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A PROBLEM OF LOW LEVEL STRESS IN COMPOUND PLATES
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In this paper domains of low stress level [1,2] for a contact surface edge are sought
in the space of physical and geometrical paramecrs. If these domains are known, then it
will enable not only to avoid concentrations hazardous for joint strength when designing
the mentioned edge, but also to exclude completely stresses in it.

1. Problem Statement. It is assumed that a plate is made of incompressible
materials hardening according to a power low, which are fully connected along a
cylindrical surface perpendicular to the plate middle plane. The plate is bent by external
transverse forces which however are not applied in the vicinity of the edge under study.
Using cylindrical  coordinates let us denote values in the domains
0<0<a, —h/2<z<hf2,and -B<O=0, —hf2 <z <h/2, where h is a plate

thickness, within the vicinity of the rib r=0 by indices 1 and 2, respectively (Fig. 1).
Let us assume that intensitics of stress and deformations are related by the
expression

— n
O = keg

where, as it is assumed within the frames of the
classical theory of thin plate bending, transversc
chear deformations are neglected, G, =0, and
g, =—¢, — &, are excluded from the material
. incompressibility condition. The hardening power
n=1/m of the both materials are assumed 1o be
equal, and the deformation module k to be differcnt.

The principal stresses O, O and T, for

=P / each domain may be written as follows:
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2. Differential Equations and Boundary-and-Contact Conditions. Representing
a deflection in the vicinity of a rib 7=0 as

w, =r* f.(8,}),



where f; and % are be-sought functions and parameter, respectively, momenis and
tangential generalized shear force will be expressed as follows:
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Substituting the expressions of moments into the balance equation expressed
through moments, We will obtain an ordinary differential equation of the 4th order

[ o]+ i)'+ @G w)x, =0 @
where 28 = (= Dm| (A —1)m — 1], 2n=Q- Hm(\* = D[1+ @A+ 1ym|
For freely supported edges of the plate we have M, =w, =0 and the boundary

conditions

f"= f, =0, when 8=ca;-P 3)
are obtained from it. The conditions for deflection, inclination angle of deflection, bending
moment and generalized shear force should be satisfied on the contact surface. It results in

Tz = I3 (i Vi) = Y(fz"‘l’vf;))(.za Y= ki/kl '
(v ) + i = y {1+ nfax, ), when 8=0 ()

The set of differcntial equations (2) with the boundary-and-contact conditions 3)
and (4) is a three-point eigenvalue problem, which defines in principle f,(6) functions
up to a common uncerain multiplier and A = A(c,B,y,m) for given values of the
paramelers o,B,y and m. The corresponding expression connecling the parameters
o, B,y and m are found considering the inverse problem where A =A. <1 is assumed.
This expression describes a hypersurface in the space of these parameters, and which
leaves traces in o, coordinate plane. These traces are families of concentration curves
of the same power moments (stresses), depending on Y and m. When A =1, then the
limiting curves of finite moments are built and they define zones of low stress level.

For linearly elastic matenals (m=1) equation (2) results  in
5 +2(N + D) (A =1)* f, = 0, which general solution may be writien as
fi =4, cos(A +1)8 + B, sin(A + 1)+ C, cos(A — 1)@+ E, sin(A— 1)8, where A
is assumed to be a complex number in a general case.

3. Integral Method. The above mentioned cigenvalue problem (2)-(4) may be
studied by a particular method which overcomes an integration of the set of differential

cquations. Multiplying the both sides of equation (2) by f,(B) in casc of i=1 and by
£,(8) in case of i=2 and integrating it over corresponding intervals, we form the
identity:

[T+ )+ G W)X i
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fntegrating it by parts. and transforming, we oblain
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where s = v +8 . and

L, = ([ oY +af ) - v

Noting that the sum of the last two terms for the ordinary boundary-and-contact
conditions (5) is equal to zero, we finally obtain

[Ur + o, 4o +y [ + o W0
0 -
n=

a 0 ; (6)
[0, +y [ 17 0a®
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choosing f; functions in such a manner that they salisfy as many boundary-and-contact
conditions as possible and substituting them into Eq.(6) and performing integration, we
obtain a transcendental-algebraic equation with respect to A, from which
A = A(c,B,v,m) is found.

4. Zones of Low Stress Level. Passing to the limit A —>1 in Eq.(2) and
integrating, we obtain

(30, + fik, = H, = const (@)
m=1
where %, = (‘ﬂf,."z +6 1+ 17+ l2f,.2) (8)
Denoting f, = X| E;I" W, (6) , where X, = signE, , from Eq.(7) we obtain
3-m
" 2 2 272
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The conditions (3) and (4), that interests us will be written as
W= qJI:O_wllcllEl:OL,—B, v, =YV, (10)
Wi =7, (wi'+3y o, = (w3 +3y,)0,, when 0=0
and @, are defined by Eq.(8), f, being substituted by W, .

A numerical solution of the set of differential equations (9) with the boundary-and-
contact conditions (10) in of coordinate plane determines curves of finite moments
(stresses), which separate zones of low stress level from concentration ones (Fig.2).

For linearly clastic materials the differential equation (9) takes the form
W4y = 1. Using its general solution and satisfying the conditions (10) in case of
m=1, we obtain the equation for limiting curves of finite momenis

(y - 1)* sin2asin2B + (v - D(B +ya)sin2(c = B) -
[(y + DB +yox) + 6y (L +P)]sin2(cx + B)=0

Fig.2 shows these curves in of plane for different . When y=1 we obiain

o +pP=m/2 and o+ = 7. It means that zone of low stress level for homogeneous

(1)

plate is an area comprising the triangular domain with the apices (0, 0),(0, m/2) and
(m/2,0) and the segment of o p = 7 straight line concluded between the coordinate



wxes. From the condition of shear forces finiteness we obtain that the zone of low stress
evel comprises the traingular area with the apices (0, 0), (0,7/3) and (t/3,0) and the
segments of & +P= n/2 and O+ B=r straight lines concluded between the

spordinate axes, These results fully correspond to the conclusions of B.G.Galyorkin [3],
soncerning a complete solution of the problem of sectorial plate with freely supported
radial edges.

High concentration of shear forces compared to moments, which was mentioned by
B.G.Galyorkin as long ago as 1920s, may be explained by non-perfection of the classical
theory of plate bending. The study of crack edge of linearly elastic plates carried out by
means of the revised theories [4-6] and comparison with the corresponding results of the
classical theory [7,8] show that, first, shear forces at that edge arc finite, and, second,
concentrations of moments (stresses) arc not changed.

Despite the usefulness of the principal conclusions obtained basing on the
assumptions of the classical theory for study of compound plate joints strengtl,
nevertheless study of the above mentioned problems taking account of plate transversc
shears [9-11] are of principle intercst. According to the approach stated here, zones of low
stress level in case of mixed boundary conditions when one edge of plate is frec and the
other is freely supported, are built in [12).
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