( )
2

0
2

1 1 10

2 2, , ,
N N N

j jm m m
j m m

f G d f G A G
NN

π
∗ ∗ ∗

∗
= = =

π π
β β β β = Ω β β + β β∑ ∑ ∑∫ (A4) 

where ( )jm j mΩ = Ω β . In the node collocations ( )2 1 N∗β = π −l l    ( )1,N=l  the 

polynomial (A1) has the following value at odd values of N  

 ( ) ( ) ( )0

1

1; 1 cosec 1, .
2

N
j j

N j
j

L p p N
N

∗
+∗

∗
=

β − β
⎡ ⎤β β = − =⎣ ⎦ ∑ l l

l l  (A5) 

For the singular integral in (4.5) the formula is analogous to the formula for 
calculating regular integrals [14] 
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f e d
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f e
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π
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∗

∗

ψ ρ

=

⎧ ⎫π ζ −ζ⎪ ⎪′ β β =⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤π ζ β −ζ βπ ⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎩ ⎭

∫

∑ l
l

 (A6) 

Now, substituting the integrals in (4.5) by finite sums of the formulas (A.4), (A.6) and 
using the equalities (A.2), (A.3) and (A.5) we arrive to a system 2 1N +  of the algebraic 

equations related to the values of the functions ( )p ζ  and ( )′f ζ  at the nodes of the 

interpolation ( )βj j N= 1,  and the constant A . 

The work was carried out in the framework of an agreement on scientific cooperation 
between the National Technical University of Athens and the Institute of Mechanics, 
National Academy of Sciences (NAS) of Armenia. 
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