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Բանալի բառեր`ինտեգրալ հավասարումներ, վերածվող կորիզներ, կոնտակտային խնդիրներ, 
Շտաերմանի կոնտակտային խնդիր 
  
 

Մխիթարյան Ս.Մ. 
Վերածվող կորիզների մեթոդով խառը և կոնտակտային խնդիրների մի դասի ինտեգրալ 

հավասարումների լուծման մասին 
 

Դեֆորմացվող պինդ մարմնի մեխանիկայի խառը և կոնտակտային խնդիրների բավականաչափ 
լայն դաս նկարագրվում է սիմետրիկ կորիզներով Ֆրեդհոլմի երկրորդ սեռի ինտեգրալ 
հավասարումներով: Հոդվածում զարգացվում է այդ հավասարումների լուծման վերածվող կորիզների 
հայտնի մեթոդը: Շարադրված մեթոդիկան լուսաբանվում է մակերևութային կառուցվածքի 
հաշվառումով առաձգական կիսահարթությանը դրոշմի սեղմման Ի.Յա. Շտաերմանի կոնտակտային 
խնդրի ինտեգրալ հավասարման օրինակի վրա: 

 
Мхитарян С.М. 

О решении интегральных уравнений одного класса смешанных и контактных задач методом 
вырожденных ядер 

 
Довольно широкий класс смешанных и контактных задач механики деформируемого твёрдого тела 

описывается интегральными уравнениями Фредгольма второго рода с симметрическими ядрами. Для 
решения таких уравнений в статье развивается известный метод вырожденных ядер. 

Изложенная методика иллюстрируется на примере интегрального уравнения обобщённой контактной 
задачи И.Я. Штаермана о вдавливании штампа в упругую полуплоскость с учётом поверхностной струк-
туры основания. 

 
А fairly wide class of mixed and contact problems of mechanics of deformable solids is described by 

Fredholm integral equations of the second kind with symmetric kernels. For solving such equations, a well-known 
method of degenerate kernels is developed in the paper. The stated methodology is illustrated on the example of an 
integral equation of the E.Ja. Shtaerman generalized contact problem on indentation of a punch into an elastic half-
plane taking into account the surface structure of the base. 
 

Introduction. The method of integral equations being one of the effective methods of 
solution of mixed and contact problems of mechanics of deformable solids was widely 
applied in numerous investigations [1-9]. By the method of Green function, such problems 
are directly reduced to Fredholm integral equations (IE) of the first kind as well, but most 
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of them can be transformed into Fredholm equations of the second kind. The latter 
equations can also directly arise in contact problems. This is the case in the problem of 
contact interaction between the elastic bodies taking into account the factor of the surface 
structure of the bodies contacting between each other, usually the factor of roughness by 
Shtaerman model of contact [1]. According to this model, because of the local 
deformations, the arising local displacements in each point of the contact zone are 
proportional to the contact stress at the very point. In such formulation in [10] an axially 
symmetric contact problem on indentation of a punch, circular in the plan, into a rough 
elastic half-space, also described by Fredholm IE of the second kind, is considered. 

Numerous effective methods of solving the Fredholm IE of the second kind [11-13] are 
developed and among them the Fredholm method of reducing the original IE to the system 
of linear algebraic equations (SLAE) holds a special place. The procedure of reducing to 
SLAE is greatly simplified in case of degenerate kernels of IE. That is why the method of 
the degenerate kernels of IE solution, when the original kernel is approximated by the 
degenerate kernel with great exactness, has got an intensive development [11-13]. 

In the present paper, the method of degenerate kernels is applied to solving the 
Fredholm IE of the second kind with symmetrical kernels, by which integral operators with 
discrete spectra are generated and for these operators corresponding spectral relationship 
are well-known. The idea of the paper lies in the fact that based on the spectral relationship 
bilinear expansions of the kernels in the form of infinite series are written, then these 
infinite series are replaced by the finite series and, by that, the original kernels are 
approximated by degenerate kernels.  

There is a list of symmetric kernels, for which the spectral relationship [7, 8, 14, 15] of 
Fredholm IE of the second kind are well known; with such kernels in the framework of the 
above mentioned E.Ja. Shtaerman   contact model a wide class of contact problems is 
described. The method of degenerated kernels is concretely illustrated here on the example 
of E.Ja. Shtaerman   generalized problem [1] on indentation of a punch of the general 
configuration into an elastic half-plane. It is proved that the approximate solution by the 
method of degenerate kernels, as the number of summands of the finite series increases 
infinitely, tends to the exact solution of the problem. For this purpose the issue of regularity 
of the corresponding infinite SLAE is investigated. In particular cases the numerical 
analysis of the problem is conducted.  

1. General preconditions of the method of degenerate kernels. 
Let us have Fredholm IE of the second kind 
         ,

L

x K x s s ds f x x L                      (1.1) 

with symmetrical quadratically summarized on L L  by kernel  ,K x s , where L  is a 
finite or infinite interval of  the numerical axis. The integral operator K , originated by 
kernel   , ,K x s x s L L  ,  has discrete specter and for it  let spectral relationships take 
place 

         , 0,1, 2,... .n n n
L

K x s s w s ds x n    
 

                 (1.2) 

Here n  are eigen values,  n x
 

are eigen functions, composing full orthogonal 

systems in space  2L L , and  w x  is non-negative weight function by which functions 

 n x
 
are orthogonal: 
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0 ;
.n m

nL

m n
x x w x dx

h m n
     

   (1.3) 

As kernels  ,K x s  with above properties the following kernels can be taken 
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2 2

0 2 cos

02 2
0

7) 2 cos 0, 0,1,2,... ; 0, .
2 cos

x s xs ue mn du m L a
x s xs u

   

   
 

  

 

Here  K x – Macdonald’s function of index   and  J x – Bessel’s function of first kind 
of index  . 

Fredholm IEs of the first kind with these kernels describe numerous mixed and contact   
problems of mechanics of deformable solids. In [7, 8, 14, 15], as well as in papers cited in 
[14, 15] for such kernels spectral relationships of type (1.2) and related to them integral 
relationships are established. 

Now for the function  f x  from  2L L  we write the formulas of Fourier generalized 

transformations in the system of functions  n x :  

     

       
0

1 0,1, 2,... .

n n
n

n n
n L

f x a x x L

a f x x w x dx n
h





  

  




                            (1.4) 

Using formulas (1.4) for kernel  ,K x s  at fixed x , the following bilinear expansion of 

the kernel in the system of functions  n x
 
will be obtained: 

        
0

, , .m
m m

m m

K x s x s x s L L
h






                               (1.5) 

If in expansion (1.5) we replace the infinite sum with the finite sum restricting the 
number of terms by n , then thereby kernel

  ,K x s  will be approximated by the 

degenerate kernel  ,nK x s :  

       
0

, , .
n

m
n m m

m m

K x s K x s x s
h


                                 (1.6) 

Further, in IE (1.1) kernel  ,K x s
 
is replaced by  ,nK x s  from (1.6). After the simple 

transformations we shall have 
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0

0, .

n
m

m m
m m

m m
L

x X x f x x L
h

X s s ds m n



     

   




                           (1.7) 

From here the approximate solution of the original IE (1.1) will be in the form of 

       
0

,
n

m
m m

m m

x f x X x x L
h


                          (1.8) 

of course, if the coefficients mX  are already determined. For the determination of these 

coefficients we multiply both parts of (1.7) by    0,k x k n   and integrate the obtained 

equality over the interval L . As a result, we come to the following SLAE: 

 
0

0,
n

m
k km m k

m m

X R X f k n
h


                                       (1.9) 

         , 0, ; .km m k k k
L L

R x x dx k m n f f x x dx      
 

Thus, the method of degenerate kernels in the above described form reduces the solution of 
the original IE to the solution of SLAE (1.9). 

Note, that in paper [10] with the help of bilinear expansion (1.5) for a symmetric kernel 
in the form of Veber-Sonin integral the solution of corresponding Fredholm IE of the 
second kind is reduced to the solution of the regular infinite SLAE. In paper [16] the 
method of reduction of the general class of integral equations with the symmetric 
quadratically summable difference or summation or difference-summation kernels to 
regular infinite SLAE is suggested. Moreover, by means of expanding the kernel function 
in Fourier cosine-series or in the series of other complete orthogonal systems of functions 
bilinear expansion of (1.5) type is applied. However, for the noted above class of kernels 
the application of expansions (1.5) in eigenvalue functions of kernels is more convenient 
and the use of degenerate kernels technique based on above expansions turns to be more 
simple. 

This method is applicable to the solution of IE of I.Ja. Shtaerman generalized contact 
problem [1].  

2. The formulation of the contact problem and derivation of basic equations. 
Generalizing the I.Ja. Shtaerman contact problem [1], we assume that the absolutely rigid 
punch, the base of which in  the cross-section cut by the plane Oxy  is described by the 
equation   ,y f x  is indented under the influence of the central vertical force P  and 
overturning moment M  into the elastic half-plane with Young module E  and Poisson 
coefficients v  (Fig.1).  
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Fig.1 

Here, instead of the Hertz smooth contact model we take the I.Ja. Shtaerman contact model 
[1] which takes into account the factor of the surface structure of deformable bodies 
contacting between themselves. According to this model the vertical displacements of the 
boundary points of the elastic half-plane are consisted of two summands. The first 
summand [1] 

   
 22 1

v ln ;
a

a

vax p s ds C x
x s E

 
         
   

   

 arises in consequence of global deformation of the elastic body caused by the  applied in 
the contact area a x a    pressure  p x

 
of the punch on the foundation in accordance 

with the differential equations of linear elasticity theory. The second summand  0v x  
arises in consequence of local deformations, conditioned by roughness (non-smoothness) of 
the contact surface, and it is considered, that at each point of the contact area it is 
proportional to the pressure  p x  at the same point:    0v x p x  ,  where   is some 
coefficient, depending on the surface structure of the elastic body. Eventually, for the 
vertical displacements  2v x  of the boundary points of the elastic half-plane we shall have 

           2 0v v v ln .
a

a

ax x x p x p s ds C a x a
x s

        


        
(2.1) 

On the other hand, the vertical displacements  1v x  of the punch, as an absolutely rigid 
body, have the form of 

   1v ,x x a x a                 (2.2) 
where   is the angle of the rigid rotation of the punch, and   is its settling. 

Now, substituting (2.1) and (2.2) into the contact condition [1] 
       1 2v v ,x x f x a x a     

 
for the determination of the unknown contact pressure, we obtain the following Fredholm 
IE of the second kind: 

       ln .
a

a

ap x p s ds x f x a x a
x s

         
                    (2.3) 

Here, C    is denoted by . 
The governing IE (GIE) (2.3) should be considered under the conditions of the punch 

equilibrium 
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   ; .
a a

a a

p x dx P xp x dx M
 

                                         (2.4) 

Equations (2.3)–(2.4) will be the basic equations of the considered contact problem. In 
them we pass to dimensionless coordinates and values, assuming 

         
0 0 0

0 0

, ; ; ; ;

; 1 , 1 .

x a s a a a E E

p p a E f f a E

               

           
 

As a result, GIE (2.3) is transformed into the following GIE: 

       
1

0 0 0 0 0 0
1

1ln 1 1 ,p p d f


              
                   (2.5) 

and the conditions (2.4) – into the following conditions: 

       
1 1

2
0 0 0 0 0 0

1 1

; .p d P P P aE p d M M M a E
 

                       (2.6) 

3. The solution of GIE (2.5)-(2.6) by the method of degenerate kernels. The method 
described in section 1 will be applied to the equations (2.5)-(2.6). In the given case 

 1,1L    and the spectral relationships (1.2) have the form of [7, 8, 14]   

     

   

1

2
1

1 1, 2,... ;1 1ln
1 ln 2 0 ; 1 1 ;

nn T nT d
n

n

     
          
   

where  nT   are Chebishev polynomials of the first kind, the conditions of orthogonality 
(1.3) has the form 

   
 
 
 

1

2
1

0 ;
0 ;

1 2 0
m n

m n
dT T m n

m n




     
    



      

  21 1w      

and the formulas of Fourier generalized transformation (1.4) have the form of 

     

       

0
1 1

0 2 2
1 1

1 1

1 2; 1, 2,... .
1 1

m m
m

m
m

f f T

f d f T d
f f m





 

      

    
  
    



 
  

As a result, the bilinear expansion of the kernel (1.5) in the given case for the 
symmetrical logarithmic kernel is written in the form of 

     
 

 0

ln 2 0 ;
1ln 1 , 1 2 1, 2,... .m m m m

m

m
a T T a

m
m





 
         

  
  

Later in accordance with (1.6), (1.8) and (1.9) in the given case the degenerate kernel is 
represented by the formula 

       
0

1ln , 1 , 1 ,
n

n m m n
m

K a T T


          
     

the approximate solution of GIE  (2.5) is represented by the formula 
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       0 0 0 0 0
0

1 1 ,
n

m m m
m

p f a X T


                                 (3.1) 

and the unknown coefficients mX  are determined from SLAE 

 

         

     

0
0

1 1

1 1

0 0 0

0,

, 0, ; ;

1 1 .

n

k m km m k
m

km k m k k

X a R X g k n

R T T d k m n g g T d

g f



 

   

        

          



                  (3.2) 

By the substitution cos t   integrals kmR  and kg  are transformed into the integrals 

 

   

0

0 0 0 1 0
0

cos cos sin , 0, ;

0, ; cos cos sin

km

k k k k k

R kt mt tdt k m n

g R R f k n f f t kt tdt





 

     




                (3.3) 

and are easily calculated. Upon that 

 
   

 

 

2 2

1 1 1 1 1; 1 ;
2 1 1

0 1; 1 .

m k

km

m k m k
R m k m k

m k m k

   
             


   

                (3.4)  

From here, particularly, 
   

 

   

 
 2 2

00 0 1

1 1 1 1
1 ; 2 ;2; 0, .1 4

0 1 ; 0 2 ;

k k

k k
k kR R R k nk k
k k

    
        
   

 

Now, taking into account the expression of the coefficients kg  from (3.3), SLAE (3.2) 
is represented in the form of 

 
 

0 0 0 0 1
0

0,

, 0, .

n

k km m k k k
m

km m km

X L X R R f k n

L a R k m n


      

 


                   (3.5) 

Let us the solution of SLAE (3.5) for the right - hand side equal to 0kR  denote by 
 1 ,kX for the right - hand side 1kR  – by  2

kX , and for the right –hand part kf  – by  3
kX . 

Then solution (3.5) is represented in the form of 
       1 2 3

0 0 0, .k k k kX X X X k n                                        (3.6) 

Then, referring to the conditions of punch equilibrium (2.6), with the help of (3.1) and 
(3.6) for the determination of parameters 0  and 0  we obtain the following SLAE: 

11 0 12 0 1

21 0 22 0 2

a a b
a a b
   

    
                                                        (3.7) 
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1 2
11 0 0 12 0 0

0 0

1 2
21 0 1 22 0 1

0 0

3 3
1 0 0 0 0 2 0 1 0 1

0 0

2 ; ;

2; ;
3

; .

n n

m m m m m m
m m

n n

m m m m m m
m m

n n

m m m m m m
m m

a a R X a a R X

a a R X a a R X

b P f a R X b M f a R X

 

 

 

   

   

      

 

 

 

 

By equations (3.7) the dependence between the geometrical parameters of the problem 
0  and 0 , corresponding to the reduced settlement of the punch and its reduced angle of 

rotation, respectively, with power parameters 0P   and 0M  is established.  
Note, that taking into account (3.6) the solution (3.1) may be written in the form of 

         

     

1 2
0 0 0 0 0

0 0

3
0

0

1

1 1 .

n n

m m m m m m
m m

n

m m m
m

p a X T a X T

a X T

 



   
             

   

     

 


             (3.8) 

In order to investigate the convergence of the approximate solution (3.8) to the exact 
solution of GIE (2.5)–(2.6), it is necessary to pass from the final SLAE (3.5) to the infinite 
SLAE: 

 0 0 0 0 1
0

1, 2,... .k km m k k k
m

X L X R R f k




                              (3.9) 

Coming out from (3.4), it is easy to observe that at different parities of k  and m  we 
have 0kmR  . That is why in (3.4) and (3.9) k  and m  should be considered 
simultaneously even or odd numbers. Then the infinite system (3.9) splits up into the 
following two separate infinite SLAE, corresponding to the symmetric and skew-symmetric 
parts of the considered contact problem 

 

   

 

2 0 2 ,2 2 0 2 ,0 2
0

2 ,2 2 2 ,2 2

0,1, 2,...

ln 2 0 2 , 2 ;
; 1 1, 2,... ;

p p q q p p
q

p q q p q q

X L X R f p

q k p m q
L a R a

q
q





     

  
  





  (3.10) 

 

 

 

2 1 0 2 1,2 1 2 1 0 2 1,1 2 1
1

2 1,2 1 2 1 2 1,2 1 2 1

1,2,...

2 1, 2 1
2; , 1, 2,... .

2 1

p p q q p p
q

p q q p q q

X L X R f p

k p m q

L a R a p q
q



     


     

     

   

  



            (3.11) 

Here, according to (3.4) 
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2 ,2 2 2

2 1,2 1 2 2

1 1 , 0,1,2,... ;
4 1 4 1

1 1 , 1,2,... .
4 1 1 4 1

p q

p q

R p q
p q p q

R p q
p q p q

 

 
    

     
 

    
      

        (3.12) 

4. The investigation of the infinite systems (3.10)–(3.11). These infinite systems will 
be investigated on regularity. With this aim referring to the infinite system (3.10) we 
estimate the sums [12] 

 2 0 2 2 ,2
0

0,1,2... .p q p q
q

S a R p




    

Taking into account the expression 2 ,2p qR  from (3.12), it may be written 

   
2 0 2 02 2 2

0

1 1 2ln 2
4 14 1 4 1

p q
q

S a
pp q p q





 
      
       

  

     
 

 
 

 

1 2
0 2 2

1 2
2 22 2

1 1

0,1,2... ;

1 1 1 1; .
4 1 4 1

p p

p p
q q

S S p

S S
q qp q p q

 

 

     

 
   

 
            (4.1) 

It is evident, that 

 
 2 2

1 1 0,1,2,... .
4 14 1

p
qp q

 
 

 

Therefore 
 

      
1

2 2 2
1 1 1

1 1 1 1 2ln .
2 1 2 1 24 14 1

p
q q q

S
q q qq q eq p q

  

  

   
     

    

Here the well-known formula from [17] (p. 22, form. 0.238.1) was applied. Thus, 
   1
2

1 2ln 0,1, 2,... .
2pS p

e
                                  (4.2) 

The sums  1
2 pS  will also be estimated with the help of Cauchy - Buniakovsky inequality: 

 

   
1

2 2 2 22 21 1 1

1 1 1 .
6 4 14 1

p
q q q

S
q qp q

  

  


 

    
    

Calculate the sum 

 

      

2

221 1

2

2 2
1 1 1

1 1 1 1
4 2 1 2 14 1

1 1 1 1 82 .
4 2 1 2 1 162 1 2 1

q q

q q q

q qq

q qq q
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Here the expressions of these sums from [17] (p.53. form.1.444.6 and 1.444.7 for 
0x  ) were applied. As a result, 

   1 2
2 8 0,1, 2,... .

4 6pS p
                                           (4.3) 

Based on the estimations (4.2)–(4.3), we shall have 
   1 2
2

1 2 1 2min ln , 8 ln 0.0965736 0,1,2,... .
2 24 6pS p

e e
 

      
 

                 (4.4)  

We pass to the estimation of the sums  2
2 pS . At first note, that as above 

 

 
2

0 2
1

1 1 2ln .
24 1q

S
q q e





 


                                                 (4.5) 

Then, again using Cauchy-Buniakovsky inequality, we can write  1, 2,...p  : 

 

     
2

2 2 2 22 2 21 1 1 1

1 1 1 1 1
64 1 4 1 4 1

p
q q q q

S
q qp q p q p q

   

   


  

           
     

Separately, estimate the sums, 

     
   

     

2 2 22 2 21 1 1

1

2 2 22 2 20 1 1

1 1 1

4 1 4 1 4 1

1 1 11 2 .
4 1 4 1 4 1

q q q p

p

r r r

p q p q q p

p q r q p r

r r r

  

   

  

  

  
               

   

   
  

  

  

 

Again using the obtained above value for the sum of the last series, we find 

   
2 2

2
2

81 1, 2,... .
8 6 4 3pS p   

           (4.6) 

As 

 
2

2

1 1 21 0,1, 2,... , ln ,
24 1 4 3

p
p е


  


 

then from (4.1) with the help of the estimations (4.4)–(4.6) we shall have 

 
2 2

2 0 0
1 2 1 22ln 2 ln 2ln 2 ln 0,1,2,... .
2 24 3 4 3pS p

е е
    

           
     

We require that the following condition will be fulfilled 
2

0 0
1 22ln 2 ln 1.
2 4 3

q
е

 
     

    
Whence we obtain the following condition of complete regularity [12] of the infinite 

system (3.10): 

 
 0

0 0
2

0 1 .12ln 2 ln 2 4 3
2

q
q

е
   

  
  (4.7) 
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Now we shall show that for those 0 , for which the condition of complete regularity   
(4.7) is not fulfilled, the infinite system (3.10) is quasi-completely regular, i.e. a complete 
regularity in (3.10) begins with some number. For this it is sufficient to show, that 

2lim 0.pp
S


  Turning to the estimation of   sums  1

2 pS , consider the function 

     21 4 1 1, 0,1, 2,... .f x x x p x p         

It is evident, that the function  f x  at 1x   monotonously decreases and its value at 

the point  1,2,...x q q 
 
coincides with the corresponding member of the series   1

2 pS . 

Herewith the sum of the series  1
2 pS , beginning from the second member, is equal to the 

area of the figure, consisted of the elementary rectangles with the bases of unique lengths. 
Therefore, 
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p x x p



  
     

  

For the calculation of this integral we use the well-known expression of the 
corresponding indefinite integral from [17] (p. 84, form. 2.18.4 at 1m n  ). As a result, 

 

 

   

1
2 2 2

2

1 1
4 8 3 2 4 1

2 12 ln 2 ln 2 ln 4 8 3 1, 2,... .
2 3

pS
p p p

pp p p p
p

  
  

  
         

  (4.8) 

From (4.8) it follows that 
   1 2
2 0 1pS p  at .p    

We pass to the estimation of the sum  2
2 pS , representing them in the form of 
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          (4.9) 

For the estimation of the sum pW  we introduce to consideration the function  

     2
1 1 4 1 1 1; 3, 4,... .h x x p x x p p           

It is easy to show, that this function decreases on the line segment 1 x p   and 
increases on the line segment 1p x p    , wherein 

   21 4 4 3 1 1; 3 .
6

p p p p p p          

Let the number p  be between two consecutive natural numbers 0p  and 0 1p  . Then 
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Passing to the estimation of the sum Vp , represent them in the form of 
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1

1 1V
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 and introduce to consideration the decreasing function 
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It is evident that  

         2 2
1 1

1 1V .
3 1 3 1 4 1p

dxh x dx
p p p x x

 

   
       (4.11)  

Further, by the above-mentioned formula from [17] we calculate the integrals from 
(4.10)-(4.11). After the simple transformations we find 

     

       

2 2

2
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1 1 1 1 ln 2 3
3 14 8 3 2 4 1

2 32 1 1 ln 3 ln 4 ;
3 2 14 1

pU p
p pp p p

p pp p p
pp

       

      

 

   2

1 1 4 1V ln 3 ln 2 ln 1 .
3 1 24 1p

p p
p p

         
  (4.12) 

Now from (4.1), (4.8), (4.9) and (4.12) it follows that 
 2 0 1pS p  as p    

and, therefore quasi-complete regularity of the infinite system (3.10) is proved. By the 
pretty analogous way it is possible to conduct the investigation on regularity of the infinite 
system (3.11). 

On the base of the foregoing, the method of reduction [11] is applicable to the infinite 
systems (3.10)–(3.11), i.e. the solutions of the corresponding (3.10)–(3.11) of the finite 
SLAE as  n   tends to the solutions of the infinite systems. 

5. Numerical results. For Poisson numerical coefficients of an elastic half-plane 
material we take 25,0 . Then the dimensionless parameter 25,0  may be represented 
in the form of  

0 0 0
15 ; .
8

a a E        


 

Now for the particular configurations of the punch base, when  0 1f    or  

  2
0f     we solve SLAE (3.5) at various values of the parameter 0 . As a result, the 

coefficients     1,2,3; 0,j
kX j k n   are determined and by formula (3.6) the coefficients  
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kX  are obtained. Later on from  system  (3.7)  the parameters 0  and 0  are determined, 
and besides it was accepted here that 00001,0,001,0 00  MP . Then using the results of 
these calculations, the values of the dimensionless contact pressure under the 
punch,  0p  , as well as the values   0 1p  are calculated by the formula (3.8). 

In case of  0 1f    the graphs of  0p   are practically rectilinear segments, parallel to 

the axis of the abscissa, which in the process of increase of 0  are removing from the axis 

of the abscissa.  And in the case of   2
0f     the graphs of  0p   at small 0 , 

corresponding to the big values of the local displacements in the contact zone,  practically 
represent rectilinear segments near the axis of the abscissa. But with the increase of the 
parameter 0 , when the  local displacements become small values, the graphs of  0p   
gradually take the form of the parabola with branches going to infinity (Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 

Such parabolas are characteristic for the classical contact problems, when the contact 
pressure at the ends of the contact zone becomes infinite. 

Values 0 , 0  and  0 1p   when  0 1f    are given in Table 1 for different 0 . 
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       Table 1 

0 0 0 0 1  0 1  
0.001 0.000834 -0.00015 0.000684 0.000984 
0.005 0.002171 -0.00015 0.002022 0.002324 

0.1 0.034514 -0.00016 0.035603 0.03593 
0.3 0.105856 -0.00019 0.116166 0.116546 
0.5 0.180771 -0.00022 0.207713 0.208146 
0.8 0.298264 -0.00026 0.361064 0.361576 

1 0.379268 -0.00028 0.471833 0.472396 
5 2.17879 -0.00079 3.30652 3.30809 

10 4.57025 -0.0014 7.4174 7.4202 
20 9.45821 -0.00261 16.1845 16.1898 
50 24.3141 -0.00623 43.8278 43.8403 

100 49.2167 -0.01222 91.3401 91.3645  
 
In Table 2 the same parameters when   2

0f     are represented.  
                                                                                                          Table 2 

0 0 0 0 1  0 1  
0.001 0.0015 -0.0015 0.00135 0.00165 
0.005 0.005502 -0.00015 0.005351 0.005652 

0.1 0.100548 -0.00016 0.100366 0.100693 
0.3 0.300642 -0.00019 0.300393 0.300773 
0.5 0.500736 -0.00022 0.500417 0.50085 
0.8 0.800874 -0.00026 0.800446 0.800958 

1 1.00096 -0.00028 1.00046 1.00103 
5 5.00271 -0.00079 5.00055 5.00212 

10 10.0048 -0.0014 10.0004 10.0032 
20 20.009 -0.00261 19.9999 20.0051 
50 50.0215 -0.00623 49.9976 50.0101 

100 100.042 -0.01222 99.9931 100.018  
 
With the increase of the parameter 0 , which corresponds to the gradual transition into the 

smooth contact model, quantities 0  and  0 1p   greatly increase, while  values of 0  all 
the time remain very small. 

Now we shall find out the conditions of the absence of the punch rotation when a given 
system of forces acts on the punch. Setting 0 0   into system (3.7), we obtain the 

following necessary values of 0M  and 0 ,  providing the absence of the punch rotation: 
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The calculated by the formulas (5.1) values of 0  and 0M  for different 0  when 

 0 1f     or   2
0f       for the same value of 0P  are given in Table 3.  

      Table 3 

0  0 ( ) 1f     2
0 ( )f     

0  0M  0  0M  

0.001 0.0015 0.000666 0.000834 0.000666 
0.005 0.005502 0.003318 0.002171 0.003318 

0.1 0.100548 0.061202 0.034514 0.061202 
0.3 0.300642 0.157898 0.105856 0.157898 
0.5 0.500736 0.231072 0.180772 0.231072 
0.8 0.800874 0.312955 0.298264 0.312956 

1 1.00096 0.35511 0.379268 0.355111 
5 5.00271 0.636414 2.17881 0.636418 

10 10.0048 0.714155 4.57033 0.714167 
20 20.009 0.764888 9.45859 0.764915 
50 50.0215 0.802989 24.3169 0.803067 

100 100.042 0.818321 49.2273 0.818474 
 
From this table it is seen that at small 0 , when the local displacements are significant,  

0  and 0M  are enough small. However, they also increase with the increase of 0 . 
Conclusion. Rather a wide class of contact and mixed problems of mechanics of   
deformable solids is described by Fredholm integral equations of the second kind with 
symmetric kernels, for which the corresponding integral spectral relationships are well-
known. In the paper for solving such equations, the well-known method of degenerate 
kernels is developed which reduces their solution to the solution of SLAE. The described 
method is illustrated on the example of the I.Ja. Shtaerman generalized contact problem on 
the punch indentation into an elastic half-plane taking into account the surface structure of 
the foundation.  
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