QUAUUSILE GhSNREA3NFLLERD LQGUSEL THUALURUSE SEALLUILAhD
M3BECTHSA HALIMOHAABHON AKAAEMUU HAYK APMEHIN

-

UbfuwGhlyw 57, Ned, 2004 MEXAHMKA

YAK 539.3
ON ASYMPTOTIC METHOD OF STATIC AND DYNAMIC
BOUNDARY PROBLEMS SOLUTION

Lenser A. Aghalovyan'

L.LE o b
Unuwnaplwlpub b ghiwdhlulwl bgpught uishpbbph modwl wepinpomnhly dipanh duuhb
Capunmwd b wnwdgulpuing i abunppul bgpaghl fobghpobph miniwl wupdumnn bl depnnn
pupul, dwpdplfoph’ hbSwiibp, vwgsp, pomuipibn, - nlprpdwghnl  fhdwlitpe npnziim
hI.I.lI'lI.I.II hanwplued B pagby puanlwd, wylybu Lo guanul bgpushE udnlinbbp: Snog bopgued
dbipanh ERbLinfgmemip 1 wnwanhlpuolpwl U ghGodplipod uinghpibph mendGope npngbin huipgad
Epijuit b hpmwanpughnd plingph wihpuadbyo ophBwlGep:

AraaoBgH MAA.

06 arMOTOTHIECKOM METOAS DeMeHHdA CTaTHYeCKHY H
AHHAMHISCEHY Kpaeshly 38241

Hasowena CYTE ACHMOTOTHYRCEOTO METOAN PCLICHTHA EPABPREX 33A41 TROpPHE YUPYTOUTH AN
TOHKHYX Tea — Daski, DAACTHHB, ODOACKE, FB.EC‘\-!GTFIEHH Kik  HAQCCHMECEHE, Tak H
Immccﬁ‘iecmn Epacere 3aAa1H, [oxazada J-L]J{,]JCKTHDITDFFH ACHMITOTHYSCKODD  METOAL  AAS
mpqm&.hﬂlﬂm pﬂm}lmu M CTATHYECKHX, M AMMAMHYECERX - Fahat. MpAsescibl HeoSxoamMLae
HAMGCTDATHORHELS TPHMEDEL

Abstract

The equations of elasticity theory for thin bodies (bars, beams, plates, shells) are singularly
peﬂurbad by small geometric parameter. For the solution of such systems an asymptotic
method is suggested to be used. The solution of the corresponding boundary problem of
elasticity theory consists of two qualtatively different types of solutions - imner problem
and boundary layer. The ways of constructing these solutions and their conjunctions are
described. We consider as classic boundary problems as well as nonclassic boundary
problems from the point of view of the plates and shells theory on the facial surfaces the
displacement vector components or mixed conditions are given. Asymptotics of the inner
problem solution is established, it is proved that it sensitively reacts on the type of the
boundary problems conditions of elasticity theory laid on the facial surfaces. Solutions of
the boundary layers are constructed. The relation of the boundary layer with Saint-Venant

iple is displaced. In case of the first boundary problem for a rectangle it is proved that
ﬁ—\’ﬂnﬂnt principle is mathematically exact. lteration processes for the determination of
the inner problem solution are built, the connection with the solutions on classical
Bemoulli-Coulomb theory of beams, Kirchhoff-Love theory of plates and shells with
precise theories on the base of softened hypothesis is established. The formula of
caleulation of the bed coefficient for a layered foundation is reduced, The asymptotic
‘method is especially effective for the solution of nonclassical dynamic boundary problems,
‘Free and forced vibrations of thin bodies are considered. The connections between the
frequencies values of free vibrations and the velocities of propagation of elastic shear and
Jongitudinal waves are established,
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Introduction

For the calculation of thin bodies of beam type, plates and shells methods of
hypotheses, decompositions of sought values according to the cross coordinate or special
functions were origmally used. Yer, the specific character of this kind of bodies is so, that
one of its sizes sharply differs from the others and if in the equations of elasticity theory we
pass to dimensionless coordinates and components of the displacement vector, these
equations turn (o be perturbed by small geometrical parameter. That is why it will be
natural to use asymptotic methods. It was found out that the perturbance by small
parameter 15 singular. Mathematical theory of such equations and systems began to develop
from the middles of the 20th century, that is why the application of the asymptotic methods
has a considerably new history. The first papers where the asymptotic method for the
solution of boundary value problems of elasticity theory for plates and shells are [1-3]. The
first boundary value problem of elasticity theory for isotropic rectangle is solved in [4] by
an asymptotic method, The asymptotic theory of isotropic shells is built in [3], and the
amsotropic theery of beams, plates and shells is in [6].

The asymptotic method tumed to be especially effective for the solution of nonclassical
static and dynamic boundary value problems of thin bodies — on the facial surfaces the
values of the displacement vector component or mixed conditions are given [6-14].

Let's stop at some key results, obtained by the asymptotic method.

1. The first boundary value problem for a rectangle. The connection of the
asymptotic solution with classical theory of beams and with Saint-Venant principle

The solution of this considerably simple problem reveals the basic principles and
advantages of the asymptotic method application. It is required to find the solution of the
equations at a plane problem of clasticity theory in the region of

D={(x,y):xe€[0,f],| yI€hh << £}, if on the longitudinal edges y=xh of the
rectangle the values of the stresses are given

o, (£h) =2 X" (x), o (th)=1¥"(x) {1.1)

and when x =0, £ are the values of stresses, displacements or mixed conditions. Passing
to  dimensionless  coordinates E=x/t, C=y/h and  displacements

U=ult,V =v/¥ the equations system of 2 plane problem for an isotropic rectangle is
written in the following form

do
oy +g£ 6; +EF (LE,hE)=0

g .
B, 5,0}
:J P 00 1 +EF (L5, hE) =0 (1.2)
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where @, are the stresses tensor components, F_, F, are volume forces. The solution of

o, e=hit

system (1.2), a5 singularly perturbed by small parameter € system, is combined from the
solution of inner problem and from the solutions of boundary layers buili close 1o
xX= ﬂ,f :

I=0+R"+RM (1.3)
The solution of inner problem (0, which exactly reacts the types of the stated when
¥ =1h conditions, is sought in the form of

Q=e%"0W(EL), s=0N (1.4)
where g, characterizes the asymptotic order of the given magnitude, their values must be
so that substituting (1.4) into (1.2) and coefficients under the same degrees £ 1o gel a
noncontradictory system for sequential determination of values O, ie. the stresses

tensor components and displacement vector. This is most responsible moment when

applying the asymptotic method as not all the companents have the same orders. Tn this
case

g=-2foro u;q=-1forg,;g=0 for G, ¢=-3forv (1,5)
From the system for Q% all the values are expressed through functions
ut'!(E),v\* (£), which satisfy the equations

f;!l:’uiﬂ =F[r:| lEd4V{sl - 5
dE_z r 2 3 dE__d ¥

where P, Ff’} are expressed through X, ¥*,F . F consequently are known

3

functions. The first of the equations {1.6) when 5 =0 coincides with the classic cquation
of the bars extension-pressure, and the second one coincides with the classical equation of
beam bend. Approximations § 21 make the results on Bernoulli-Coulomb-Euler classical

theory of bars and beams precise. Derivatives of the first order from u'*', the third and the

E

(1.6)

fourth orders from v'* enter the formulae for stresses, that is why, corresponding to (1.6}
the formulae of stresses will involve three arbitrary constants which should be determined
from the boundary value conditions when x=10,/. Naturally, restricted only by the
solution of the inner problem, it is impossible to satisfy these conditions at every point,
which also indirectly proves singular perturbation of the original problem. In order to
remove the arising residual it is necessary to build a qualitatively new solution.

That is the solution of the boundary layer which exponentially decreases when
removing from end sections of the rectangle. In order to find the denoted solution near the
end ~ wall x =0, a new change of variables is introduced { =& /€ into system (1,2) and
the solution of the transformed system is sought in the form of functions of boundary laver
type:

R, =™ "R (Oyexp(-nt), s=0,N, Rei>D {1.7)

As mhomogeneous conditions (1.1) are satisfied by the solution of the inner problem,
the boundary layer problem must satisfy the conditions




T =0, =0 when {==1 (1.8)

For deriving noncontradictory system relative to R\ (&) . it is necessary to have
Yo, =Xs Ku =7+1 (1.9
where the full number 3 will be determined during the conjunction of the inner problem

solution with the boundary layer solution, After having substituting (1.7) into transformed
system (1.2) all the magnitudes may be expressed through Gm‘ :

w  1dot) w1 el
Ry gl e
A de 2
1 [d?e™
ey == ‘Eéf—b—‘“ﬁﬁil’}.] (1.10)

[ g3 5 (5]
‘1-'1':1:] - _% U_:_ll'ﬁ + (2+v}?\‘? U.'"J"ﬂl
e MVE| dE dl

@'t is determined from the equations

¥ih
tﬁﬂ‘m ﬂrzg{:b
e g e =0 o
H =

Having solved ordinary differential equation (1.11) and satisfying conditions (1.8), we
find the final solution of the boundary layer:

o = AF, () (1.12)
where
F(Q)=Csink L-1gh, cosh, L  (symmetric problem-extension)
F.(C)=sin) L-Cred, cosh, & (bend) (1.13)
A, is the root of the equation sin 2k, +27, =0 in the symmetrical problem and the
equations sin2A, —2X =0 is the bend problem. In (1.12) A" are constant

integrations by "#" summing takes place corresponding to all the roots A, every A, is

corresponded by Iﬁ , totally ﬁ;\i will be real,

The solution of boundary layer (1.7), (1.10), (1.12) has a number of very important

properties. It is exact for every "s"; in the arbitrary cross-section ¢ =1, the stresses G},
(5}

a,,, are self-balanced:

+1 +1 41
[elde=0,  [teUdc=0, folndz=0 ")
-1 -1 -

[t is easy to be convinced in justification of (1,14) using formulae (1,10) and conditions
{1.8). This solution when removing from the end-wall into the inside the rectangle fades as.
exp(—Rel 1), where Red, = 2,106 m symmetric, Rek, = 3,75 in skew-symmetric
(bend) problems [6)78

The denoted solution in not possible to obtain on the base of any known hypothesis,
particularly, accepting the hypothesis of plane sections, this exact solution is lost.
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Using formulae (1.3}-(1.5), (1.7}, (1.9) and property (1.14), it is easy to satisfv the
boundary value conditions when x =0,/  Let the values of stresses be given when
x=0:

Ou =9(C), o, =y() when x=0 (1.15)

When satisfying conditions with x=0 it is usually ignored by the affect of the
boundary layer Rf,l’, which is equivalent to fulfillment of the conditions

L+exp(—Rek, £/ h) ~ 1, which is practically fulfilled even for a square. Then we shall
have:
oy +erol =

=I5 _{5) err
£ G‘Jr + & D‘:}-b =

when x=0 (r=0) (1.16)

From (1.16) noncontradictory conditions only with ¥ =—2 follow. We have
Ol =0) =0 ~a (£ = 0)
St =0 =y -c{ (& =0) (L17)

T
0" =q, 0"'=0 when k=0, (o, yr)

The right parts of (1.17) must satisfy the conditions of self-balance {1.14), From these
three conditions all the three unknown constants in the solution of inner problem are
determined. From this fact it follows, that the self-balanced part of the end-wall loading
doesn't affect on the solution of the inner problem. This pure mathematical result expresses
the validity of Saint-Venant principle. Returning again to (1.17) the right parts of which
will already be known functions, constants A!" of the boundary layer solution are
determined. et

@)

PL)=2P(1-|L)), w()=0 (1.18)
the above said may be illustrated in fig. |
P P P -P
[
F y PM‘H“H—-—_ X
-p

fig.1

(=]

where in the right part the first summand corresponds to the selution of the inner problem,
the second one corresponds to the boundary layer,

From (1.8), (1.10) follows that the boundary layer displacements don't have the
characteristics of self-balance (1.14), i.e. Saint-Venant principle for displacements is not
correct and under other boundary value conditions when x =0, £, conjunction of the inner

problems and the boundary layer solutions is fulfilled by other ways — by the method of
boundary collocation, by less squares and so on.

The advantage of an asymptotic method appears under the solution of more complicated
problems for thin bodies. With the help of this method solutions of plane problems for an
anisotropic strip-rectangle, for layered rectangle-strips are found, In all cases when
loadings affecting on facial surfaces are polynomials, iteration process for inner problem
lerminates on certain approximation and mathematically precise solutions are obtained

~ From these solutions as private cases, all the solutions obtained by Menage-
Timoshenko method, follow. As an illustration the solution of inner problem for orthotropic
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rectangle reinforced by stringer, which stretches by the load of permanent intensively will
be brought (fig 2)
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dp 4y dy dy Gy dyy

Solution (1.19) is precise in the sense of Saint-Venant, all the equations of plane
problem of an orthotropic body. conditions of full contact between the lavers, boundary

value problems of the free edge when y =h, y=—h, (6, =0, g, =0) are satisfied

The stresses of the boundary layer 0 ;. @, in spite of layerity in any cross-section are
also self-balanced, which permitted us to satisfy the conditions when x=0;¢ integrally.

From solution (1.19) it follows that on the line of contact c:r !:r = 0. Meanwhile, in

some applied models, for example, in Melan's models it is admmed the strmger behaves as
a bar, on the surface {:ul‘ which tangential stresses arise.

The obtained pregise solution (1.19) disproves such an assumplmn and adwses to be
careful when using applied models. Tangential stresses arise in the zone of boundary layer,
but the stress strain state there, is not uniaxial but plane.

The established here qualitative picture is preserved for three-layered rectangular packet
as well, Le. in case of the presence of thin inclusion [13].
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The described scheme of the asymptotic solution determination preserves the force for
« the spatial problems of plates and shells as well. It was found out that the initinal
approximation for the inner problem is adequate to the classical theory of Kirchhoff-Lave's
plates and shells, By adrmitting the hypotheses of classical theory, the boundary layers,
which can be of two types-boundary torsion (antiplane boundary layer), plane boundary
layer are eliminated. The first of these boundary layers takes into account Reissner,
Hambartsumyan's theory by Timoshenko type. If we build the second approximation for
the inner problem it will correspond to S.A. Hambartsumyan's iteration theory, For
bending of the transversal isotropic plate the following equations relative to the plate
deflection are offered:

G E N\ (2hY Az .
DAAW=z—| 2—-0,75 —v' | L — totic theory
z [ = E'U]I{}(l—v} (asymptotic theory)

(1:20)

G E 20) Az

DAAw=z-|2 il i (Hambartsumyan's theory)
G £ 1H1—v)

For anisotropic plates and shells on the magnitude of the contribution of the following

approximations are essentially influenced by the relations of the constants of elasticity, and
the changeability of acting loads as well.

2. The second and the mixed boundary value problems

The asymptotic method turned out to be especially effective for the second and mixed
boundary value problems solution of elasticity theory for thin bodies {nonclassical
boundary value problems of beams, plates and shells). In the first case it is considered on
the facial surfaces of the thin body displacements values are given. The punch problem for
example refers to this:

In the second case on one of the facial surfaces the displacements values are given and
on the other one the values corresponding to the stresses tensor components are given.
These problems are basic in the caleulation of foundations and bases of constructions by
the model of a compressible layer, and during the calculation of seismic actions on the
constructions as well. Mixed conditions on each of the facial surfaces may he given.

It 15 established that the asymptotics (1.4), (1.5) for this class of problems is not
anmittable, i.e. it iz not possible to solve these problems on the base of plame secions and
L Kirchhoff-Love hypotheses,

A principally new asympiotics is found [7]:
§=-1 for 0.y 0,0, g=0Toru,v (2.1)

from where it follows that unlike the classical theory of beams and plates, here in general
case all the stresses are equivalent, and the displacements are equivalent too.

In this case what was said above takes place in the case of general anisotropy. Another
characteristics has appeared too — it was found out that the inner problem solution is fully
determined after having satisfied the boundary value conditions on the facial surfaces, i.¢.

the boundary fayers only correspond to the conditions under torsion sections x =10, { . If

“exterior actions are polynomial closed solutions in the inner problem are obtained, We
bring these solutions for two cases, corresponding to when the lower bound of the
orthotropic rectangle-strip is rigidly fastened, and the upper bound is informed constant
displacements or it is loaded by a load of constant intensivity. The conditions

u(=h)=v(=m)=0, u(h)=u’, v(k)=v"'; u*,v" =const  (2.2)
comespond to the solution




_ vV U ay v
G ety e
A 2h 2h A 2h 2.3)

3

g
= u_{}""h}: Vzﬁ“""'h}s A= )@y — @y,
and the conditions

u(-h)=v(-h)=0, o _(h)=1",0,(h)=-0]; 170, =const (2.4)
correspond to the solution
= ﬂIZ * ek == +
Ty = E—H{I:, Ty =¥ 320, ==0;
, 2.5
T A
u=——>I(y+h), v=-—a.(y+h)
1 ay
From the sofution (2.5) the value of the bed coefficient for an clastic foundation of
power (width} 2h is directly followed. Taking into account T° =0, we calculate the
displacement under normal loading. With v =/ we have

wih) =10, v{h}:ﬁ{—ﬁ;} (2.6)

HI 1
from where it follows

a E.
s = 2 {21?]
2h 2R(1=wv v,
For 1sotropic foundations coefficient K coincides with well-known bed coefficient
K =E /(2h(1—v7)). Note that in case of foundations with general anisotropy from the
asymptotic solution nonapplicability of Vinkler's model follows, ie. the sense of bed
coeflicient 1s lost.

Asymptotics (2.1} is right for layered and for inhomogeneous beams as well [6]. IF

Young's module changes by the depth of the layer of power & linearly, using the values
[£}, E-], for bed coefficient we have

Kzﬁﬂc__J1C:EE E1

Ine E™ " hi-v?)
Asympiotics (1.4), (2.1) permits gencralizing on anisotropic layered plates and shells, it
is possible to get closed solutions [8-10].
Using the solution of the mixed boundary value problem for n-layered packet from

arthotropic plates, in particular; it is possible to get the following formula of bed cocfficient
calculation

c,(h)=—a, =Kv(h), K=

(2.8)

1
K“ = a ’
LEY] 1
D AL
= (29)
a8 ) i, )

AW = L=V Vol = Vi Vi) = Vs Vi — Vg Vi Vg — Vi Vs Vs,
33T

(1= viSvaDE”
where Ei” is Your's module in the direction, perpendicularly to the plate of the layers

iy . ; \ .
contact, 'h-';: is Poisson’s coefficient,
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3. Free and forced vibrations
s

 The investigations of seismic waves actions of thin and massive bodies and so on bring

i solution of specific problems on free and forced vibrations of thin bodies

pratic method shows off here too from the best side. We illustrate the above said on
e example of free vibrations of an arthotropic plate

:_-35'='{(x,y,z} x,yeDy, | z|€h} It is required o determine the frequencies of free

vibrations of the plate, corresponding to boundary conditions

*0,.=0,=0,=0 when z=#

(3.1)
w=v=w=4_ when z=-h

u=v=w=_( when z=+h (3.2)

Looking for the solution of the equations system of special dynamic problem of
' v theory in the form of

Gﬁﬁ.(‘xv Wet)= T e EXPIZ.EUJI}
(w0, vow) = (u,,u,,u, yexp(ior), a.p=x,y,z; k=123

® is the sought frequency of free vibrations and passing 10 dimensionless
ates and components of displacement vector E=x/{,m=y/f E=2/h,

U, V=u(? W=ul £, £ is the characteristic size of the middle surface
* y :

(3.3)

f the plate, we have the following singularly perturbed by small parameter £ = A/ /

%, B +g aﬂ“'-{-.a‘*mezﬂ
2s o
0o,

&n
_.'.l+%+
&
oo,
+
an

-~

e« T
e —2 4 el =0
G

13 3 5513 E—I. E?!-S
& G
ol

_BE =40 8130y 0,0y,

+& “wi =0

(3.4
av

=00, +d5,0,, 4,0

E a =0y a0, a0,

E_Eai_l..-'.ajni:a (a3 'Iﬂ

& &] w93 € &

oU &V

2 E*'__r-amr_ru, 0. =ph’e’

D The setution of the singularly perturbed system (3.4) is sought in the form of
=l (1) A AT

. I T | -
Oy =t "0y, o.=gw, s=0N

UV W) =" Uy '

aw

+ =dss0y

(3.5}
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where notation § =0, N means that by repeated index § summing in the limits [0, N]

takes place. Substituting {3.5) into (3.4), using Cauchy's rule of multiplying the rows, we get
a new system, from where it will be possible to express the stresses tensor components

through U7, 17 W) which, in their tumn, are determined from the equations system

albr[s] ==

4, 0L U0 =R, k=05

ﬁ'.’

—+f1,'4m.*Vi’ i RN (3.6)
Zrarie)

A.” a W +m W{s-l} R[S}I

where A4, =1/4,,, RE”, RY, R are well-known functions, in particular,

Rfrm' = Rf.m = Rim =0, With 5§ =10 the equations of system (3.6} become independent.

Having solved these equations and satisfied conditions (3.1) or (3.2), we get dispersing
equations from where 0, are determined. Conditions (3.1) correspond the following
three proups of main values of frequencies:

r _ 1 |Gy,

W, = —~(2n+l}=-—-—V"‘(2n+l),V"'— Gu ,neN
4h p

Vﬂ{zml),Vr“ { ’?3 (3.7)
”’_ V(2n+]], JE ’

where & i 15 shear module, A,; is calculated by formula (2.9) without ascribing index 5

V=V are well-known in seismology and physics velocities of propagation of shear
waves, Formulae (3.7} show that in the orthotropic plate free vibrations of three types — two
shear and a longimdinal may arise. Their intennfluence will be perceived taking info
account the approximations § = | . The calculation of the next approximations brings to the

correction of the frequency value of the order ((g7), that is why in practical applications

it is possible to be restricted by the values (3.7), which we call main values of frequencies.
Conditions (3.2) correspond to the following main values of frequencies:

' = T o i

o —V s, =—V7, o = V,HEN (3.8)
Tt T e Ty

The forced vibrations are comsidered in the analogues way. For example, if

harmonically changing in time displacements are informed to the facial surface z=—h of
the plate el
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u(=h)=u"(E,m)exp(iQ), v(—h) = v~ (E.m) exp(iCd)
w(=h)=w (€, n)exp(ix)

wiich take place under seismic actions on plate-like bases of constructions, the solution of

(3.9)

the problems is sought in the form of {3.3). then (3.5) with substitution ® mto €2, ]
into 0 =ph’Q’, As a result the solution is expressed through the functions

Uy g ) cach of which is determined from the ordinary differential equations of
the second order. Subjecting the solutions of these equations to the conditions (3.1 (29} or
‘conditions (3.9) and 1( hy=v(h)=w(h) =0 the amplitudes of forced vibrations arc
uniquely determined. Tt the value of frequency £ of the exterior action coincides with any
Value from (3.7) or (3.8) a resonance takes place. Note; that it is always possible to choose
physical-mechanical and geometrical parameters of the plate so, that in the presence of the
Eiven interval of possible values € the resonance didn’t arise.

Note, that the described scheme of the frequencies determination of free vibrations and
amplitudes of forced vibrations is applicable for lavered thin bodies as well,

4. Conclusions

Effectiveness of asymptotic method of singularly perturbed differential equations
solution for the solution of boundary and dynamic problems of elasticity theory for thin
bodies (beams, bars, plates, shells). Connection of asymptotic method with Samnt-Venant
principle, with applied theories of beams, plates and shells is established. Nonclassical
problems of thin bodies are solved. The frequencies of free vibrations and the amplitudes of
forced vibrations of orthotropic beams and plates to the corresponding nonclassical
boundary value problems are determined.
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