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HANPAMEHHOCTH HAYAALHOTO MAFHHTHOTO TOAH.

1.Introduction
According to the general principles of the theory of anisotropic shells, which considers
transverse shear deformations [1-3] and fund | hypott of m lasticity of

thin bodies[2,4], the general equations of wave propagation in the electroconductive
orthotropic shallow shells are obtained, and the problem of oscillations of extremely
shallow shells is investigated.

A certain problem of isotropic and anisotropic electroconductive plates and shells in
magnetic fields in [3-9] is considered.

2.Initial Relationships and hypotheses .
Let us consider a thin elastic orthotropic shell of uniform thickness A and finite

electroconductivity [0’1(0’,,0’2,0,). oscillating in the external uniform magnetic field

with vector Ho(D,U, H ), normal to the middle surface a0 .

Let the body of the shell be expressed by a triorthogonal system of curvilinear
coordinates of,[3,¥ , where ¢t and [} coincide with the lines of principal curvature of the
middle surface, ¥ being normal to the coordinate surface O is rectilinear.

The orthotropic material of the shell has three mutually orthogonal planes of elastic
symmetry, which at each point are parallel to the coordinate surface
o = const, B = const, y = const.

()

The dielectric constants outside and inside the shell are denoted by £’ and €

) and  are taken equal to one.

The problem of magnetostatics in an unperturbed case is assumed to be solved [4]. We
' shall use linearized electromagnetoelastic equations, Then we neglect the shift current.
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The present problem of vibrations of a shell is investigated on the base of the |
following hypotheses:

~The hypott of the magnetoelasticity of thin bodies [4] according to which
e =e, =olopur). eg =y =wlopit) b, =k = flapr) @1y
where h [hl.hl,h‘), e (e,,e,‘m] are the inducted electromagnetic fields co

@\, [ are desired arbitrary functions, which must satisfy the electrodymamic equations,
and the conditions on the surfaces of the shell ['\f £ ) [4];

—The hypothesis of improved theory of anisotrapic shells [1,3,10] according to which
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where :.{c:.,B,r].v(cr,,[l.r),u{u.ﬁ.r} ure the desired displacements of the shells middle
surface, ‘1){0..[3,!),“?(&-,[",1} are desired  functions which characterize shear
deformations of the shell, &, rk,(ﬂ:.{i),k-‘ =k3{m,[”) are principal curvatires of the
coordinate surface OB, (For shallow shells it is assumed that the &
differentiation behave as constants|1]), @ = G5y gy = Gy

coefficients, (7, ,(7,, , are'shear moduli.
The equurlnm of motion of the shell are [1,2,4]

. upon
are the elasticity
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where k = (I t k,‘f]{l 4 kl'f] o S N, M are the internal forees and moments,

2 s the shell material density, £ is the time, pK, are the components of the "cargo” term
for which we have generally [2,4]

il
oK (K, Ky K )= o] [n’-l— LA ]x B, (24)
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A 15 the magnetie induction veetor in shell, u(u, ity Uy ) = u(ﬂ‘, Vil .ur) 1% the
displacement vector, e is the electrodynamic constant.



3. The Equations of Magoetoelasticity for & Thin Orthotropic Shell
Integrating electrodynamic equations with the account ofithe surface conditions

h
h =h’, when T=5 and h =Hh", when y=—§,fm h, we obtain [2.4]
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Thus, we have all the components of excited electromagnetic field in the shell, giver
by cight functions 4, v, w, DM @y, /' and by induced magnetic field's values h, and

)

h, onthe shell's surfaces br =1 5 |

(3.2

Then from (2.4) for lhc components of the "carga" term we obtain
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Substituting the \nhm of internal forces and moments, components of displacements
and companents of the "cargo” term in (2.3) we get the following equations of mation
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£, are Young'’s moduli in the directions U..[_’u,y(l,E,});G,,. are shear moduli for

the planes paralll at each point to  the coordinate  surfaces
o = const, p = const, y=const; v, v, are Poisson's ratios.

The equations of electrodynamics averaged over the shell's thickness we obtain

[124,5]
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The equations of electrodynamics for outside regions ( ) [4] are
(e)
rothl® Mo , divA =0

1eh .
rote® = ——a—, divhe'? = 0
c ot
The systems of equations (3.5). (3.6) are to be added to the system (3.4)

The hypothesis of magnetoelasticity of thin bodies reduces the problem of
magnetoelasticity for the region occupied by the thin body itself to a two-dimensional
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problem of shell. However, the obtained equations of perturbed motion contain unknown
boundary (surface) values of the inducted electr gnetic field comp Consequently,
the problem of magnetoelasticity in most of the cases remains a spatial one. Therefore, the
obtained two- dimensional equations of motion have to be solved with the equations of
electrodynamies for the medium surrounding the thin body [4,11].

According to the basic statements of the hypothesis of magnetoelasticity of thin
bodies, effective methods for reducing the general problem of magnetoelasticity to a two-
dimensional one are proposed [4,11].

Introducing the concept of a boundary layer around the shell (with thickness A

where A, is the length of the halfwave of the shell elastic oscillations), we obtain the

following differential relations between the components of the interface of the media (shell
and boundary layer) [3,11]
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When these equations are added to the equations (3.4), (3.5), a closed system of two-
dimensional equations of magnetoelasticity of thin shell for a general case is obtained.
Adding the corresponding boundary conditions, initial conditions at infinity [1,4,11],
we must solve the problems of oscillations of the orthotropic shallow shells and investigate
the wave propagation in shells [1-11].

4. On the Transverse Oscillations of a Rectangular Spherical Panel

As an example let us consider a problem of basically transverse magnetoelastic
oscillations of an isotropic

(E1 =E, =E v —Vvi=WG,= E,"Z(i + v), G, =0, = cr) rectangular
spherical panel (k, =k, =k= R") without taking into account the rotatory inertia
and transverse shears, According to (3.7) we assume that b, =—h', hy = —h; . Here
we neglect the inertia terms @ u/81” a'v/at® , dufér, av/dr and consequently the

energy dissipation caused by longitudinal oscillation.
In this case the following solution

f=0,0=0,w=0h'=0 4 =0 (4.1)
satisfies the equations (3.5), (3.7).
The equations of mainly transverse oscillations can be rewritten in the form
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we rewrite the system (4.2), (4.3) in 2 more convenient form
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By analogy with the wave propagation theory we introduce (@,,\/, functions

B SN T .

da @ do P

which allow to separate the equation for 1 . which determines the shears of middle
surface. Using the transform (4.6) we bring the system (4.4)-(4.5) into the form

(4.6)

6 ow
Ay, =0, (1+0)Ag, +Ew+~hg=0
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The equation for \J, is independent from the system of two other equations for @,

d
DA w1 o Aw+ph—: Ap, =0 (47

and w,. However, in general case W, and \; are connected by means of the boundary
conditions.

Determining A, from the second equation (4.7) and substituting it into the third
equation we nbtain the equation for W only

h'oB; 8 a*w l:l+vh}csB= ow (3-v)Eh w

DA*w—— -——aw ), > t'~—+( —=0 (4.8)

12¢° o o’ 6R’e o 200-v) R?
Although the equation for W is independent, the problem for transverse oscillations

does not separate from the problem for @ ,\/, in the case of general boundary conditions
In the case of rectangular spherical panel when the edges ot =0, @ and f=0, b are
free-supported, the separation mentioned above is valid. So the solution for W be expressed
as
T 7 ] mm nt
W= ZZ Wi gt s oSSR = s Gl = (4.9)
m=1 n=1 a b
where @, is determined by the characteristic equation
h'c B; 21+ v) D (3-V)E
2 0| Talba e 1, 2\
W+ N2y =l A=A+ =0 (410)
mn llpcz mt By = R et ph( wT H ) 201-v)R*p
The imaginary part of the root @ determines the oscillation frequency. Similar to

the plate oscillations, the influence of the magnetic field on the frequency is weak in case of
real limitations for the magnetic field intensity
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From the expression for the coefficient Rc(mm)

h*c B, [ll 5 2{I+v):l

Re(o,, )= @11

_24pc! mTH G R2
it follows that the minimum damping oceurs for the oscillation form m=1,n=1. In this
case for shallow spherical panel the following condition is necessary:
11 3 2(1+ v)
TEd (ﬂ R}1
From (4.11) it follows, that the curvature of the panel causes reduction of the

dissipation. In the case of anisotropic electroconductive shell, ie. when o, #0,, the
characteristic equation is:

(4.12)

S 2(1+v)
0:+——(o,A o pl)l-————— |0
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D 2 E(@B-y
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In gentral case the roots of equation (4.13) are complex ones. Imaginary and real parts
of the root represent frequency and damping respectively. Both of these characteristics
depend not only on absolute values of electroconductivity coefficients, but also on relations
between these values and dimensions of the shell, i.¢. on the expression:

2 2
o,m on

D + E >0 (4.14)
In particular cases it is possible, that
BRI s 01+ || by, E(3-v
B o atrapd)immat ) D, ey EOY
24pe R +p?)|| ph 2(1-v)pR

So that lm(m M) =0 and any disturbances will attenuate without oscillation
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