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ON THE STABILITY OF THE MOTION OF A ROTATING
| SHAFT BEARING AN UNSYMMETRIC ROTOR

1. Introduction. The motion of a rotating shaft with @ symmetrical
ross-section, bearing a symmetrical body (e, g. a disk) has been inves-
igated by various investigators. On the contrary, authors were unable
u}ﬂnd publications about the case that the body is unsymmetrical,
ith the exception of two articles of Crandall [1, 2] who, however,
aly investigated the case in which the mass centre of the body is
jved, the body being only able to rotate snder the action of restoring
oments.

In the present paper the more general case in which the mass
entre of the body is free to move with the shaft, is treated. We sup-
ase that the mass centre is situated on the axis of revolution of the
Mt and that one of the main axes of inertia coincides with this axis
iﬁ&n the shaft is undeformed. For the investigation analogous methods
jave been used as in a previous study of the motion of a symmetrical
haft; bearing a symmetrical body and loaded by an axial force [3].

After the investigation had been largely finished, authors became

_l'ﬁfare. of a couple ol publications of Aiba |1, 5], who investigated the
ﬁme problem and found analogous results. However, authors thought
that it would be worth-while to publish the results of their own wark,
because in a sense the treatment was more general and, moreover,
gjnit*._i to make a comparison “with one of the general enunciations of
Cetaev on the stability of motion.
2, Description of the motion of the sysfem. Although the equations
of motion which we intend to derive will be valid for any system of
supports of the rotating shaft, we restrict ourselves for the time being
{0 the case of a cantilever shaft, represented in [ig. 1.

The shaft is “clamped” at the origin o of the fixed coordinate
system (w, 5, ' 5), its axis of revolution coineiding with the axis ol in
iﬁe'und&furmed state. In the deformed state wy is the elastic line of
the shaft, o then being the mass centre of the body which is attached
:*_'p-:_lh'a shaft. One of the main axes of inertia of the body is oz; in the
undeformed position this axis coincides with ol The two ather main
aves ol inerlia are ox and ey.

The translation and rotation of the body are described by means
of the two auxiliary systems {o, 2 q* U4y oand (o, #% g*, 2), shown
in the figure. The first system indicates the translation of the body,
‘whereas the second one describes the bending of the shaft. The rotation
;?H:im:c-mﬂ AH Apuwamenon CCP. Mexannga, Ne &
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of shaft and body is given by the angle 4 between (6, x, ) and

3

Fig. 1. The shaft in & doflected position.

We will indicate column wvectors by means of lower case letters
on top of which a bar has been printed, and matrices in the same way
but with capital letters, The transposition operation is indicated by a
tilde. Thus, a row wvector is represented by a lower case letter in I:c_!'
of which a bar and a tilde have been printed.

We then can define the [ollowing vectors:

g,

e= (I =L e ) oF =5 T 0 (2.1)

r={x, g 20 f=(* p% 2)

Here 4, is the radiug vector of the mass centre o, The transformation
between the various vectors can be represented by the formulae

PRt e W R 29)
where the rotation matrices G and G*" are given by
1 1 !
; DR B i S
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&= '2—'? i —5F - (2
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N cosy  —sind

G =( sin cosy 0 ) (2.3b)
0 0 1

. Here 2* and 4% are Rodrigues ccordlnates in first ap-

ﬂan, =¥ iz the mtatlun of the system (o0, x¥, y* z) around the
and ¥* the rotation around the axis oy®. In the formula (2.3a) for

of third and higher degres in 2* znd % have been omitted.
oduct of G* and G*% is called G

G = Griee (2.4)

(1) and (2) yield

w=2+Gr (2.5)
components with respeet to the fixed coordinate system of
S lute velocity of a point of the body are wiven by the vector

*=p <7+ GF (2.6)
o—t=0Gr, r=G(p—0n) (2.7)

ot =g, + &% [ 5 — 5o (2.8)
3= GG (2.9)
;0 —e w,
O :( ok 0 - ul;:) Lglﬂ:i
— Wiy iz {0
G e ey — o
1 1 1 i
SR XU o E S, e [ 1SRRI
o 2{ i | H—( 2 ¥ 5 )

ead of (2.8) we can write:
¥ =gy + 0 (3 — 7o) (2.12)
or of the angular velocity being defined by

e

T {uwr, iy l;lr;} [2.13}
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More useful are the components of the angular velocity vector:
with respect to the rotating system (o, x, g, z). By méans of (2.6) we
have for the components with respect to this system of the absolute
velocity of a point of the body!

5 = Go*=Go 07 (2.14)
with

GG (2.15)

i"1

Mow we lind

¥zl
-‘_,.-'_'-1.
|
: 8 o
|
= B
-
|
o B §
e
=
—
£

M m,
with
i, ==':as-:-+}' siny, —*.p"‘sln-a ™ pog
I (2.17)
iy =% e gy )
2
=6 that also
v=Gp+or (2.18)

here the vector of the angular velocity reads

W= (g wy, o) [?.ﬁ_. '
We easily verify the relation
c—Gu (2.20)

The velocity of the mass centre can best be determined by means

of {2.6). by putting r = oz

so that

Hure

v

3. Derivation of the equations of motions by means of energif
metheds (Lagrange). In using the method of Lagrange's equations we
first have to find the expression for the potential energy {/,
the shaft is rotationully symmetric, the relations between the forces
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nts applying on the shaft and the displacement quantities
written, according to fig. 2, as

—Fi=e0 4 .l':igi".*- — Mq = Gy H Qza:f.'*: (3.1
—Fo= ety — e M: = oy — Ot
Fig. %, The forces exorted by the shaft on the body, the
forces exerted by the body on the shaft and the rotations
% and L* )
cantilever shaft with the length a we have, for example,
12 bl . 4F
g2 e =SBl o JHEL g
4 i a
Now owing to Clapeyron’s law we find
i _% (Fi5 + Frng -+ Mus* + M) (3.3)
"__thar with (1) we obtain the expression for the potential energy
i 1 i P . . 1 g
U= E e (5 T 73+ e ligr ™ — ™) 1 'a‘ Goy [ 2%9) (3.4)

[Tﬁs"cead of the coordinates %, w, +* and 7%, related to the fixed
, we henceforth will use the coordinates
x =& cosh b oy siny, § = fsin g -, co8 {3.5)
w= t_‘-'“" cosy+ ¢Tsind, ¢ =—wFind L yFeosy )
h belong to the rotating system. [n the new coordinates the expres-
the petential energy (3.4) reads
L 1 1 _ .
U= _2' ey (% o7+ c:z{-_fr’. —yz) f‘? Con (5% L %) (3.6)
LI?HIE kinetic energy of the system is given by the expression

1 P 1 ;
= E m (G - “12;'-1 H UE;}'+ E’ O Jr!u'“’ng' Jzw?) (3.7)
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where wp: ete, are the elements of the vector t-.':; (2.92) and ., w,,
are determined by (2.17]. We [irst reduce %, v, ¢, #* to x, ¥, %, I
Inverting (3.5) we have 1

y=acosy —pgsiny, ;= xsind 4 ycos

=® —ccost —ysEind, ¥ =gwsind 4 rcos

(3.8)
so that
fo = xcoss —ysind— 1 (xsin b+ yeas )
t=xsinb+ycost — b(xcosd—yein i)
e ~ - 39)
= geosy gsin e —4 (7 sin - peos ) :
IF=gsiny | yeosd 4 Sizeosy 4 ysin)
Thusz the velocity components read

oy —xcosy —ysind — Yxsing + geosd)

gy, = =xsind L 4 g eos - a{xcosu—gmu 5 (3.100
o —
and
o, =gk =% 3 --.
& = A (3.11)
”-=J< —??—31') — {3 — 1)

respectively. [nserting these expressions into (3.7) we obtain

T = -é—mii‘: g+ 20 (xg — ) b g

I S o 1 e wetil
b e — il e+

4'%L1;2{1—?2—121:—:5{351—?}_}! (3.12)

T he shaft is driven by a moment M around the axis w0 The ¢
nerzlised forces related to it are found by determining the virtual wi}rk

AW = M. {31:%]

Now @0; can best be calculated by considering the expression (2.11)
=

for . =10, by replacing the quantities -
z and 7, according to (3.8) and (3.9):

and ¥¥ in the expression by
P y

g0+ (.14

and by replacing w,, 2, ¥ and U by &0, @, iy and 3% respectively:
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e — (5, ) 4 ) (3.15)

ation with (3.13) we then find for the various generalised

Qir =0, @ = _';_ My, = %M'F‘: Q=M (3.16)

¢ now are able to derive the equations of motion by means of

Al OF o B it i (317)

m (e —gh—2gb—x¥) + eyx + ey =0 (3.18a)
mly +xb b 2x% — g+ ey —enz =0 (3.18b)
Jo 6= — 33 — J (7% + 25 +
AL (Gt eyt =~ My (318
S, o — 0+ J, (4 b+ o) -
o (o= 1) et it = Mz (3.184)
m |z — g LU 4 g+ 20 (ex + )l —
— Atz —u8 — 9+ nlz—yhh+
/el eb + ) pld )]
+J’, I*‘-"r -2—.‘(?.'15 —z7) =it 4 72— 2 (=3 ) } =M (3.18¢)

i he equation (3.18e) can be simplified by combining it with the
IF

our other equations of motion, (3.18a)—(3.18d). Then we find
M=—{(], —J Y e— + i) +
. : Be v .
= .!,J"P—L? (74 )+ E{w— ) (3.19)
-—%}’. times M (3.19) to equation (3.18¢) and %*% times M
equation (3.18d) we find for the four first equations of motion
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=T ity e gy )
my—xpt2xi— yot) — ey —apz =0
Folo— v — 0 — (), — V5 Db — oty & Gy = — My (3.20)
Sl vt g+ o L) (3 =0+ ex + cpr = My

In sections 5—7 only the motion will be considered for the case
4 —m = const. Then M (3.19) is of second order in the remaining four
displacement guantitics, so that the four first equations of motion
reduce to

mix—2uy —wx) L epx | ey =0

m Ay + 2oz — vty) o epy— e =10
Jolg—wn) =, — Loy tog) —cpy+ouz =10 (3.21
L 4w} 5 ], — J)uite —ox) ek + g =0

Before we shall discuss these equations in detail, we will show how the
equations of motion can be lound by means of the fundamental law of
analytical mechanics.

4. Derivation of the equations of motion by means of the funda-
mental law of anaiytical mechanics (Newton and Ewler). The motion
of the mass centre o of the body is determined by Newton's law:

£,
F, | =mu, (4.1)
- |
P, Fy and F. being the components in the directions ox, oy, oz of
the force which the shaft exerts on the body, and g, being the veclor

with respect to the system (o, x, g, 2} of the absolute acceleration of
the mass centre.

For the forces the relation

F. | F
]FEY:ﬁ[ﬁ;l (4.9)
|‘ ol l £ [

holds. By means of the relations (3.1) for the forces - and [ and
the relations (2.4), (2.3a) and (2.3b) we f[ind, restricting ourselves to
quantities ol zero and first order:

Ili= = (e ety Fy =—Aa—tpy) (4.3

For the acceleration @, the relation

Eﬂ = ;.;. + - /\T'-'u {44}
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where ;;E, is the vector with respect to the system (o, x, y, z)
velocity of the mass centre. We have
v, = G, {4.5)

ponents of ;5 being given by (3.10). Onmitting again all quan-
of second and higher order, we have, because of (2.4), (2.31) and

x— g
o= {y+ x| (4.6)
o |

. 'tqgether with (4.4), (4.6), (3.11) and {(4.3) gives [or the first
ations of motion

m(x— g ?ay = 5'1:} Eubipr ity =0
W T (4.7}

mAy+ it 2o — V) ey — o= 1)

ement with the first two equations {3.20),

uler's equations read

M= foi— ], —J)ayw,

My = f o, —{], — ] )o.a, (4.8)
M= [ (], = [ ooy

noments being determined by

M. M-
( My) —i:( M,,.) (4.9
b, Mz he M‘.‘. 4

nd M. are given by (3.1}, whereas M. follows from the shaft
um around the axis ] and relations (3.8):

o Fimg— Fify = M - 10 (Gop” — wpt®*) = M —cplxs + yy) (4.10)
her we have

M. = ey — cpp — My, My = —cpox — ey + My
' | (4.11),

f

2 er's equations (4.8) now become, with (3.11):

M.~ M 1—%{#—#;&1

e — ) (J,— 1.5 +4) — ey - exsp = — My (4122)
Sy obt 09) 4 (f, = S5 (5= 79) + G + oy = M (4.125)
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(L. IR A =M (4.12¢)
The first two eguations agree with the last two equalions (3.20), whereas
{4.12c) is the same as (3.19).

5. The critical speeds. We now return to the equations of motion
(3.21) and [irst investigate. whether a stationary movemen! of the system
is possible, i. e. a movement for which :::'—-3;:: o= ,.-f ={). 1n this case
the values of x, y, @ and 7 are determined by the four homogensous
equations

(e — muf)x + cyr = 0, cpx + [ep — (] — e =0 (51a)
(e —me')y — P =0, —Cull & (0n— (o =12 wie =0 (3.1h)

So we find that there are two kinds of critical speeds, one related to
x and 7 and the other to y and 4. We shall denote the eritical speeds
by wy and the displacements belonging to them by xi 7 and gp. %,

respectively.

L

Fiz. 3. The relations between the loads and
the displacement quantities of the shaft.

Further on, it is advantageous to introduce reduced (“dimension-
less") quantities. We first define the fundamental angular veloeity o, by

wy = Veylm (5.2)

and we eall
== e”_;";’c._.:m, = c,._-.l."l-"r“r::.g:! i fung
I'Lar - -"rx-'ll-";:' I:Lﬁf . j,';"l;-"lr:

For a cantilever shalt we have, according to (3.2) 3% - 34, Thus the

critical speeds wye are the roots ol the equations

=1
0

(3.3)

H—fu} 1 —:1{<_L_l—1]|2'-; —

: L 5.4
(1 — ) |1 —afs, — Dot} — P

1l
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w'e:-e‘q:.la.iinns can best be solved by first reducting them te the

L bmmfy (1 — w2y —=
e =1 (5.5,

- T i__.-.Thn relations helwoen Hyop and @ for ?=3f and varions velues of a.

. 4 we have plotted the relation between By and v for various:
of 2. From this figure we conclude that a system has only one
speed related 1o the motion (x, ¥) when 0<"p_ <1, and two
speeds related to this motion when t, 7> 1; the same holds for
tion (y, #), which is determined by p rather than by p. We
that the qualitative behaviour of the solution is not esseatially
ced by the magnitude of the parameter z (0 = 3<_ e}, neither by
the parameter ¢ (<7 "<1).
‘There are two cases which are especially important: the thin disk
is perpendicular to the axis oz, and the thin disk which contains

5 (so that we can choose the axis ox perpendicular to the plans
e disk). In the first case we have

Le=J e W = (5.6a)
in the second case
Jo=ht e Bo—p=1 (5.6b)

fig. 4 we now may conclude that in the first case never more
two critical speeds exist for the complete system, whereas in the
il case there are three eritical speeds for <1 (J,< /.Y and
- critical speeds for b, =1 0/, >/). In the case of a two-blade
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propellor we have appreximately j = J >0, jllr =0; =1 = a,
so that there would be only two different critical speeds; in reality the
propellor blades are not completely flat in the z-direction, so that
ju =0, /. = v, =1 thus three different eritical speeds occur.

6. The stability of the motion. The stability of the solution of
the equations of motion (3.21) can only be found by considering their
solution, This can be represented by

2 2s a3 S, Y = g™ {6.1)

Besides the parameters (5.3) we introduce the reduced yuantities

{; = Py, Xx = .'I.'_.'f, y Il'f.-.! )
i (0.2)

Al T~ S

and, in the same way, =x, Yy o {u? ! is a reference lenuth of the

{ P ™

order of x, und y,.
Inserting the solution (6.1) into the equations of motion (3,21} and
using the relations (6.2) we find that x, w 74, Vo should satisfy the

four homogeneous linear equations which read in veclor nolalion

i o Sl —2up 0 Vi
t apt-aie =N 00 —slleeomlep el
Qg 0 Pl —3 N
i gl —p, —u Jup — 1-5—111,];15—-1{'”“ 1'I|-_-.'-' s,

(6.3)

The values of (xo 7u @o Zo! can only be unequal to zero if p is a root
of the characteristic equation of the system (6.3). It is easily found
that this is a fourth degree equation in the unknown p'.

This can be shown by introducing the ausiliary quantilies

a = g, |’J=:|'!'I-|‘1 5:'1“—}‘__'.'-w}

- ; (.4
mi=1-1Lta I:'l wWuw', p=1+4a(1— n) i
Thus the characteristic equation reads
Fu-r=gr v % ¥ )
.| bp* + m 0] —cup
: : . =0 i3
%p 0 plewt ke
. i v aptha

or alter evaluation:
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i
D Agpt =0 (6.6)

g=H

—tlatbtmtat (4e - a—b}tf‘"; <+ 2mn{l 4 0F)
Ay =2(1+ 0% (am + bn — c’) L ab (L — ' —7*a — b) + mn
Ay = am+ ba + ot 4 2ab (1 + o)
A=

The solution (6.1} is only stable if all the eight roots p, arein the

and part of the complex plane or on the imaginary axis: no root
-Eave 2 posiiive resl pirt. This means that the quantities p}
‘all be real and negative. A boundary between a stable and an
region is formed either when p? goes {rom the negative part

: 5 t|1_P: negative part of the real _zi_x’[s and becomes complex; as
ays two roots pi of (6.6} are complex adjungate, in the latter case
stability boundary two roots p- then coincide.

The first kind of stability boundary is found very easily. In that
we have to substitute p =0 inte (6.5), But then we have the same
fon as in section 5, and the characteristic equation reduces to the
the two ﬁquati;ns {3.4), which is equivalenl to the equation
(see 6.7). So the curves which indicate the critical speed are
~same time boundaries between a stable and an unstable region.
We have investigated the ecsses p +p =1 (thin disk perpendi-
r to the shaft) and 1, =1 (thin disk in the plane of the shafl)
in detail by ealculating the roots for certain values of 1t (in cach
fnr w=2 and " =314).

In the first case all the four ropts p, are always real and we find
- two stability boundaries, coinciding with the curves of critical
: see fig, 6. Two of the roots are shown in fig. 3 for the value
Bo= 2/3, the two other being more to the left in the coordinate
ie. We find that instability oceurs when the most-right root p?
es the woaxis and becomes positive.

In the second case there are three regions of instability (fig. 8).
regions la and Ib are limited by the curves on which the speed is
cal, as Is shown in fig. 7 (for p = 2/3), where the roots p? and pf
ﬂ.;:th& © axis in points corresponding with these curves, But thera
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is another region of instability (II). where two roots pi become com-

plex, which also is shown in fig. 7. The latter region can only be found
by calculating the roots P, and determining the values of » where two
rools fi coincide.

ZES

F

Fig. 5. The behaviour of the roots pl uudl:; 'as function of
w for b IE 1_‘4' =1, =273 and ‘;I =3|||'L

W~ 93 9T

LE
b o table =t
unstable
nt 1]
stable
" - EE | By

pE—

Fig. 6. The stability regions for wytiny 1.
-2 and 37374,

That the curves of critical speeds partially constitute the stability
boundaries, can also be shown by considering the influence of the gy-
roscopic forces: this enables us to check one of the results of the in-

vestigations of Rayleigh and Cetaev |8], We shall do so in the next
section,
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L

1188
{19
10

L7930
- 70

Fig. 7. The beliaviour of the roats oi o3 function of w far

Py~ lon=20, =2 and s1—=3/4.

L

i,

Gig. B, The stability rogions for

By =ity I, 3=2 and ;¥ 3L

9. The relation between the curves of critical speed and the sta-
bility boundaries. 1t is possible to consider the equations of motlon
i 521‘] as Lagrange's equations
d 4T are | oy
dt oq,  dq. U,

= (7.1
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derived from the modiflied kinetic energy
1 =g Ly A 2 4
= —mile™ )+ 1.5+ —0 {7.2a)
5 mle g, 5 /s

the modilied potential energy
1 v P i
= '2— (i — meet) L) e b —gs)

f % |G Ug — J et 3‘ begy —A ) — b W'Y (7.2)

and the modified generalised forces

Qz = 2!?2'-'3_21-. Q; = — Emllu:;

=1, + L=t G=—(].+ ], = J)ws

Here the kinetic energy 7% is a homogeneous quadratic positive de-

{7.2¢)

finite function of the velocities x, y, v and ¥ and the potlential energy
{77 is a homogeneous quadratic, bul not always positive delinite, function
of the coordinate =, T andd ¥;  the gcneralised farces Q: have the
character of gyroscopic forces. Thus, the power of the generalised
forces

Fr= Qe Quy + L+ Qg (7.3)

is equal to zero. Because 7 is a homogeneous quadratic function, now
the energy balance

iﬁw b %) = P (7.4)
ift

fwith F% =10) holds; and we see that the stability of the motion de-
pends on the nature of 0% when UF is positive definite, the motion
is certainly stable, whereas its nature is uncertain when 077 is not pe-
sitive definite. Cetaev [8] has shown that for such an (undamped) system
the gyroscopic ferces can stabilise the system in a certain demain of
the region where the potential energy is not positive definite.

To find the boundaries separating the regions where U7 is po-
sitive definite from the regions where this is not the case, we have
to caleulate the eigenvalues of the matrix C* of the potential energy,
the expression of which can be written as

1=

U= qu;*c} (7.5)

From (7.2b) we find
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| §
€y — mw® Cat 0
Et‘: Cia Bge— ':.Jf’, —= gt U 0 (7.6)
1 0 ) ! — B
0 f) g ﬂﬂz'_{fg'_f;]“’ﬂ '

comparing this expression with the matrix of the combined equations
2) and (5.1b) we easily find that the values of w where an eigen-
e of C* is equal lo zero, are the roots of the equations (5.4) far
critical speed of the system, in agrcement with our previous result.
the further discussion it is advantageous to use again reduced
.iE_li_?.E; by means of (5.3} and (6.2) we find for the characteristic

T 0 0 |
1—gfls,—Dui—3 © 0
0 I w—0 i =0 @7
0 P 1—a(p,— 1?5

Thus the values of + are determined by

ek gy =0 {7.8)

g = (1 "‘22]{1 = Bl — 1) o} — 47

.. (7.9)
as=E—p@ldt—slp  —De

stability il is necessary that both ¢, >0 and ¢, >0,
. For ¢, this is indicated in fig. 9a- 9b, which correspond with [ig. 4

for the special values of 2 = é-—- and 7 = 2. For ¢, we have drawn up an

gous set of figures: fig. 10 and fig. 1ta—11b. Comparing the [our
ures we find that in the only quadrant which has a physical signi-
ance (11, =0, @* = 0) there is always a stable region situated against
P-Ly--axis, whereas for certain values of 2 a second stable region
ssible (such as in the case of fig. 8).

In this way it is possible to determine the regions where the
tion is certainly stable. In the regions where one or more values af
re negative, the motion can either be stable or unstable. This is
nonstrated by comparing the] figures 4, 10, 11a and 11b. Here we
that in the unstable regions 1a and 1b one eigenvalue is negative,
eas in the domain consisting of the unstable region 11 and the two
ent stable regions two cigenvalues . are so. In this latter domain,
h the exception of region 1l the unstability is removed by the effect
e gyroscopic forces.
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The figures 4, 10, 1la and 11b coable us [or the case of &
cantilever shaft to determine the region where the motion is stable

Fig, 10 The eiurves ¢ 0 JTor 2=¥1 and vavioos values of @

snyhow. For finding the nature of the motion in the remaining regions
it is necessary to calculale the raots of the characteristic eguation

(6.6).
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. The sign of ¢, for =12 and Fig. 11k The sign of ¢, for 22 and
(23, 134,

8. Conelusions. By means of the results of the previous sections
possible to find the stability of a cantilever shaft with a symme-
;_ﬁr@éﬁ-sculipn, bearing an unsymmetrical bady. It is not difficult
tend the investigation to the case of a shaft which is supported
ier ways, because it is only necessary to change the value of the
ey .

It would be quite interesting to extend the investigation lo the
f (external and internal) damping.
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‘OB ¥YCTOHYHMBOCTH ABMIREHHMA BPAILUAIOILETOCH CTEPRKHSA,
HOCHIIENO HECHMMETPHMYHBIF POTOP

Pezmwme

I’ICC«‘LEJ}'ETEK ADHEeHHE BPallameTocH, YORpYraro, © CHAMMETOHMHEM o=
MEPEHDINM CCHUNHEN CTEDRHA DE3d Maccbl, KOTda 3 HeM HAXGIHTCA HECHMMET-
PHHTEIGE TR AL

Lemrp sacen Teaa pacnoAosen a ool DPALNEHWS CTEQMNS M 04HA HA erg
TAIBINEY OURH HHEHEWH cORIaiacT ¢ ATOH OEDK CTEPMHEA B €r'n HeZepopMupo-
Bakifoy coctommml. JarTyxaiue IRHMeHIE He NPHHUMAETCR Do BHUMARNE. Y TAD-
DasA CEROpPOCTH SPAlleHus CTEPMHA ABAHCTCH NOCTORHHON,

Hatiacno asa sula obaacTedl HeyoTOMMHDOCTH: 0AllA OUPaMItSeHE KPHRH-
ML KOTOpBIE COOTRETETBYHT CHOTEME BPHTHILCRHE CRopocTed, IPYTA — KpH=
EOPIEA CoRfajntdT, & Iud ALVEHN SEAHKITCHE SMHCTO MEHMDEMEL,

Fravavrars corpacyioren ¢ popuyanponzamy Peaen n Ueraena.
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